
Queuing Theory 
Little’s Theorem: N Tλ=  

departure rate = arrival rate = System λλ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→  

• Holds for any (ergodic) system with a steady state 
• Def. 

( )tα   = the number of arrivals at the system in the interval from time 0 to time t. 

= number of arrivals in [0, t] 
( )tβ   = the number of customer departures in the interval from time 0 to time t. 

 = number of departure in [0, t] 
( )N t   = Number of customers in the system at time t 

 = ( ) ( )t tα β−  

N  = average (steady-state, long run, expected) number of customers in system 
(waiting for service or receiving service) in equilibrium 

= 
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• System = system: N Tλ=  
System = queue: qN Wλ=  

System = server: sN EX λλ
µ

= =  

Because, by definition, T W EX= + , we have q sN N N= + . 

• Let τ = interarrival times 
τi = the time between the arrival of the i-1 and the ith customer 

Assume that all τi’s are i.i.d., and thus have the same [ ]iE Eτ τ= . 

λ = long-term arrival rate at the system = 1
Eτ
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⎡ ⎤
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• T  = Average time each customer spent in the system 
Ti  = Time the ith customer spent in the system 
 = the time that elapses between the instant when 

( )tα  goes from i-1 to i 

to the instant when 
( )tβ  goes from i-1 to i. 

[customers] 

Arrival of ith customer 

Ti 
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• Let t = a time instant where ( ) ( )t tα β= , which implies N(t) = 0. 

The area between ( )tα  and ( )tβ  from 0 to t: 

1) horizontally, area 
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Note if define di = departure time, ai = arrival time of the ith customer 
Then i i iT d a= − . 
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Queuing Theory  
• Standard queuing theory nomenclature 

Service times Interarrival time M = exponentialM = exponential D = deterministicD = deterministic G = generalG = general 11 Service rate: =Arrival rate: = EE

Arrival process  / Service time
X

X

τ

µλ
τ

1 server  customers servers unspecified if unlimited

/ Servers  / Max occupancy
Kc

∞

 

• 1st letter ⇒ nature of the arrival process 
• M = Poisson process (Markov, memoryless) ⇒ exponentially distributed 

interarrival times. 
• G = general distribution of interarrival times 
• D = deterministic interarrival times 

• 2nd letter ⇒ nature of the probability distribution of the service times. 
• M = exponential 
• G = general 
• D = deterministic 

• 3rd letter ⇒ number of servers 
• Successive interarrival times and service times are assumed to be statistically 

independent of each other. 
• Def: 

pn = Steady state probability of having n customers in the system, n = 0, 1, … 

N = Average number of customers in the system = 
0

n
n

np
∞

=
∑  

T = Average customer time in the system 
Nq = Average number of customers waiting in queue.  

If there are m server, then ( )
1

q n
n m

N n m p
∞

= +

= −∑  

W = Average customer waiting time in queue 
Ns(t) = the number of customers that are being served at time t, and let X denote the 
service time. 
Ns = the average number of busy servers for a system in steady state 
X = service time, a random variable. 

h = EX = 1
µ

 = average service time. 

• Utilization factor:  

• Single server: ρ = proportion of time the server is busy = 1 01 sp p Nλ
µ

= − = = . 



Proof. For single-server systems, (1) system has ≥ 1 customers ≡ server is busy; 
hence, 0,server 0,system 0:p p p= = . Also, 1,server 1,system 1 0: 1p p p p= = = − . (2) 
Ns(t) can only be 0 or 1, so Ns represents the proportion of time that the 
server is busy ( )1,serverp . 0,server 1,server 1,server 00 1 1sN p p p p= + = = − . (3) From 

Little’s theorem, sN EXλ= . Hence, 01 sp N EXλ− = = . Note that 

01 p− is the proportion of time that the server is busy. For this reason, the 

utilization of a single-server system is defined by EX λρ λ
µ

= = . 

• Similarly, define utilization of a m-server system by EX
m m

λ λρ
µ

= = . 

