
Napster and Gnutella: a Comparison of two
Popular Peer-to-Peer Protocols

Anthony J. Howe
Supervisor: Dr. Mantis Cheng

University of Victoria

February 28, 2002

Abstract

This article presents the reverse engineered protocols of two popular peer-to-peer
models, Napster and Gnutella. Napster presents a model where a central broker handles
discovery and coordination of files among peers, but the exchange of files takes place
between the peers. Gnutella removes the centralization and extends the model further
by requiring the peers to contribute to the coordination and discovery efforts. Napster
is a very scalable model but its resiliency is reduced since discovery and coordination
are centralized. In contrast Gnutella is resilient since there are no centralized compo-
nents, but it is not scalable since the structure of Gnutella produces a large number of
messages. A system is scalable if the load on the system increases at a linear rate with
an increase in users. A system is resilient if it is able to function correctly after one or
more component failures. An alternative peer-to-peer solution using the scalability of
Napster and the resiliency of Gnutella is presented at the end of this work.

Contents

1 Introduction 1

2 Napster 1
2.1 Overview . 1
2.2 The Protocol . 3

2.2.1 Napster Peer . 4
2.2.2 Napster Lookup Server and Broker 13

3 Gnutella 16
3.1 Overview . 16
3.2 The Protocol . 17

4 Discussion 25

5 A New Peer-to-Peer Network Design 27

6 Conclusion 28

i

List of Figures

1 A Napster Network: the broker coordinates music file sharing among
peers . 2

2 The Number of Napster Users for the Week of November 18, 2000 . . 3
3 Napster Lookup Servers Provide address of least busy broker 4
4 State-chart for the Napster Peer . 5
5 State-chart for the Main Coordination 6
6 State-chart for the Listener . 7
7 State-chart for Download . 8
8 State-chart for Upload . 10
9 State-chart for Push . 11
10 Information flow of a Napster Client Download 12
11 Information flow of a remote client upload 13
12 State-chart for Napster Lookup Server 14
13 State-chart for the Napster Broker 14
14 State-chart for the Client Instance 15
15 A Gnutella Network . 17
16 State-chart for Gnutella Peer . 18
17 State-chart for Connection Handler 19
18 State-chart for Coordination Instance 20
19 State-chart for Download Instance 21
20 State-chart for Upload Instance . 22
21 Information flow of a Gnutella Search and Download 23
22 Information flow of a Gnutella Push 24
23 The message load on a Napster network and Gnutella network for the

first 500 messages. 26
24 Coordination and Discovery Clusters located throughout the World. . 27

ii

1 Introduction

Traditional network (internet/intranet) applications are client-server based, where many
clients communicate with a common shared server for application services. Examples
of such application services include e-mail servers, web servers, and file servers. These
centralized servers have two fundamental problems: scalability and resiliency. In the
present state of the Internet, millions of users may be using the same server simultane-
ously. It is difficult to host a server for millions of users and remain online continuously.

An alternative to the client-server architecture is the peer-to-peer model. Every
client in a peer-to-peer network is also a server. The coordination and discovery is-
sues of these decentralized networks are central. To better understand these issues the
protocols of two popular peer-to-peer applications Napster and Gnutella are closely ex-
amined. Each protocol presents a distinct approach to the coordination of information
exchange between peers, and discovery of the information contained on those peers.
The degree of resiliency and scalability vary between these peer-to-peer models. A
system is scalable if the load on the system increases at a linear rate with an increase
in users. A system is resilient if it is able to function correctly after one or more com-
ponent failures.

Section 2 and section 3 present and examine the reverse engineered protocols of
the Napster and Gnutella peer-to-peer models respectively. Section 4 discusses the ad-
vantages and disadvantages of each approach in peer-to-peer networking. After the
discussion, section 5 proposes a better peer-to-peer network design. Section 6 con-
cludes this work.

2 Napster

Napster has been described as the trigger application that made peer-to-peer web com-
puting popular [1]. Pre peer-to-peer web applications such as ftp, shared drives, and
Windows for workgroups did not have the ease of use, common protocols, standards,
and scalability of Napster [1].

2.1 Overview

Napster hosts act as clients as well as servers for the exchange of music files. A host
first joins the network by connecting to a central server known as a broker. Once
connected, the host passes information on all the music files it serves to the broker.
This information is known as metadata. The broker stores a database of the metadata;
this metadata contains the information of all the hosts currently logged into the broker.
In Figure 1 there are six computers logged into the broker.

Clients query the broker’s database for particular music files. The broker replies
back with a list of songs and matching peers that contain them. The client can then
coordinate with the broker on the exchange of a file from one of the remote hosts. For
example, in Figure 1 Computer F is downloading a file directly from Computer C. The
broker participated in searching for the file and setting up the file exchange, but the
download occurred directly between the two peers.

1

Computer A

Computer B

Computer C

Computer D

Computer E

Computer F

Broker

File Transfer

Figure 1: A Napster Network: the broker coordinates music file sharing among peers

In addition to searching and sharing music, Napster also provides peer-to-peer mes-
saging, chat rooms, and user hot lists. Peer-to-peer messaging allows one peer to talk
to another peer. Chat rooms allow groups of users to share information. A message
posted to a chat room is seen by all users connected to the chat room. Hot lists contain
a list of popular peers with whom a client has been in contact. Peers can add each other
to their own hot lists. This hot list will provide information on a peer’s metadata, as
well as when the peer is online. The broker performs all the coordination of these extra
features.

Due to the popularity of Napster, many Napster brokers are available to handle mil-
lions of users. Before August 2000, these brokers were incapable of sharing databases.
This meant that each broker contained a separate Napster network [5]. In August Nap-
ster linked all brokers together so that they formed one large network allowing any user
to query the metadata of all users connected to the Napster network [4]. Since that time
Napster has kept its brokers unlinked most of the time [4]. It is suspected that while the
brokers were linked together, the coordination of information between the brokers was
too much of a load on the network. Figure 2 shows the number of users on the Napster
Network for the week of November 18, 20001. On average there were 871000 users on
the Napster Network reaching a maximum of 1179433 users on November 20, 2000 at
4:00pm. Assuming there were 90 Napster brokers available all the time this led to an
average load of 9680 users per broker with a maximum average load of 13104 users
per broker when the network reached its maximum. These high numbers of users may
have contributed to the cause of unlinking all the brokers.

