Vivid 3.0

Copyright 1989-1996 by

Stephen B. Coy

Table of Contents

2

Table of Contents

Introduction to Vivid 3.0
3

Running Vivid
3

Statistics
4

Legal Stuff
5

Input File Format
6

Preprocessor
7

The Studio
8

Transformations
11

Lights
12

Point Light
13

Directional Light
13

Spherical Light
13

Spot Light
14

Other Light Options
14

Surfaces
15

Bump Mapping
16

Procedural Textures
17

Image Mapping
20

Primitives
20

Sphere
20

Ring
20

Polygon
21

Triangular Patch
21

Cone
22

Other Primitive Options
22

Clipping
22

Cutting
23

Support Programs
24

Bibliography
24

Index
25

Introduction to Vivid 3.0

 A long time ago in a galaxy far away I once promised to get version 3.0 of Vivid out. I said, “Hey, I just need to finish the docs. It should only take a few weeks.” Well the weeks turned into years but finally we’re here. Life has been busy but good since the last release. I left my job at Boeing and I’m now working for Microsoft. This, of course, explains why I don’t have any time to do anything anymore. I also bought a house which seems to eat up any time I did manage to break free. In between all that I’ve even started my own record label, {your name here} Records, to put out music with my friends. Hey, we’ve even got a web site under construction. Check it out at:

http://www.amz.com/labels/YourNameHere
Running Vivid

 The rest of this document explains the details of how to run Vivid and how to construct an input file. I recommend that you print out this file and a couple of the sample input files when first learning Vivid. An example is worth a thousand words, or at least the paper it's printed on.

The background can have a palette mapped to it rather than just having a single color.

A new bunch of command line switches are now supported. Typing vivid on the command line without any arguments will give you a listing of them.

The keyword "noise" is now "turbulence" to better follow the literature.

Running Vivid

Vivid input files use the extension .v and the output files use .tga. With the preprocessor in Vivid, include files are also supported. These may have any extension. The syntax for including a file into your input file is:

#include filename

Include files may have any extension you choose. The following is a list of the file extensions that I regularly use. If we all use the same convention it should make things easier for trading input files. Feel free come up with your own conventions if that suits you better.

.v Main input file for an image.

.tga 24-bit Targa output file as defined by Truevision

.map palette file for Convert or background mapping.

.vc include file with color definitions. See color.vc for an example.

.vo include file with object definition.

.vs include file with surface definitions. See metals.vs for an example.

The .tga files produced by Vivid are full 24-bit color. Since most systems can't display 24-bit graphics I've included a tool to convert the .tga files into .gif files which can be displayed using vpic or cshow. This tool is called Convert. The docs for Convert explain all the options. In general the procedure for generating an image will look like this:

1)
Create an input file, test.v, with your favorite text editor.

2)
Run Vivid.

C>vivid test

3)
Wait until done. This can take from a few minutes to a couple of

days depending on the complexity of the image and the speed of

your machine. This is a good time to raid the fridge.

4)
Convert the result, test.tga, into a .gif file.

C>convert -m -d test

The -m flag tells Convert to use median cut to determine

the palette. The -d flags turns on Floyd-Steinberg dithering.

5)
View the image.

C>vpic test.gif

Vivid supports a number of command line flags. These flags allow you to change the operation of the program without changing the input file. The following command line flags are now supported:

-s Run in silent mode, i.e. no statistics display.

-r Resume.

-i x y Set image size to x by y pixels.

-n No_shadows, same as studio flag.

-d # Set maximum recursion depth value

-a mode Set antialias mode. Valid modes are: none,

quick, corners and adaptive. Since I can't type

I've made it so that you only have to give the

first letter of the mode for it to work.

-p Don't use the preprocessor.

Vivid has the ability to resume the generation of an interrupted image. Later, the image generation may be resumed by using the -r flag on the command line.

Statistics XE "statistics"
Surprisingly enough some people are curious about the statistics that Vivid displays while processing. Somehow they actually got the idea that the numbers may contain useful information if only they were documented somewhere. The secret is out. They don't mean a thing. I just put them in there because I like watching them change while I'm waiting for the image to generate. Sorry to break your bubble. OK, fine, I'm joking, happy now?