• For finite-capacity systems,  
it is necessary to distinguish between the traffic load offered to a system and the 
actual load carried by the system 
• The offered load or traffic intensity is a measure of the demand made on the 

system 

= Xλ  
• The carried load is the actual demand met by the system 

( )1 bP Xλ= −  

Occupancy Distribution upon Arrival 
• Probabilistic characterization of a queuing system as seen by an arriving customer. 
• Unconditional steady-state probabilities 

( ){ }limn t
p P N t n

→∞
= =  

• Steady-state occupancy probabilities upon arrival 

( ){ }lim an arrival occured just after time tn t
a P N t n

→∞
= =  

• pn = an ,  n = 0, 1, … 
for queuing systems 
regardless of the distribution of the service times 
if either 
• the arrival process is Poisson and interarrival times and service times are 

independent. 
• future arrivals are independent of the current number in the system. 

⇒  
for every time t and increment δ > 0, 
the number of arrivals in the interval (t,t+δ) is independent of the number in the 
system at time t. 



• the arrival process is Poisson and, at any time, the service times of previously 
arrived customers and the future interarrival times are independent. 

Let  
( ),A t t δ+  be the event that an arrival occurs in the interval ( ),t t δ+  

( ) ( )Prnp t N t n= =⎡ ⎤⎣ ⎦ . ( )( )limn nt
p p t

→∞
⇒ = . 

Then, 
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δ

δ
→

= =

= = +
 

If the event ( ),A t t δ+  is independent of ( )N t , then 

( ) ( ){ } ( ){ } ( )
0

limn na t P N t n P N t n p t
δ →

= = = = =  

Taking the limit as t → ∞, from the definition of an and pn, we obtain an = pn. 
• Ex. non-Poisson arrival process. 

Suppose interarrival times are independent and uniformly distributed between 
[a,b] ; a < b. Customer service times are all equal to c < a sec. 
• Then, an arriving customer always finds an empty system (N = 0) . 
• On the other hand, the average number in the system as seen by an outside 

observer looking at a system at random time is N = λT where 
1 1 2

2
a bE a b

λ
τ

= = =
+ +

 and T = c. 

Thus, 2cN T
a b

λ= =
+

.  

• Ex. service times and future arrival times are correlated. 
Packet arrival is Poisson process. Transmission time of the nth packet equals one 
half the interarrival time between packets n and n+1 
• Upon arrival, a packet finds the system empty. 
• On the other hand, the average number in the system as seen by an outside 

observer looking at a system at random time is 
1 1

2 2
N T τλ

τ
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Occupancy Distribution upon Departure 
• The distribution of customers in the system just after a departure has occurred. 

• ( ) ( ){ }a departure occured just before time tnd t P N t n= =  



• steady-state values ( )limn nt
d d t

→∞
= ,  n = 0, 1, … 

• dn = an, n = 0, 1, … 
if  
• the system reaches a steady-state with all n having positive steady-state 

probabilities.  
and 
• N(t) changes in unit increments. 

For any sample path of the system and for every n,  
the number in the system will be n infinitely often (with probability 1).  

⇒ 
For each time the number in the system increases from n to n+1 due to an arrival, 

there will be a corresponding future decrease from n+1 to n due to a 
departure.  

⇒ 
In the long run,  

the frequency of transitions from n to n+1 out of transitions from any k to k+1  
equals  
the frequency of transitions from n+1 to n out of transitions from any k+1 to 
k,  

which implies that dn = an. 

M/G/1 
• “G” ≡ general (really, GI ≡ general independent) 

Service times are i.i.d. 
Pr[service time ≤ t] = H(t) ≡ cdf of the service time; don’t have to be continuous 

Mean service time ( )
0

h tdH t
∞

= ∫  

1hρ λ= <  which assumes stability. 

M/G/1 analysis based on Pollazek-Khinchin theory 
• Polla(c)zek-Khinchin theory 
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• Distribution of N 
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• ( ){ }N t  is no longer Markov in non-expo service time case. However, can embed a 
discrete-time Markov chain at the departure instants 

• Define 
nk = number of customers in system right after (upon) departure of customer k (so, not 
including customer k itself.) 
sk = service time of customer k. 