1These results were obtained by periodically observering the server stats message of each of the 90
Napster brokers on IP range 64.124.41.150 to 64.124.41.239. Assuming that all brokers were unlinked, the
number of users is the sum of all the users reported by each broker.

2

0

200000

400000

600000

800000

1000000

1200000

1400000

18-Nov 19-Nov 20-Nov 21-Nov 22-Nov 23-Nov 24-Nov 25-Nov 26-Nov 27-Nov

Week of November 18, 2000

N
u

m
b

er
 o

f
U

se
rs

Figure 2: The Number of Napster Users for the Week of November 18, 2000

2.2 The Protocol

Napster has not released the specification for the Napster protocol. However, a project
has been formed called the OpenNap project to reverse engineer the protocol. Most
of the protocol messages have been successfully reversed engineered and can be found
in a document on the OpenNap web site [3]. The protocol is large and contains many
sections dealing with login, file sharing, chat rooms, and peer-to-peer chatting. This
work is only concerned with the discovery issues related to the sharing of files between
peers, so only the login and file sharing portions of the protocol are discussed.

The Napster messages used in communication between a Napster peer and a Nap-
ster broker are shown in bold and italic. The description of each message and the
information they carry have been reversed engineered and are explained on a web page
named Napster Messages [3].

To evenly distribute peers among Napster brokers there are lookup servers to pro-
vide addresses of the least busy brokers. A Napster peer must first connect to a lookup
server, get the address of a broker and then finally connect to that broker. In Figure
3 there are m Lookup servers and n Napster brokers. The lookup servers have con-
nections to each of the brokers to determine the load on each broker. The brokers are
interconnected in order to share the metadata. By sharing metadata the brokers as a
whole act as one large Napster network instead of n different Napster networks.

The Napster lookup servers, brokers, and peers all communicate through TCP/IP.
When discussing communication between lookup servers, brokers, and peers it can be
assumed that the messages are delivered in order and without error. To join the Napster
network Napster peers connect to a lookup server located at server.napster.com on TCP
port 8875. The address of the broker returned from the lookup server includes the IP

3

Broker 1 Broker 2 Broker 3 Broker n

Lookup 1 Lookup 2 Lookup m

Figure 3: Napster Lookup Servers Provide address of least busy broker

address as well as the TCP port. The TCP port for a broker is usually port 8888. A
Napster peer will normally listen for requests on TCP port 66992.

2.2.1 Napster Peer

There are up to five concurrent entities in a Napster peer shown in Figure 4: Main
Coordination, Listener, Download Instance, Upload Instance, and Push Instance. The
Main Coordination entity deals with the connection, and communication with a Napster
lookup server and broker. The Listener handles all incoming connections from other
Napster peers. The Upload, Download, and Push Instances are concerned with the
exchange of files between other Napster peers. There may be zero or more of the
Upload, Download, and Push Instances running at one time.

The state-chart for the Main Coordination entity is given in Figure 5. It has eight
states: offline, finding best broker, connecting to best broker, online, login error,
logged in, metadata upload, and searching.

Initially Main Coordination starts in the offline state. After connecting to a Napster
lookup server it enters into the finding best broker state. If the lookup server is busy
or there is no connection to it the state returns to offline. Otherwise it waits for the
identification of a broker. Upon receiving identification, it closes the connection to the
lookup server and enters into the connecting to best broker state.

In the connecting to best broker state the peer will open a connection to the broker
address provided by the lookup server. If no connection is made to the broker, the
Napster peer returns to the offline state. Otherwise it will create a new Listener entity
and send a login message or new user login message to the broker and enter the online
state. Either login message includes the username, password, and the listening port.
The listening port is used to accept incoming connections from other Napster peers.

Username acceptance takes place in the online state. A failed login ack message
from the broker or a connection error will cause a change in state to login error. Once

2The port numbers of the brokers, lookup servers, and peers were determined by using a packet sniffer.

4

Main Coordination

Push Instance

Upload Instance

Napster Peer

Download Instance

Listener

Figure 4: State-chart for the Napster Peer

in the login error state the connection to the broker will be closed, the Listener termi-
nated, and the Napster peer will return to the offline state. A failed login will occur for
a login message if the username or password is invalid. A failed login will occur for
a new user login message if the username already exists, or if the username and pass-
word are of an invalid format. If the broker accepts the login, the Main Coordination
entity will enter the logged in state.

Immediately following the successful login, the Napster peer will upload metadata
to the broker describing the song instances. Upon sending the metadata for the first
song by a client notification of shared file message, the Napster peer will enter the
metadata upload state. It will stay in this state until every song notification has been
uploaded to the broker. The peer will return to the logged in state upon the last metadata
notification.

While in the logged in state the Napster peer may search for a song. Sending
a client search request message to the Broker will cause it to enter the searching
state. A client search request message contains a search string as well as additional
information to help narrow a search. A timer will also be set when entering this state.
This timer will allow the peer to get out of the searching state if the broker does not
answer the search request. During the searching state the broker will send a search
response message for every song, up to 100 songs, matching the search request. The
search response message contains information relating to the song as well as the peer
username that hosts the song. The broker will end the search with an end of search
response message. At this point the state will change back to logged in.

In any one of the logged in, metadata upload, or searching states the peer may
receive any one of two local events or six messages from the broker: local file deletion,
user download request, server stats, upload request, alternate download ack, down-
load ack, queue limit, or get error. When a song is deleted from the local repository,
the broker is notified that the song is no longer available for download with a remove

5

/client notification
of share file

connection error or
login ack failed

offline

finding best broker

connecting to best
broker

login error online

logged in

connect to Napster
lookup server

no connection
receive best broker
/close connection to

lookup server

/open new connection to best broker,
spawn listener, send login or new
user login message to best broker

no connection

login ack success

terminate listener
/close connection

logout or connection error
/terminate listener, push,

upload, and download instances,
close connection

metadata upload searching

/client search
request , set timer

search
response

end of
search

response
or timeout

/send first client
notification of shared file

/send last client
notification of

shared file

local file deletion / remove file or
user download request /spawn download instance or
server stats or
upload request /(send accept upload request or accept failed or queue limit) or
alternate download ack /(spawn push instance or send queue limit) or
(download ack or queue limit or get error) /(pass to appropriate download instance or discard)

connection error
/terminate listener, push,

upload, and download instances,
close connection

Figure 5: State-chart for the Main Coordination

file message. After searching for a file the user of the Napster peer may decide to
download a song. A user download request will result in the spawning of a Download
Instance. The Download Instance will handle the download of a song from a remote
peer. A server stats message is sent out periodically from the broker, and provides
information on the total number of peers, the total number of shared files, and the size
of information available in the Napster network. An upload request message is sent by
the broker to notify the peer that a remote peer is requesting a download. An upload
accept message will be sent to the broker if the peer is able to fulfill the request. If
the file requested for download does not exist then an accept failed message is sent
instead. If the maximum number of Upload Instances has been reached then a queue