When you run Vivid it displays the current version number and the copyright notice. It then displays the filename of the input files as the preprocessor digests them. Next a running total of lights and primitives is displayed as the parser reads the preprocessed input file. Once the file is completely read in the automagic bounding box code is called. As it generates bounding boxes you see the number of primitives climb. Upon completion of the bounding box generation the scene extent is displayed. This is the minimum and maximum values in each axis for all the primitives. At this time the first scan line is starting to be rendered. When it is done the screen will clear and a full display of current statistics will be displayed. The meanings for each of the numbers will now be described in glorious detail bereft of all attempts at obfuscation. I hope this makes sense.

The resolution XE "resolution" is the size of the final image in pixels. The line display next to it shows the progress of the ray tracer. For example, if you where generating an image 320 pixels wide and 200 pixels tall the resolution would display 320x200 (unbelievable!) and the line value would go from 0 to 200. In quick mode this number will increment by 6 instead of 1.

The next four lines contain information about the number of rays cast. Eye rays XE "eye rays" are the rays cast from the viewpoint out into the scene. Reflected rays XE "reflected rays" are those generated by a specular surface and refracted rays XE "refracted rays" are those generated by transparent surfaces. The total is just the sum of these rays. If your input file doesn't have any reflective or transparent surfaces these numbers will stay 0.

The next section contains information about shadow rays XE "shadow rays" . Shadow rays are the rays shot from the point of intersection toward each light in order to determine if there are any other primitives in the scene blocking the light (casting a shadow). Vivid uses a shadow cache to try and speed up this process. Cache hits signify an instance when the cached object was found to cast a shadow and no ray was cast. The cache percentage is just the number of hits divided by the number of shadow rays.

The next number is the average number of rays cast per pixel. This number can give you a fair idea of just how hard the ray tracer is working to generate the image. With no antialiasing, reflection, or refraction this number should be 1.0. Adaptive antialiasing can push this as high as 16 depending on the amount of extra work it does. Reflected and refracted rays will make this even higher. Using the quick mode this number may go to as low as .066 or so. When this number is less than 1 that means that the ray tracer is guessing at some of the pixels instead of actually casting a ray for them.

The average queues per ray value has to do with the bounding scheme. The automatic bounding box generator creates a tree-like hierarchy of bounding boxes for the system to test each ray against. If a box is intersected by a ray then the objects in the bounding box (either other bounding boxes or primitives) are entered into the btree for further intersection testing. The "bounds checked" number shows how many bounding box intersection tests were performed. The "btree inserts" number shows how many object passed the bounds check and were put into the btree. The "btree resets" number displays the total number of times the btree was reset. This should be equal to the total number of rays plus the number of shadow rays plus the number of cache hits. Don't ask why, it just will be. The "max btree size" number shows the maximum number of objects in the btree during the rendering.

The final number, the max recursion depth, shows the maximum number of levels deep the ray tracer had to go while rendering the image. The number after the slash is the max depth it is allowed to go.

Legal Stuff

Vivid is Copyright 1989-1995 by

Stephen B. Coy

All Rights Reserved

You are free to redistribute this package in its entirety. In doing so you may charge no more than a nominal fee for duplication. No part of this package may be included as part of a commercial package without explicit written permission. If you have any questions about commercial distribution of Vivid or its tools I can be contacted at:

Stephen Coy

Vivid Software

15600 NE 8th St. Suite B1#515

Bellevue, WA 98008

(206)885-7194

scoy@microsoft.com

By the way, that’s my home phone number and I like to sleep late so please don’t call too early and keep in mind the time zone differences, too.

I’d like to start by thanking those of you who have supported Vivid through registrations, beer, etc. I’ve been constantly impressed by the images I’ve seen. You should all give yourselves a pat on the back. Originally I thought of distributing Vivid via shareware but I seriously dislike the guilt games most shareware authors include. So, I decided to try beggarware. Here's the product. Use it. If you like it I'd be very happy if you'd sent a check for $30. If you think $30 is out of line, send less (or more) or beer. If you don't think Vivid is worth diddly at least send a postcard explaining why you don't like it. What do you get if you register? Well, nothing more than my gratitude actually. I don’t send out printed manuals or updates or even birthday cards. I will drink a beer in your honor though.