Assume the sk are i.i.d. with common cdf ( ) ( ) ( )s kH t F t P s t= = ≤  

Let ( )
0

h tdH t
∞

= ∫  be the mean service time. 

rk = number of new customers arriving during service time of customer k 

• 1 1
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Proof 
• For nk-1 > 0, after the (k-1)th customer leave, there are nk-1 customer in the system 

(the kth customer is included here also.) The first one which will be served right 
away is the kth customer.  While the kth customer is served, rk customers arrive. 
Thus when the kth customer leave, we have nk-1+rk-1 customers left in the system. 
(the -1 comes from the kth customer leaving) 

• For nk-1 = 0, after the (k-1)th customer leave, there are no customer in the system. 
After a while (exponentially distributed random duration), the kth customer 



arrives.  While the kth customer is served, rk additional customers arrive. Thus 
when the kth customer leave, we have 1+rk-1 = rk customers left in the system. 
(The +1 and -1 is from customer k arriving and leaving.) 

Another way to think about this: for the first case, nk-1 already includes the kth 
customer so it has to subtract 1 out when the kth customer leave.  

• Generating function: 
( ) kn

kN z Ez=  

( ) ( ) ;  not a function of kr
kR z Ez R z k= =  because sk are i.i.d. 

• Laplace-Stieltjes transform of service distribution: 
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• Let r be a generic rk, then 
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Interchange the sum and the integral, then we have 
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So, ( ) ( )( )* 1krR z Ez h zλ= = − . 

Note: require Poisson to prove ( ) ( )( )* 1R z h zλ= −  

• Quantity of principal interest is ( ) ( )zNzNkk
=

∞→
lim  (Will show later that ( )1N N′ = ) 
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We already have ( ) ( )( )* 1krEz R z h zλ= = − . So, consider ( )1 1
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Thus ( ) ( ) ( ) ( ) ( )( ) ( )zRnPzN
z

zRnPzN kkkk 010 111 =−+== −−−  

• As k →∞ with ρ < 1, we get 
• Nk(z) and Nk-1(z) → N(z) and 
• ( )1 00kP n p− = → .  

We already know that, for a single server, 01 pρ = − . 

Thus, we have 
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• To find N, 
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• May be easier to use a Taylor series approach and expand around z = 1. 
Introduce u = z-1, so we can expand around u = 0. 

• Let  
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• By Taylor’s Theorem: 

( ) ( ) ( ) ( ) ( )2 20
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Now, note that as x → 0, 
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From ( )0 0r′ =  for continuous ( ) ( )r x o x=  as x → 0, we then have   
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• Distribution of waiting time. 
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Observe that, in the steady-state, the random variable n that represents the system 
population at the point of departure of a customer may also be thought of as the 
arrivals during the total system time (sojourn time) of that customer. 
Said sojourn time is the sum of the waiting random variable, w, and the service 
random variable, s. 
The same sort of reasoning that gave us ( ) ( )( )* 1R z h zλ= −  can be applied to 
give us the moment generating function of the number of arrivals during w + s as  
( ) ( )( )* 1N z f zλ= −  

where *f  is the Laplace transform of the distribution of w + s 

during s → r, R 

during w + s → n, N 

Since w and s are independent, the pdf of w + s is the convolution of the pdf of w 
and pdf of s.  This implies that the Laplace transform is the multiplication: 

( ) ( ) ( )* * *f s w s h s=  

( ) ( )( ) ( )( ) ( )( )* * *1 1 1N z f z w z h zλ λ λ= − = − − . 

where *w  is the L-S transform of the distribution of w. 

( )( ) ( )
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*
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1
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z h zz R z
N z z R z
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h z h z

ρ λρ

λ
λ λ

− − −− −
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− = = =
− −

( )( )
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*
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1

1

z h z

h z

λ

λ

− −

−

( )( )
( )( )*

1 1
1
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z h z
ρ
λ

− −
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Let ( )1s zλ= −  

( )
( )

( ) ( ) ( )( )
*

* **

1
1 1

1 1 11

s

w s
s h s h sh s

s s s

ρ
ρ ρλ

λ λ λ
λ

⎛ ⎞− −⎜ ⎟ − −⎝ ⎠= = =
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• We did explicitly use the fact that the number of arrivals during a service of length s 
is Poisson with parameter λs. 
Our justification for equating the statistics just after a departure instant in equilibrium 
to those at a randomly chosen instant in equilibrium also depended on the Poisson 
nature of the arrivals. (need dn = an = pn). 