6

limit message will be sent. An alternate download ack message will be sent from the
broker requesting that the peer push a file to a remote peer. This will occur if the peer is
behind a firewall. The peer will either spawn a new Push Instance to handle the push or
send a queue limit message to the broker if the maximum number of uploads has been
reached. A download information message such as a download ack, queue limit, or get
error message will be passed to the appropriate Download Instance, or if a Download
Instance does not exist then the message will be discarded.

If the connection is lost while in the logged in, metadata upload, or searching
states or the Napster peer decides to log out in the logged in state, all the download,
push, upload, and Listener entities are terminated and the connection to the broker is
closed.

The state-chart for the Listener entity is given in Figure 6. It has four states: wait-
ing for peer connection, determine connect request, handle a receive request, and
handle a download request.

waiting for peer
connection

determine connect
request

handle a receive
request

handle a download
request

connect /send '1'

receive " GET"receive " SEND "

hand off connection to existing download
instance, otherwise close connection

create upload instance, hand off
connection to it

invalid request or
connection error

Figure 6: State-chart for the Listener

Initially the Listener begins in the waiting for peer connection state. When a
remote peer connects to the listening port, the character ‘1’ is returned to acknowledge
the connection and the Listener transfers to the determine connect request state.

In the determine connect request state the Listener waits for the message ‘SEND’
or ‘GET’ from the remote peer. If the message is neither of these or there is a connec-
tion error the Listener returns to the waiting for peer connection state. Otherwise if
the request is a ‘SEND’ it enters the handle a receive request state. If the request is a
‘GET’ request then it enters the handle a download request state.

In the handle a receive request state, the Listener hands off the connection to
an existing Download Instance and returns to the waiting for peer connection state.
If there is no matching Download Instance for the connection then the connection is
closed. There may be no Download Instance available to accept the incoming file if
the Download Instance has been terminated or the remote peer is malicious and trying

7

to upload a non-requested file. In the handle a download request state a new Upload
Instance will be created and the request will be handed off to it.

The state-chart for the Download Instance is given in Figure 7. It has twelve states:
download start, download request, remote client upload, waiting for connection,
waiting for send, remote client download, connect to peer, response from peer,
waiting for file, file transfer, download finish, and terminate.

download start

download request

remote client
upload

remote client
download

waiting for
connection

connect to peer

waiting for send response from peer

waiting for file

file transfer

download finish

terminate

/download request

download ack port=0
/downloading file

download ack port > 0
/downloading file

remote queue limit or
get error

set timer / alternate download
request

connection opened to peer

receive <remotenick> <filename>
from peer

open peer connection

receive '1' from peer

/send GET <mynick> <filename>
<offset> to peer

receive size of file,
first byte of file from peer

timeout
/download complete

peer connection closed
/download complete

receive byte of
file from peer

connection error or
cancel
/download complete

finished receiving file from peer
/client notification of shared file,

download complete

close peer connection

(peer connection closed or
file error / close peer connection)
/download complete

Figure 7: State-chart for Download

8

Initially the Download Instance starts in the download start state. The Download
Instance is created when the Napster peer requests a song from a search result to down-
load. The Download Instance first sends the download request to the broker and then
enters the download request state. The download request message contains the name
of a song, and the nickname of the remote peer that is hosting the song.

In the download request state the Download Instance waits for a response from
the broker. If the remote host has reached a maximum number of uploads the broker
will respond with a queue limit message and the state will change to terminate. If
there is an error with the download request a get error message will be received and
the state will change to terminate. The broker will send a download ack message for a
successful download request. The download ack message contains TCP/IP information
on where the song is located. If the TCP port specified in the information is equal to
zero then the Download Instance sends a downloading file message to the broker and
enters the remote client upload state. Otherwise if the TCP port is greater than zero
then the Download Instance sends a downloading file message to the broker and enters
the remote client download state. The downloading file message in the above two
state changes notify the Napster broker that a download is taking place.

If the Download Instance entered the remote client upload state then the Download
Instance must have the file pushed to it. This push is required since the remote peer
is behind a firewall. Once the Download Instance sets a timer and sends an alternate
download request message to the Napster broker it enters the waiting for connection
state. If the timer expires before a remote client connects the Download Instance sends
a download complete message to the broker and enters the terminate state. Otherwise
a connection is opened from the remote peer, and it enters the waiting for send state.
The Download Instance will then receive remote information such as the username
(remotenick) of the remote peer and song file information causing a change to the
waiting for file state.

If the Download Instance entered the remote client download state from the down-
load request state then it can directly connect to the remote peer and download the file.
Opening a direct connection to the peer causes the Download Instance to change to the
connect to peer state. If the remote peer closes the connection, the Download Instance
will send a download complete message to the broker and will change to the terminate
state. Otherwise, if the Download Instance receives an acknowledgement in the form
of the character ‘1’ from the remote peer it will change to the response from peer
state. Next it will send a ‘GET’ request to the remote peer and enter the waiting for
file state. The ‘GET’ request contains the peer’s username, desired filename, and the
offset in the file. The offset in the file will allow for resuming file transfers.

The Download Instance will change from the waiting for file state to the file trans-
fer state until it receives the size of the file and the first byte from the remote peer. It
will stay in this state as it continues to receive file bytes from the remote peer. Once
the last byte of the file has been received the Download Instance will send a client no-
tification of shared file message and a download complete message to the broker. If
there is a connection error or cancel during the file transfer only a download complete
message will be sent to the broker and the Download Instance will enter the download
finish state.

Once in the download finish state the Download Instance will close the remote

9

peer connection. The Download Instance will make a state change to terminate and
the Download Instance will terminate.