Whether you send anything or not I would like to hear about any suggestions or bugs. Of course requests accompanied by money will tend to get higher priority. I will answer all mail and email even though I may be a bit slow at times. Email tends to get the fastest response. If you have tried to contact me and not gotten a response please try again. If you still don't get a response you might have to resort to US Mail.

For those of you into BBSing your best bet for finding other Vivid users is to check out The Graphics Alternative BBS at 510-524-2780. The sysop, Adam Shiffman, does a good job of keeping up with the latest cool graphics stuff for PCs.

Input File Format

 One thing to keep in mind while creating Vivid input files is that Vivid's parser is case sensitive. Macros (see preprocessor section) are also case sensitive.

Vivid uses a right-handed coordinate system for defining the location of objects in space. A right-handed coordinate system can be visualized as having the x axis pointing to the right, the y axis pointing into the screen and the z axis pointing up. Each object in a scene file will be defined as having a location in space defined by an x, y, z triple in this coordinate system.

Colors are defined by an r, g, b triple where each component generally falls in the range 0..1. To make picking colors easier Vivid includes the file color.vc which contains a few dozen predefined colors. Their names and rgb values can be had by viewing or printing color.vc. If this file is #included at the top of you input file these names can be used anywhere an rgb triple is called for.

Simple math operations are now supported by the parser. These operations are supported on numbers and on vectors (rgb triples and xyz coordinates). The following is a list of the operations supported. Vectors operations supported include cross product, addition, subtraction, scaling, and dot product. Numerical operations include multiplication, division, addition, subtraction and exponentiation. Sine, cosine, tangent, arcsine, arccosine, arctangent and square root functions are also supported.

Vector Operations

a b c cross x y z

cross product, yields a vector

a b c dot x y z

dot product, yields a number

a b c + x y z

vector addition, yields a vector

a b c - x y z

vector subtraction, yields a vector

a b c * n

scale a vector by n

a b c / n

scale a vector by 1/n

-(a b c)

negate a vector

Numeric Operations

sin(x), cos(x), tan(x)
trig functions

asin(x), acos(x), atan(x)

sqrt(x)

returns square root of x

pow(x y)

returns x to the yth power

*, /, +, -

normal mathematical operations

It should be noted that these operations introduce some ambiguity to the input language. This problem is aggravated by the fact that the parser can only look one token ahead when it tries to decide how to treat its current input. I encourage you to avoid any such problems by generously using parentheses to eliminate any possible ambiguity in your equations. For example:

n * a b c can result in either

(n*a) b c or

(n*a) (n*b) (n*c)

depending on how the parser is feeling that day.

If you really want to I'm sure that you could figure out what the parser is doing but that may change in the future so save yourself the trouble and just add the parentheses.

Comments can also be included in the input file. Like comments in computer programs, comments in Vivid input files are ignored by the input parser. Comments in Vivid use the same syntax as comments in C++ do. Multi-line comments start with /* and end with */. Anything between the comment delimiters is ignored. Single line comments start with // and end at the end of the line. For example:

/* This is a comment

which spans multiple lines */

// This is a single line comment

Comments should be used as notes in your input files to help remind you or anyone else reading the file what the input is trying to do. Comments can also be used to block out part of the input file while you are setting it up to help speed up test renderings.

Normally an input file will be made up of a studio definition which describes the image size, antialiasing and viewpoint followed by the definitions for lights, surfaces, and objects. Object definitions only deal with the geometry of the object. The surface characteristics (color, shine) of the object are taken from the last surface definition preceding the object.

Preprocessor XE "preprocessor"
To make writing input files easier, Vivid's parser also has a preprocessor. Currently, the preprocessor only supports two functions, the definition of macros and support for include files.