• Average length of an idle period = 1
λ

 

Proof. Since an idle period occurs when the system is waiting for a customer to 
arrive after the queue becomes empty. At the moment that server becomes 



empty, by memoryless property, have to wait ( )λE  with average 1
λ

 for the 

next customer to arrive, independent of how long it has already been from the 
moment when the last customer arrived. 

• Average length of busy period = 1
µ λ−

. 

Proof. Let B = average length of buy period. We have shown that average length of 

an idle period is 1
λ

.  Note that the busy period and idle period are alternating 

sequence. Hence,  

( )

,
1

,
1

, , , ,
1 1 1

lim
lim 1

lim lim

n

n busy i
i

busy i
ni

n n nn

idle i busy i idle i busy i
i i i

n n

Bn

B

n n

τ
τ

ρ
τ τ τ τ

λ

=

→∞=

→∞

= = =

→∞ →∞

= = =
++

+

∑
∑

∑ ∑ ∑
. 

Solving for B, we get 
( )

1
1 1

hB ρ
λ ρ ρ µ λ

= = =
− − −

. 

• Avergae number of customers served in a busy period = 1
1 ρ−

 

Idea. B
h

= . 

M/G/1 analysis based on the concept of the mean residual service time 
• Ri = Residual service time seen by the ith customer. 

By this we mean that if customer j is already being served when i arrives, 
Ri is the remaining time until customer j’s service time is complete. 
If no customer is in service (i.e., the system is empty when i arrives), the Ri = 0. 

• R = mean residual time = lim ii
ER

→∞
 

• R  = mean residual service time given that one is arrived when the server is busy 

By renewal theory: 
21

2
XR
X

=  

• Note: If M/M/1, service time is exponentially distributed, and thus memoryless.  
Therefore, given that the service time does not end there, what’s left is also 

exponentially distributed with the same mean. So, 1R
µ

= . 



Using the above equation gives the same result: 

2

2
1 1

1 1
12

R µ µ
µ

µ

⎛ ⎞
+ ⎜ ⎟
⎝ ⎠= = . 

• 21
2

R Xλ=  

Proof. We know that the probability of server being busy for single server is 
1p EXλ ρ= = . Hence, 

2
2

0 1
1 10
2 2

XR Rp p R X
X

ρ ρ λ= + = = =  

Proof. (Graphical argument) 
 

t Xi 

Xi 

Residual Service time 

 
r(τ) = the remaining time for completion of the customer in service at time τ 
When a new service of duration X begins, r(τ) starts at X and decays linearly 
for X time units. 

( )
( )

2

10

1
2

t M t

i
i

r d Xτ τ
=

= ∑∫  

M(t) = number of triangles in [0,t] = number of service completions in [0,t] 

( ) ( )
( )

( ) ( )
( )

( )2 2

1 10

2

1 1 1lim lim lim lim
2 2

1
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t M t M t
i i

t t t ti i

M t M tX XR r d
t t M t t M t

X

τ τ

λ

→∞ →∞ →∞ →∞
= =

⎛ ⎞⎛ ⎞
= = = ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

=
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• 
( )

2

2 1
XW λ
ρ

=
−

 

Proof. Note that the time waiting in the queue of the ith customer  = residual service 
time seen by the ith customer + time used to service all customers already in 
the queue. 



1 1
qW R N R W R Wλ ρ

µ µ
= + = + = + . 

( )

2
2

1
2

1 1 2 1

XR XW
λ λ

ρ ρ ρ
= = =

− − −
. 

• The average customer in queue qN  and the mean residual time R as seen by an 
arriving customer are also equal to the average number in queue and mean residual 
time seen by an outside observer at a random time.  
This is due to the Poisson character of the arrival process, which implies that the 
occupancy distribution upon arrival is typical. 