The state-chart for the Upload Instance is given in Figure 8. It has five states:
receiving id, setting up transfer, file transfer, upload finished, and terminate. The
Listener will create an Upload Instance when there is a ‘GET’ request from a peer.

receiving id

setting up transfer

file transfer

upload finished

terminate

receive <nick><filename><offset> from peer

/uploading file , send first byte of file to peer

send byte to peer

(finished sending file to peer or
connection error to peer or cancel)
/upload complete

close connection to peer

filename does not exist

Figure 8: State-chart for Upload

Initially the Upload Instance starts in the receiving id state. After the ‘GET’ re-
quest the remote peer will send its username (nick), filename, and the offset. This will
cause a state change to the setting up transfer state. If the requested filename does not
exist the state changes to upload finished, and the connection as well as the Upload
Instance is terminated. If the file does exist an uploading file message will be sent to
the Napster broker, and the first byte of the file will be sent to the peer. The state will
change to the file transfer state.

The Upload Instance will stay in the file transfer state until the file is finished
uploading, there is a connection error, or the request has been cancelled. Any of these
actions will cause a state change to the upload finished state and an upload complete
message will be sent to the Napster broker. The connection is closed and the Upload
Instance is terminated when in the upload finished state.

The state-chart for the Push Instance is given in Figure 9. It has five states: connect

10

to peer, connection open, uploading file, upload finished, and terminate. The Main
Coordination entity creates the Push Instance when an alternate download ack message
is received by the peer.

terminate

connect to peer

connection open

uploading file

upload finished

/connect to peer

receive '1' from peer /uploading file ,
send SEND <mynick><filename><size> and first byte of
file to peer

(finished sending file to peer or
connection error to peer or cancel)
/upload complete

close connection
to peer

send byte to peer

connection error
to peer

Figure 9: State-chart for Push

Initially the Push Instance starts in the connect to peer state. A connection will
be made to the remote peer according to the connection information provided in the
alternate download ack message. Next the Push Instance will change state to the
connection open state.

In the connection open state the Push Instance waits for an acknowledgement from
the remote peer. If there is a connection error the state changes to upload finished state.
Otherwise the Push Instance will receive the character ‘1’ in acknowledgement for the
connection to the remote peer. At this point an uploading file message will be sent
to the Napster broker. The request ‘SEND’ followed by the local peer’s nickname,
filename, size, and first byte of the file will be sent to the remote peer. At this point the
state will change to the uploading file state.

The Push Instance will stay in the uploading file state until the file has been sent,
a connection error has happened, or the file request has been cancelled. Any of these
situations will cause the state to change to the upload finished state. In the upload
finished state the connection to the remote peer is closed and the instance terminated.

To clarify the above state-charts Figure 10 shows the information flow when a Nap-
ster peer downloads from a remote peer directly. The left side of the message sequence

11

chart shows the state changes of the Download Instance on the peer. The right side of
the chart shows the state changes of the Upload Instance of the remote peer.

Peer Broker Remote Peer

connect to data port

respond with ascii character '1'

start file trasfer

downloading file

uploading file

file transfer finished

download complete upload complete

GET

<mynick> "<filename>" <offset>

download request

download ack

upload request

upload accept

receiving id

setting up transfer

file transfer

upload finished
connection terminated

download
request

remote client
download

connect to peer

response from peer

waiting for file

download
finish

file transfer

C
oo

rd
in

at
io

n
P

ee
r-

to
-P

ee
r

C
om

m
un

ic
at

io
n

.

.

.

.

.

.

Figure 10: Information flow of a Napster Client Download

The Message sequence chart is divided into two sections. The section above the
dotted line shows coordination. The broker coordinates the peer-to-peer download.
Instead of the peer directly requesting a desired song from the remote peer, the broker
handles the request. This provides added security since the remote peer will be aware
that a connection will be made from another peer. For example, if a connection is made
to a peer without previous notification from the broker, the connection would be closed.

The section of the message sequence chart below the dotted line shows the peer
communication. Once the coordination is complete the peer connects directly to the
remote peer and downloads the file. Upload and download notification is provided to
the broker by both peers in the form of downloading file, uploading file, download
complete, and upload complete messages.

Figure 11 shows the message sequence chart for a remote client upload. A remote
client push will occur when the remote peer is behind a firewall. The left side of the
message sequence chart shows the state changes of the Download Instance on the peer.
The right side of the chart shows the state changes of the Push Instance of the remote
peer.

Similar to Figure 10, this message sequence chart has a coordination section and a
peer-to-peer communication section. However, the coordination in the remote upload

12

Peer Broker Remote Peer

download request

alternate download ack

connect to data port

respond with ascii character '1'

SEND

start file trasfer

downloading file

uploading file

file transfer finished

download complete upload complete

<mynick> "<filename>" <size>

download ack

alternate download request

upload request

upload accept

connection terminated

connect to peer

connection
open

uploading file

upload finished

remote client upload

download request

waiting for
connection

waiting for send

file transfer

download finished

C
oo

rd
in

at
io

n
P

ee
r

to
 p

ee
r

C
om

m
un

ic
at

io
n

.

.

.

.

.

.

Figure 11: Information flow of a remote client upload

case requires that the peer send an alternate download request message to the broker.
The broker will forward this as an alternate download ack message to the remote peer
to notify it to push the file to the peer.

For the peer-to-peer communication section, the remote peer opens a connection to
the peer. Once the peer acknowledges the connection, the file is pushed to the peer.
Upload and download notification is passed to the broker from both the peers in the
form of downloading file, uploading file, download complete, and upload complete
messages.

2.2.2 Napster Lookup Server and Broker

To use the Napster network a Napster peer connects to both a Napster lookup server
and then a Napster broker. A peer uses the Napster lookup server to find the address of
an available Napster broker.