Macros allow you to associate a name with a string of characters. When the parser sees the name in the input file it will substitute the appropriate string before continuing. A simple example of this is the color definitions in the file color.vc. In color.vc the colors white and blue are defined like this:

#define blue (0 0 1)

#define white(1 1 1)

Once defined you can then use the word "white" wherever you would normally have to type (1 1 1). For example, to create a blue surface with a white highlight you could then do this:

surface {

diffuse blue

shine 20 white

}

Macro names must start with a letter and may contain letters, numbers, and the underscore character "_". Macro names are case sensitive. Note than in the examples I define the colors with parentheses around the rgb values. This is not required but helps eliminate any potential parser problems as mentioned in the section on the parser's math ability. You can undefine a macro using the #undef keyword.

#undef blue

If you define the same macro more than once the old values are put onto a stack and the newest one will always be used. If you then undefine the macro, only the newest one will be deleted and the next newest definition will then be active. If you want to define a macro that is longer than one line you have to use the backslash, "\", as a continuation character.

#define BLUE_PLASTIC\

surface {\

diffuse blue \

shine 20 white\

}

Notice that the last line does not have a backslash after it. Once defined you can then just use the name BLUE_PLASTIC in the input file wherever you would normally type in the whole surface declaration.

The other preprocessor directive is #include. This allows you to include other files into your input file. Look at the sample input files and notice that almost the first thing in the file is a line like:

#include “color.vc”

This causes the parser to read in the file color.vc which defines a standard set of colors for use in creating input files. Using Dan Farmer's color editor it is quite easy to create new colors to add to this file. The include command is also useful for including objects into your scene. Combined with the transformation commands this will allow you to create objects as separate files and include them into the scene at any location and orientation. You may also include multiple copies of an object.

The Studio

The studio structure in the scene file defines all those things that are neither lights, objects or surfaces. This includes the resolution of the final image, the location of the camera (viewpoint), the direction the camera is pointing, the background color, and various rendering options. Some of the options have default values. These are the values these options will take on if they are left out of the studio definition. The studio definition looks like this:

studio {

from x y z

at x y z

up x y z

angle ang

resolution i j

start line

stop line

aspect asp

projection mode

ambient acolor

background bcolor

haze density

antialias mode

threshold dist

jitter

aperture size

focal_length dist

samples n

no_shadows

no_exp_trans

caustics

depth max_depth

}

 "from XE "from" " is the location of the camera.

 "at XE "at" " is where in the scene the camera is pointed.

 "up XE "up" " is a vector pointing up, usually 0 0 1. This can be played with to roll the image around the axis of the camera.

 "angle XE "angle" " is the field-of-view angle XE "field-of-view angle" given in degrees.

 "resolution XE "resolution" " is the size of the image in pixels, i pixels across and j pixels down. This can also be controlled from the command line using the -i switch.

 "start XE "start" " and "stop XE "stop" " allow you to start and stop the rendering at the specified line numbers. I use this for testing new input files and isolating bugs. Those of you with networks might want to consider using this to split up an image for rendering on multiple computers. After the sections are done you can then use paste.exe to glue them together. Currently there is a problem with using start and the resume (-r) flag. Avoid the combination.

 "aspect XE "aspect" " is the aspect ratio XE "aspect ratio" of the screen. This is the ratio of width to height of the screen you are rendering your images for. I've found that my NEC 3D has an aspect ratio of about 4/3 and that my Amiga 1084 has an aspect ratio of about 1.2. To determine the proper aspect ratio for your screen measure the width and height of a screen image. The aspect ratio of your screen can be found by dividing the width by the height. Determining the correct aspect ratio of your screen will insure that circles come out looking like circles instead of ovals. Remember, aspect ratio should the width/height ratio of the displayed image regardless of the image resolution. Together with the resolution these are used to determine the aspect ratio of the pixels.

 "projection XE "projection" " controls how the 3d world is mapped onto the 2d screen. The default is "flat". This is the standard perspective projection you've all come to know and love. "spherical" and “cylindrical” projections map the image onto a sphere or a cylinder instead of a plane. Unique to these modes is the capability of having a field of view angle greater than 180 degrees. Try a 360 degree panorama some time. The “cylindrical” mode is perfect for generating image for Surround Video. The "orthographic" projection mode produces an image where all the eye rays are parallel to each other. For this mode the "angle" parameter has no meaning and is replaced with a "width" parameter. Width defines how wide the screen is in the world coordinate system. Generally, I think that this mode is useless but it was easy to code so why not? The final mode is the "parallax" projection mode. This produces a 2-point projection instead of a 3-point projection like the "flat" mode. In the "parallax" mode, all vertical lines stay vertical on the screen. This was implemented specifically for architectural renderings but is sometimes useful in other contexts. Note that "vertical" is defined by the direction of the up vector.