• M/G/1 is a renewal process when busy 
M/G/1 has occasional (with probability 1-ρ of occurrence) ( )λE  random variable 
inserted into service time renewal process. 

• M/G/1 queue can have ρ < 1 but infinite W if the second moment 2X →∞  
• The formula is valid for any order of servicing customers as long as the order is 

determined independently of the required service time 
To see this, suppose the ith and jth customers are both in the queue and that they 
exchange places. 
The expected queuing time of customer i will then be exchanged with that for 
customer j, but the average, over all customers, is unchanged. 
Since any service order can be considered as a sequence of reversals in queue 
position, the P-K formula remains valid. 

M/G/1 with vacations 
• At the end of each busy period, the server goes on “vacation” for some random 

interval of time. 
A new arrival to an idle system, rather than going into service immediately, waits for 
the end of the vacation period. 
If the system is still idle at the completion of a vacation, a new vacation starts 
immediately. 

• Let Vi’s be the durations of the successive vacations taken by the server. 
Assume Vi’s are i.i.d. random variables and independent of the customer interarrival 
times and service times. 

• 
21

2
XR
X

=  = mean residual time given that arrive when the server is serving someone 

21
2

V
V

 = mean residual time given that arrive when the server is on vacation (idle) 
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• 
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2 21
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M/M/1 

• 0 1: 1
serversp N pλρ

µ
= = − = =  

( )1n
np ρ ρ= −  ; 0,1,n = …  

1
N ρ λ

ρ µ λ
= =

− −
 

1T
µ λ

=
−

 

W ρ
µ λ

=
−

 

2

1qN ρ
ρ

=
−

 

• Transient if ρ > 1; Null recurrence if ρ = 1; Ergodic if ρ < 1 
• 01 pρ = − = utilization factor = the long-term proportion of time the server is busy 

Proof. 
(1) If the system has ≥ 1 customers, the server is busy (serving surely 1 

customer). This occur with probability 01 p− . Note also that if the server 
is busy, then the system has ≥ 1 customers (at least one in the server). 
Hence, 0 0 0system server

p p p= = . If the system has 0 customer, the server is idle 

(serving 0 customer). This occur with probability 0p . So, the long-term 
proportion of time the server is busy 01 p= − . Average number of 
customer in the server = 0 1 1 00 1 1sN p p p p= × + × = = −  

(2) Now, Apply Little’s theorem to the server. Then 1 :sN EXλ λ ρ
µ

= = = . 



From (1) and (2), 0 1: 1
serversp N pλρ

µ
= = − = = . 

• State diagram 

1 0 

λ 

µ 

i-1 i

λ 

µ 
 

• ( )1n
np ρ ρ= −  ; 0,1,n = …  

Proof. This is a birth-and-death process. 

• 
1

N ρ λ
ρ µ λ
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Proof. ( ) ( )
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n
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or 
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• Effect of scale on performance 
• m separate M/M/1 systems each: λ, µ 



ET = 
1

1
µ
ρ−

 

• One consolidated system: mλ, mµ 
m
m

λ λ λρ ρ
µ µ µ
′

′ = = = =
′

 

ET′ = 
1 1

1
1 1

m ET
m

µ µ
ρ ρ
′
= =

− −
 (less delay) 

• The improved performance of the combined system arises from improved global 
usage of the processors. 
• In the separate systems,  

some of the queues may be empty while others are not. 
Consequently, some processors can be idle, even though there is work to be 
done in the system. 

• In the combined system, 
the processor will stay busy as long as customers are waiting to be served 

Applying M/G/1 analysis to M/M/1 
• Mean residual service time 

As noted above, since service time for M/M/1 is exponentially distributed, and thus 
memoryless.  Therefore, given that the service time does not end when the packet 
arrive, what’s left of service time for the currently serviced packet is also 

exponentially distributed with the same mean. So, 1R
µ

= . 