The state-chart for the Napster lookup server is given in Figure 12. It has two
states: waiting for client connection, and best broker sent. It initially starts in the
waiting for client connection state. When a connection is made to the lookup server,
it immediately sends the address of a broker to the remote peer and changes to the best
broker sent state. The broker sent to the peer is the least busy broker on the Napster

13

network. Immediately after sending the broker address, the connection to the remote
peer is closed and the lookup server returns to the waiting for client connection state.

waiting for client
connection

best broker sent

connect /send best broker /close connection

Figure 12: State-chart for Napster Lookup Server

The state-chart for the Napster broker is given in Figure 13. It is composed of three
concurrent entities: Client Connection, Broadcaster, and Client Instance. The broker
initially starts in the Client Connection entity. On startup the Client Connection entity
creates the Broadcaster entity and then enters the waiting for client connection state.
When a Napster peer connects, the connection is handed off to a new Client Instance
and returns to waiting for client connection state. The Broadcaster entity periodically
broadcasts the server stats message to all Client Instances. The server stats message
includes the number of users, number of files available, and the total size in gigabytes
of the shared files.

Napster Broker

waiting for client
connection

connect /hand off to new Client Instance

Client Connection
start Broadcaster

wait for timeout

/set timer,
broadcast server stats to all Client

Instances

/start timerBroadcaster

Client Instance

Figure 13: State-chart for the Napster Broker

The state-chart for the Client Instance is given in Figure 14. It has eight states:

14

waiting for login, verify user, logged in, sending search results, download request,
wait for remote peer status, transaction finished, and terminate.

waiting for login

verify user

logged in

sending search
results

transaction
finished

terminate

login or
new user login

connection error or
login failure / login ack failed

close connection

login successful
/login ack success

client search
request

/end of
search
response

/search response

lost connection, remove all
outstanding dlcounts and ulcounts
and remove metadata

remove file or
client notification of shared file or
downloading file , dlcount++ or
download complete , dlcount-- or
uploading file , ulcount++ or
upload complete , ulcount-- or
alternate download request /send alternate
download ack to remote peer or discard

download request
wait for remote

peer status

download
request

/upload request to
remote peer

remote peer not logged in /get error or
connection error with remote peer / get error or
receive accept failed from remote peer / get error or
receive accept upload request from remote peer / download ack or
receive queue limit from remote peer / queue limit

Figure 14: State-chart for the Client Instance

The Client Instance initially starts in the waiting for login state. When the Client
Instance receives a login message or new user login message from the Napster peer it
changes to the verify user state. If there is a connection error or a login failure a failed
login ack message will be sent to the peer, and the state will change to transaction
finished. A failed login ack message will contain an invalid e-mail address. A failed
login will occur for a login message if the username or password is invalid. A failed
login will occur for a new user login message if the username already exists, or if the
username and password are of an invalid format. If the login was successful then a
successful login ack message is sent to the peer and the state changes to the logged in
state. A successful login ack message will contain the e-mail address of the peer.

The Client Instance may receive a variety of messages from the connected peer
while in the logged in state. Search messages or download messages will cause the
Client Instance to change state. All other messages do not cause a state change in
the Client Instance. The client notification of shared file or remove file messages
will allow the broker to update the metadata database. Receiving a downloading file,
download complete, uploading file, or upload complete message will allow the broker

15

to keep track of the number of concurrent uploads and downloads between peers. The
variables dlcount and ulcount are local to the Client Instance. An alternate download
request message from the peer will simply be forwarded to the remote peer as an al-
ternate download ack message or discarded if the remote peer is not connected to the
broker.

When the client receives a client search request message it will enter the sending
search results state. While in this state the broker will send the available song titles
matching the search string along with the nicknames of the peers sharing the files. A
search response message will be sent for each song. If the peer is behind a firewall,
that peer will only receive matching songs by peers not behind firewalls. A limit by
the broker is placed on the number of song titles that it will send to the peer. When the
last search response message is sent, the Client Instance will send an end of search
response message to the peer and return to the logged in state.

A download request message from the peer will cause the Client Instance to change
state to the download request state. While in this state an upload request message will
be sent to the remote peer hosting the desired song file to get permission for the peer
to download the file. The state will then change to the wait for remote status. If the
remote peer is not logged in anymore, there is a connection error to the remote peer,
or an accept failed message is received from the remote peer then a get error message
will be sent to the peer. If the remote peer sends an accept upload request message
then a download ack message will be sent to the peer. The download ack message will
contain TCP/IP connection information. If the remote peer is behind a firewall the TCP
port specified in the download ack message will be set to 0, otherwise the TCP port
will be a valid number. If the remote peer responds with a queue limit message then
a queue limit message will be sent to the peer. Sending any information regarding the
download request will cause the state to change back to the original logged in state.

When the peer disconnects or the connection is lost to the peer then all outstanding
download counts, upload counts, and song file metadata will be removed from the
broker. The Client Instance will then enter the transaction finished state. From this
state the peer connection will be closed and the Client Instance will be terminated.

3 Gnutella

Gnutella is a decentralized network and has no central server used for coordination.
Once a Gnutella host is connected to a Gnutella network they act as a coordination
node that is free to exchange files with other hosts.

3.1 Overview

A Gnutella host first joins a Gnutella network by connecting to at least one other host
on the network. To obtain files a client must query the network to find out where files
are located. In Figure 15, Computer A sends a search message to all of its connected
computers. This message is propagated to other connected computers. A time to live
(TTL) field in a query message will ensure that a message does not last forever. The
furthest node possible where the query message dies is termed as the search horizon.

16

When a computer contains files that match the search message it sends a search results
message back along the path the request came. Once the search results are returned,
the client can directly connect and download from a peer carrying a desired file. For
example in Figure 15, Computer A downloads a file directly from Computer E.

Computer A

Computer B

Computer C

Computer D

Computer F

Computer Esea
rch

sea
rch

 re
sults

search

search results

search

search

search results

searchsearch results

file transfer

Figure 15: A Gnutella Network

There are five messages defined for coordination and discovery of files between
Gnutella Peers: ping, ping response, client ping request, search, and search results.
All connections between Gnutella peers use the TCP/IP protocol. A small subset of
HTTP constructs will be used for the initialization of peer connections. These include
the messages CONNECT, OK, GET, and GIV. In discussion of the protocol all mes-
sages are shown in bold and italic. The description of each message and the informa-
tion they carry are explained on a web page named Gnutella Protocol Specification [2].

3.2 The Protocol

There are up to four concurrent entities in a Gnutella peer shown in Figure 16: Con-
nection Handler, Coordination Instance, Download Instance, and Upload Instance. The
Connection Handler entity manages all the incoming and outgoing connections made
to other Gnutella peers. Each Coordination Instance handles a coordination connec-
tion to another Gnutella peer. A coordination connection is any connection to another
Gnutella peer that is not an upload or a download connection. The Download and
Upload Instances handle a download and upload connection respectively. There may
be zero or more of the Coordination, Upload, and Download Instances running at one
time.