 "ambient XE "ambient" " is the color of the light that is everywhere in the image. In "the real world" when light strikes diffuse surfaces such as walls, some of it is scattered back into the room. This is why you can still see under a desk even though no light is shining directly underneath it. Most ray tracers, including Vivid, can't handle this diffuse interreflection. But, all hope is not lost. To fake diffuse interreflection Vivid allows you to set an ambient light value. This acts like a light that is shining in every direction at once and does not cast any shadows. For an inside scene values of about .2 .2 .2 seem to work well. Outside scenes look a bit more realistic with a higher ambient value because of the scattering of light the atmosphere does. Most ray traced images that you will see just have the ambient value set to 0 0 0 or black. This produces the sharpest contrasts and gives the image a super-real effect. The default value for ambient is 0 0 0.

 "background XE "background" " is the color that will be returned if no objects are hit while tracing a ray. Popular choices are black and sky_blue. If haze is defined then this is the color of the haze. (see below) The background color defaults to black. Alternatively you can do the following:

background {

“palette.map”

up x y z

}

This produces a graduated background using the colors in the file palette.map. The file can have any name but is required to have the .map extension. The file is the same format as the img2gif palette files. The first color in the file is the color that will appear in the direction of the up vector. If no up vector is specified then the up vector from the studio structure will be used.

 "haze XE "haze" " is the density of the fog or haze in the scene. The haze density defaults to 0. This means that there is no haze. A value of .5 means that for every unit a ray travels, half of its color is determined by the background color. This function is exponential, i.e. if the haze density is given as .5 the color of a ray going 1 unit will be .5 times the color of the object it hits and .5 times the background color. A ray going 2 units will be .25 the color of the object and .75 times the background color. For most images this parameter can be ignored and the default value of 0 used.

 "antialias XE "antialias" " determines whether or not antialiasing is performed and what type is used. This can also be controlled from the command line using the -a switch. The valid modes are:

· none -- Do one ray per pixel, right through the center. Results are blocky but relatively quick. This is the default.

· quick -- This does a subsampling approximation of the image. In areas of even color the most speedup is gained. This is the fastest mode but the results are not useful for much more than test images. At best (i.e. on a blank image) this should be about 15 times faster than the above mode. In general I notice about a 3-5 times speedup. This is a great mode for doing test renderings.

· corners -- Shoot a ray at each corner of the pixel and average the results. Since the corners are shared by adjoining pixels this means about one ray per pixel. The results are almost as quick as none but usually have a better look. Effectively this is the same as running a smoothing filter over the image.

· adaptive -- Rays are shot at the corners of the pixel. If they are within a certain threshold of each other the program moves on to the next pixel. If they differ by more than the threshold value, the pixel is subdivided into four subpixels and sampled again. The corners of the subpixels are then compared against the threshold and if they are still too far apart the are subdivided once more. The effective result of this is that in areas of constant or smoothly changing intensity only one ray per pixel is shot. At edges or other sharp color transitions up to 25 rays per pixel may be averaged to determine the color of the pixel. The result is fairly good antialiasing without too much undo overhead.

 "threshold XE "threshold" " is the threshold value used by the adaptive mode of antialiasing. The default threshold is 16. Valid values are 0..255. This parameter also affects the quick mode. In general, lower values will produce better results but take more time. You should never need to go below 2 or 3.

 "jitter XE "jitter" " is a flag telling the system to add a little bit of randomness to the direction each ray is shot. Combined with antialiasing this helps to break up the patterns sometimes caused by sampling an image on a regular grid. Images with regular patterns such as checkerboards disappearing into the horizon will benefit most from jitter.