Thus, ( )1 11 0 QW Nρ ρ
µ µ

⎛ ⎞
= + − +⎜ ⎟
⎝ ⎠

. The average waiting time in the queue is the 

summation of 1) the residual time of the currently serviced packet which is 0 if server 

is idle and 1
µ

 if server is busy and 2) The time required to service the customers 

already waiting in the queue which is NQ times the average service time. 

and 1 1W W ρρ λ
µ µ µ λ

= + =
−

 as before. 

• ( ) tdH t e dtµµ −=  

1h
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= , 2
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=  

( ) ( ) ( )
2 2
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2 1 2 1 1
hW

λ
λ ρ ρµ

ρ ρ µ ρ µ λ
= = = =

− − − −
as expected. 



• pmf for N for M/M/1 system: 

( ) ( )* 1Lth t e h s
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By expanding N(z) in a power series, we have ( ) ( ) ( )
0

1 i

i
N z zρ ρ

∞

=

= −∑ . 

Since ( ) ( )
0

i

i
N z P n i z

∞

=

= =∑ , ( ) ( )1 iP n i ρ ρ= = −  for k = 0, 1, 2, … 

• pdf of W for M/M/1 system: ( ) ( ) ( ) ( ) ( )11 1 t
Wf t t e µ ρρ δ ρ λ − −= − + −  
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( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )11 1 1t t
Wf t t e t eµ λ µ ρρ δ λ ρ δ ρ λ− − − −= − + = − + −  ; t > 0 

• pdf of T for M/M/1 system: ( ) ( ) ( )11 t
Tf t e µ ρµ ρ − −= −  

( ) ( ) ( )* * *T s w s h s=  
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( ) ( ) ( ) ( ) ( )11 1t t
Tf t e eµ λ µ ρρ µ µ ρ− − − −= − = −  

M/D/1 
• “D” ⇒ deterministic 

service time = h for every customer 

• h h= , 2 2h h=  
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M/M/1/K 
• Equilibrium (stable): 

• 1n np pλ µ+=  
1

1
1 0 0

n
n

n np p p pλ λ ρ
µ µ

+

+
+

⎛ ⎞
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  ; n = 0, 1, …, K-1 
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• pn = 1

1
1

n
K

ρ ρ
ρ +

−
−

 ; n = 0, 1, …, K 

• P(blocking or loss) = pK = proportion of time that the system is full = 1

1
1

K
K

ρ ρ
ρ +

−
−

 

Proof. This is a truncated birth-and-death process. 
• For ρ < 1 ⇒ λ < µ  

• the probabilities decrease exponentially as n increases 
• N tends to cluster around n = 0 
• adding more buffers (K) is beneficial since the result is a reduction in loss 

probability 
• For ρ = 1 

• all state are equally probable 

• pn = 1
1K +

 

• For ρ > 1 ⇒ λ > µ 
• pn increase with n 



• pn tend to cluster toward n = K ⇒ the system tends to be full 
• adding buffers is counterproductive since the system will fill up the additional 

buffers. 

• N = 
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• For ρ < 1, 
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• For ρ = 1, 
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• For ρ → 0, 



• N = ( ) 1
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• W → 0 

• pK = Ploss = 1
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 = 0 

• T = W+X → T = X 
• For ρ → ∞, 

• N → K 
• pK → 1 

• T → K
µ

 = KEX 

M/M/m 
• m server. 
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• Erlang C formula ( )
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Note: for i = m, can use any equation. 
• PQ = P{Queuing} = probability that an arrival will find all servers busy and will be 

forced to wait in queue 

• Erlang C formula: ( )
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• probability that an arrival will find all servers busy and will be forced to wait in 
queue = Pblock 

• Since an arriving customer finds the system in “typical” state 
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• The probability of a call request finding all of the m circuits of a transmission line 
busy, assumed that such a call request “remains in queue,” that is, continuously 
attempts to find a free circuit. 
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• Another way to find NS 
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M/M/m/m ⇒ Erlang model 
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• Erlang B formula: 
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Comparison 
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Etc 
• Burke’s theorem: 

For an M/M/1. M/M/c, or M/M/∞ queuing system at steady state with arrival rate λ, 
then 
• The departure process is Poisson with rate λ 
• At each time t, the number of customers in the system n(t) is independent of the 

sequence of departure times prior to t. 