The state chart for the Connection Handler entity is given in Figure 17. It has

17

Connection Handler

Gnutella Peer

Download Instance

Upload Instance

Coordination Instance

Figure 16: State-chart for Gnutella Peer

six states: offline, waiting for ack, ping, online, search, and connection request.
The Gnutella peer is online when it has one or more coordination connections to other
Gnutella peers. The ccount variable keeps the current count of coordination connec-
tions.

Initially the Connection Handler Entity begins in an offline state with the ccount
variable set to zero. It changes to the waiting for ack state by opening a coordination
connection to a remote peer and sending a CONNECT message. Since the ccount
variable is equal to zero a connection error to the new remote peer will cause the state
to return to offline. If the new remote peer acknowledges the connection with an OK
message, the connection to the remote peer is passed to a new Coordination Instance,
the ccount variable is incremented, and the state will change to the online state. Further
connection coordination requests to new remote peers will cause a state change back
to the waiting for ack state. However, when a connection error to the new remote peer
occurs, the ccount variable will be greater than zero and the state will return to the
online state.

While in the online state the client may ping the Gnutella network to determine the
size of the network. A client ping request will cause a state change to the ping state. A
ping message will be sent to each remote peer defined in the Coordination Instances.
Once this is finished the state will return to the online state.

A client search request will cause a state change to the search state. A search
request message will be send to each remote peer defined in the Coordination Instances.
Once this is finished the state will return to the online state.

The Gnutella peer may choose to download one of the files listed in the search
result messages from all Coordination Instances. A search result message will contain
information relating to the file and the TCP/IP connection information of the remote
peer that is hosting the file. If the remote peer hosting the file is not behind a firewall
a connection will be made to that peer and the connection will be passed to a new

18

waiting for ack

online

offline

ping search

/open connection to peer,
send CONNECT

connection error
ccount==0

ccount=0

(OK /++ccount, pass connection to coord instance) or
conection error count > 0

open connection to
peer, send
CONNECT

client ping
request

/send ping to each coord
instance peer

ping finished

client search
request

search finished

/send search request to each
coord instance peer

coord instance closed
--ccount==0

connection request

connection
opened

CONNECT /OK, ++ccount, spawn coord intance or
GET /spawn upload instance or
GIV /spawn download instance or
(invalid message or connection error)/close
connectioncoord instance

closed
--ccount>0

 client download request
/(connect to peer, pass connection to

download instance) or send client push
request to coord instance

Figure 17: State-chart for Connection Handler

Download Instance. Otherwise if the remote peer is behind a firewall then the Gnutella
peer will send a client push request message through the coordination connection of
the remote peer. If the Gnutella peer is behind a firewall then it may only download
files from remote peers that are not behind firewalls.

The termination of a Coordination Instance will cause the ccount variable to be
decremented. If the new value of ccount variable is greater than zero then the Connec-
tion Handler entity stays in the online state, otherwise it changes to an offline state.

When a remote peer opens a connection the state changes to a connection request
state. If the new remote peer sends a CONNECT message, an OK message is returned
to acknowledge the connection, the ccount variable is incremented, and the connection
is passed to a Coordination Instance. If the new remote peer sends a GET message
then the connection is passed to a new Upload Instance. If the new remote peer sends
a GIV message then the connection is passed to a new Download Instance. If the new
remote peer sends an invalid message or there is a connection error the connection to
the remote peer is closed. Any of the above actions following a new connection from a
remote peer will cause the state to return to the online state.

The state chart for a Coordination Instance is given in Figure 18. It has two states:
waiting for message and terminate. A Coordination Instance handles a coordination
connection to a remote peer.

19

waiting for
message

terminate

close
connection

ping /return pong , (forward to all other coord instances, or discard) or
search request /return search result , (forward to all other coord instances or discard) or
pong /(keep or forward or discard) or
client push request /(connect to remote peer, send GIV, spawn new upload session or
forward or discard) or
search result /(keep or forward or discard)

Figure 18: State-chart for Coordination Instance

Initially the Coordination starts in the waiting for message state. The Coordination
Instance may receive five messages: ping, search, pong, client push request, and
search result. After receiving a ping message, the client will respond to the forwarding
peer with a pong message. If the TTL field of the ping message is greater than zero, the
TTL field will be decremented and the ping message will be passed to each of the other
remote peer connections defined by the Coordination Instances. The global id, and the
forwarding peer of the ping message will be recorded in order to aid in the routing
of returned pong messages. If the message received is a search message the Gnutella
peer may respond to the forwarding peer with a search result message. If the Gnutella
peer contains any files matching the search string defined in the search message then
a search result message will be sent. If the TTL field of the search message is greater
than zero, the TTL field will be decremented and the search message will be passed
to each of the other remote peer connections defined by the Coordination Instances.
The global id, and the forwarding peer of the search message will be recorded in order
to aid in the routing of returned search result messages. If the message received is a
pong, client push request, or a search result message and it is destined to the Gnutella
peer the message will be kept. A pong message will be used to update the Gnutella
peer’s statistics on the Gnutella network. For the client push request message a new
connection will be made to the remote peer, a GIV message will be sent, and the
connection will be handed to a new Upload Instance. A search result message will
be used to update the Gnutella peer’s overall search results. If the pong, client push
request, or search result message is destined for the Gnutella peer and the global ID
in the message is not recognized, or the TTL field on the message is zero it will be
discarded. Otherwise the TTL field will be decremented and the message wi ll be
forwarded along the original path that it came.

When either the Gnutella peer or the remote peer closes the coordinating connection
the Coordination Instance is terminated.

The state-chart for the Download Instance is given in Figure 19. It has five states:
connect to peer, wait for file, download file, download finished, and terminate.
The Download Instance is created when the Gnutella peer requests a download from a
remote peer or a file is pushed from a remote peer. The connection to the remote peer

20

is opened by the Connection Handler entity in the case of a download request, or it is
already open by the remote peer if it is a push.

/send GET <filename>

connect to peer

wait for file

download file

download finished

terminate

receive HTTP header, first byte of
file

receive byte

received file or connection error

close connection

connection
error

Figure 19: State-chart for Download Instance

Initially the Download Instance starts in the connect to peer state. To start the
download the peer sends a GET message containing the desired filename to download.
It then changes state to the wait for file state.

A connection error to the remote peer will cause a state change from the wait for
file state to the download finished state. Otherwise the peer will receive an HTTP file
header and the first byte of the file. This will cause a state change to the download file
state.

The Download Instance will remain in the download file state as long as it contin-
ues to receive bytes of the file. Once the file has been successfully received or there is

21

a connection error the state will change to the download finished state. At this point
the connection to the remote peer will be closed and the Download Instance will be
terminated.

The state-chart for the Upload Instance is given in Figure 20. It has four states:
send HTTP header, uploading file, upload finished, and terminate. The Upload
Instance is created from a GET request of a remote peer. The remote peer connection
is originally created in the Connection Handler.

send�HTTP�header

uploading�file

upload�finished

terminate

/send�HTTP�content�header,�first�byte�of�file

send�byte

successful�upload�or�connection�error

close�connection

Figure 20: State-chart for Upload Instance

Initially the Upload Instance starts in the send HTTP header state. In response
to the GET request of the remote peer an HTTP content header, and the first byte of
the file will be sent to cause a state change to uploading file. Bytes will be sent to the
remote peer until the file has successfully uploaded or there is a connection error. At
this point the state will change to the upload finished state. The connection will be
closed and the Upload Instance terminated.

To clarify the above state-charts Figure 21 shows the information flow of a Gnutella
connection, search, and download. The connections between computers A, B, and E

22

are the same as those depicted in Figure 15. The left side of the message sequence
chart shows the various entities on Computer A that handle the connection, search, and
file download. The right side of the chart shows the two entities on Computer E that
handle the search, and the file upload.

Computer�A Computer�B

search

Computer�E

searchsearch�results

search�results

search�results

GET�<filename>

send�HTTP�content�header

open�connection
CONNECT

OK

start�file�transfer
.
.
.

.

.

. file�transfer�finished

open�connection

terminate�connection

C
on

ne
ct

io
n

H
an

dl
er

C
oo

rd
in

at
io

n
In

st
an

ce
D

ow
nl

oa
d

In
st

an
ce

C
oo

rd
in

at
io

n
In

st
an

ce
U

pl
oa

d
In

st
an

ce

C
on

ne
ct

io
n

H
an

dl
er

C
on

ne
ct

io
n

H
an

dl
er

Figure 21: Information flow of a Gnutella Search and Download

The message sequence chart is divided into four sections. The top section shows
the Connection Handler entity of Computer A creating a connection to Computer B in
the first section and starting a search. The next section of the chart shows how a search
propagates through the Gnutella Network. The Coordination Instance on Computer A
and the Coordination Instance on Computer E handle the search request. The Con-
nection Handler on both Computer A and Computer E handle the new file exchange
connection. The fourth section shows the exchange of a file. The Download Instance

23

of Computer A opens a connection and issues a GET request to the Upload Instance of
Computer E. Computer E uploads the file to Computer A. Once the file is finished the
connection between both Computers A and B is terminated.

Figure 22 shows the information flow of a Gnutella push. Similar to Figure 21 the
left side of the message sequence chart shows two entities of Computer A that handle
the push request. The right side of the chart shows two entities of Computer E that
handle the push request. A push request will occur if the remote computer is behind a
firewall. In this figure, Computer E is behind a firewall.

The chart is divided into two sections. The top section shows the Connection Han-
dler entity of Computer A originating the client push request message. The Coordina-
tion Instance of Computer E receives the message and opens a connection and issues a
GIV command. The bottom section of the message sequence chart shows the Down-
load Instance of Computer A handling the upload of the file from Computer E’s Upload
Instance.

client�push�request
client�push�request

GIV�<filename>

send�HTTP�content�header

start�file�transfer
.
.
.

.

.

.
file�transfer�finished

open�connection

terminate�connection

C
on

ne
ct

io
n

H
an

dl
er

D
ow

nl
oa

d
In

st
an

ce

C
oo

rd
in

at
io

n
In

st
an

ce
U

pl
oa

d
In

st
an

ce

Computer�A Computer�B Computer�E

Figure 22: Information flow of a Gnutella Push

24

4 Discussion

Peer-to-peer networks such as Napster, and Gnutella have been compared to presence
management of instant messaging [6]. Instead of querying if a certain user is on-
line, peer-to-peer clients query if a file is online. The peer-to-peer networks provide a
method to discover the location of a file. Both Napster and Gnutella provided up-to-
date search results that describe the location of files at any one time. Once a peer leaves
either a Napster network or a Gnutella network all the files they are serving become
unavailable and will not show up in any search results of other peers.

Napster and Gnutella differ on resiliency. Some resiliency was added to Napster
by having multiple lookup servers and brokers to handle coordination and discovery.
However all these lookup servers and brokers are situated in the same geographical
location. This presents a single point of failure. If the network link to these Napster
servers fails, the whole network stops functioning. Gnutella has no centralized char-
acteristics. The coordination and discovery functions are shared equally among all the
peers in the network. The network will still continue to function even if a number of
Gnutella peers fail.

Napster and Gnutella distribute the load of file serving to the peers. Distributing
this workload over many computers should help produce a more scalable network.
However, scalability is a concern for Gnutella. The propagation of a search or a ping
message throughout a Gnutella network will create a large number of messages. For
example, if a client sends a search request message with a TTL of seven to four hosts
and each of those four hosts sends a message to four other hosts and this continues until
the TTL reaches zero then 21845 messages3 are created for one search message. A
similar amount of traffic will be produced by a ping message. In contrast a coordinating
central broker of the Napster Network will produce very few messages. For example,
a search from a peer in a Napster Network will produce one search request message to
the broker.

Even though Napster requires few messages for coordination and discovery it is
important to remember that a peer login is expensive. When a peer first connects to
the broker the peer must register each of the songs it is hosting. Figure 23 shows
a chart4 comparing the total number of messages produced in a Napster network as
opposed to a Gnutella network for the first 500 search messages. The total number of
messages produced on the Napster network is greater than the Gnutella network until

3We obtain 21845 by using the geometric series
��������	� ��
���������	�

� �	�

 ��� �������� �	�

�� ��!�"$#
.

4This chart assumes that a single broker Napster network and a Gnutella network each contain 21845
users. The Gnutella network is structured such that there is a root node with 4 connected peers and each
connected peer has 4 hosts and this continues to a depth of 7. The average number of songs hosted by
each client is 150; this average number of hosted songs was taken from the data gathered during the week
of November 18th (Section 2.1). A Napster login will produce 152 messages: 2 messages for login and
login ack, and 150 messages for each song notification. Assuming a maximum of 100 songs is returned
from a broker a total search on Napster will produce 101 messages: 1 message for the client search request
message, and 100 messages for each of the search response messages and 1 message for the end of search
response message. A connection to another peer in Gnutella requires 2 messages: 1 message for CONNECT
and the other for OK. A search message in Gnutella will produce 22195 messages: 21845 search request
messages produced, and 350 messages for the search result messages. This chart assumes that 100 search
results are returned to a peer in a Gnutella network at an average depth in the network at TTL/2. In this
example the TTL is 7.

25

the 148th message. After this point the total number of messages produced on the
Gnutella network grows considerably larger than the number of messages produced on
the Napster network.

0

2000000

4000000

6000000

8000000

10000000

12000000

0 100 200 300 400 500 600

Number�of�Search�Requests

T
o

ta
l�N

u
m

b
er

�o
f�

M
es

sa
g

es

Gnutella

Napster

Figure 23: The message load on a Napster network and Gnutella network for the first
500 messages.

Napster has increased the scale of their network to handle more peers by increasing
the available number of lookup servers and brokers. With the efficiency of the coordi-
nation and discovery in the Napster network as well as the ability to add more lookup
servers and brokers it appears that a Napster network can scale very well. However,
as discussed earlier in Section 2.1, Napster has been unable to keep the brokers linked.
This is most likely due to the fact that communication between the brokers in a Napster
network causes a considerable amount of traffic. For example, if there are one hundred
Napster brokers, a search request message from a peer will cause the peer’s broker to
create a search request message for each of the other brokers. This will create ninety-
nine more messages.

Another limitation to Gnutella is that both search and ping messages in the Gnutella
network will only reach as far as the TTL field of the message will allow. In contrast
a broker will return search results based on all the metadata from all the peers in the
Napster network.

Napster and Gnutella provide domain name and geographical independence for the
peers. Domain name independence presents an advantage such that the confusion cre-
ated by hosts that are contained behind firewalls and hosts’ dynamic Internet addresses
is easily bypassed. Geographical independence provides a disadvantage such that peers
do not necessarily exchange files with other peers that are geographically close. This
will produce poorer performance for the exchange of files between peers in a Napster

26

network and poorer coordination and discovery performance in a Gnutella network.
In addition all coordination and discovery in a Napster network must take place with
the Napster brokers located in San Jose, California5. This presents a disadvantage for
Napster peers that are located far away since the speed of Coordination and Discovery
may be slowed by network latency due to the great distance.

5 A New Peer-to-Peer Network Design

A new peer-to-peer network design would keep the centralized discovery and coordi-
nation of Napster allowing the network to scale very well. To add resiliency to this
network, coordination and discovery clusters would be located throughout the world.
Figure 24 shows five clusters at various locations. Each cluster contains a number of
lookup servers, brokers, and connector servers. The lookup servers and brokers func-
tion similarly to Napster. The connector servers connect the clusters together.

lookup

brokers

connector

lookup

brokers

connector

lookup

brokers

connector

lookup

brokers

connector

lookup

brokers

connector

Vancouver

Hong�Kong Toronto

New�York London

Figure 24: Coordination and Discovery Clusters located throughout the World.

5The location of the Napster servers was discovered using Visual Route 5.0b.

27

Each cluster would contain multiple lookup servers, brokers, and connector servers.
This redundancy at the cluster level would add resiliency to the cluster since any one
broker, lookup server, or connector could fail without any harm to the functioning of
the cluster. Since there are multiple clusters there is resiliency in the overall network.
If a cluster fails then other clusters would be available to coordinate peers.

Each of the clusters would be linked in a manner similar to Gnutella via the connec-
tor servers. A cluster would communicate with other clusters if it would be unable to
satisfy a peer’s coordination or discovery request. Upon the receipt of a search request
a connector server would determine if its brokers contain metadata matching the search
request. If it could only partially fulfill the request then it would return the matching
search results it does have and forward on the search request to another cluster. This
would continue to happen until the request is fulfilled or when no more clusters are
available.

To provide the best performance peers would connect to the closest cluster. The
closest cluster would be the one with the smallest network latency. By localizing peers
to clusters they would have a higher probability of exchanging files with the closest
possible peers.

6 Conclusion

Napster and Gnutella each present a unique peer-to-peer model. Napster presents a
model where discovery and coordination of files among peers are centralized, but the
exchange of files takes place between peers. Gnutella removes the centralization and
extends the model further by requiring the peers to contribute to the coordination and
discovery efforts. Napster is very scalable but its resiliency is reduced since discovery
and coordination are centralized. In contrast Gnutella is resilient since there are no
centralized components, but it is not scalable since the structure of Gnutella produces
an exponential number of messages.

28

References

[1] Knighten, Bob. Peer to Peer Networking. “http://www.peer-to-
peerwg.org/specs docs/collateral/PtP IDF Rev1.11.pd”.Aug 24, 2000.

[2] Mayland, B. Gnutella Protocol. “http://capnbry.dyndns.org/gnutella/protocol.php”.
Date Viewed: November 21, 2000

[3] Napster Messages.“http://opennap.sourceforge.net/napster.txt”. Last Updated:
August 6, 2000. Date Viewed: October 6, 2000.

[4] Napster Service Status. “http://www.napster.com/status/”. Last Updated: October
6, 2000. Date Viewed: October 6, 2000.

[5] Nilsson, Erik. Napster: Popular Program Raises Devilish Issues.
“http://www.oreillynet.com/pub/a/network/2000/05/12/magazine/napster.html”.
May 12, 2000.

[6] Sims, Dave, Tim O’Reilly, and Jon Udell. O’Reilly’s Peer-to-Peer Sum-
mit Synopsis: Transcript. “http://www.oreillynet.com/pub/a/linux/2000/09/22/rt-
transcript.html”. September 22, 2000.

29