 "aperture XE "aperture" " is an optional parameter which allows the ray tracer to model a more realistic camera. The default aperture is 0 which models a pinhole camera. With an aperture greater than 0 objects at the focal length (see below) will appear in sharp focus while objects nearer or further from the viewpoint will be blurred. The larger the aperture, the more exaggerated the blurring will be. Using this option will greatly increase the amount of time needed to generate an image because Vivid uses distributed ray tracing to model the effects of a camera with a non-zero aperture. This causes the number of rays necessary to calculate the color of a pixel to increase greatly. The default is to shoot 8 rays instead of one ray whenever aperture is greater than zero. This value can be controlled with the "samples" parameter below.

 "focal_length XE "focal_length" " determines the distance from the camera to the focal plane where objects are rendered in focus. This option is used in conjunction with the aperture option. Objects which are a distance equal to the focal length away from the camera will be in sharp focus. The default for the focal length is the distance between the "from" and "at" points which determine the viewpoint and the viewing direction.

 "samples XE "samples" " controls the number of rays shot when a non-zero aperture is used. The default is 8.

 "no_shadows XE "no_shadows" " causes all shadow calculations to be turned off. The speed increase gained by turning shadows off is especially useful when doing test images of a new scene. The can also be controlled using the command line switch -n.

 "no_exp_trans XE "no_exp_trans" " is a wonderfully intuitive name for a flag that turns off the exponential attenuation of the rays as they pass through transparent objects. Got that? Let me try again. Normally when Vivid shoots a ray through a transparent object (glass) the color of the ray is tinted by the color of the glass and is a function of the distance that the ray has to travel through the glass. For example if you have two sheets of coke-bottle green glass where one is 1/4 inch thick and the other is 2 inches thick, light passing through the thicker one will be darker. The relationship between the thickness and the amount of tinting is exponential. This causes problems with single sided glass because when Vivid tries to compute the thickness of the glass the distance calculated is from the glass to whatever wall or floor the ray hits next. Hence the windows will tend to be way dark. When you set the no_exp_trans flag in the studio structure Vivid only uses the transparent color of the surface to calculate the tint and totally ignores the distance that the ray travels. This tinting also affects shadow rays.

 "caustics XE "caustics" " is an experimental flag which turns on Vivid's faked caustics. Caustics are those neat patterns of light that are produced as light passes through a transparent object. I've been playing around with a couple of ways to get some of the effect without having to spend a few days per image doing the real thing. The effect is pretty subtle but does seem to make some images look better. Joe Bob says check it out.

 "depth XE "depth" " lets you limit the maximum recursion level to which rays will be traced. At a depth of 1 only eye rays are traced. A depth of 2 will trace 1st level reflections and refractions. The maximum value allowed is 20. This is also the default value. This can also be changed using the command line switch -d.

Transformations XE "transformation"
Vivid's transformation commands allow you to move and scale objects and surfaces. Transformation commands apply to all the primitives following them until they are "popped" from the transformation stack. The format for a transformation command is:

transform XE "transform" {

scale
s

rotate
x y z

translate
dx dy dz

}
Scale changes the size of the objects. Scale may also be defined as a vector to create objects that are scaled differently in each axis. Unfortunately this doesn't work with all primitives, only polygons and patches can be scaled non-uniformly. The rotate command rotates the object the given number of degrees around each axis. The translate command moves the object. Any of these may be left out or used more than once. They can also be used in any order and will be applied to the objects in the order that they are given. It is very important that you get the order correct. An object that is rotated 90 degrees around the Z axis and translated 10 units along the X axis will end up at 10 0 0 with a 90 degree twist whereas if the operations are applied in the other order the object will end up at 0 10 0. Sometimes it helps to play around with real objects a bit and work through some of the transformations first. Remember that all rotations are done around the axes, not necessarily around the center of the object. This should also be kept in mind when building new objects. Put 0 0 0 at the objects "natural" center of rotation. This will help greatly when building scenes with the objects. For example, the natural "center" for a car model would be at ground level in the center of the car. This allows the car to fairly easily be placed in the scene where you want it.

To remove a transformation from the transform stack use the "transform_pop XE "transform_pop" " command. Sometimes you will want to nest transform commands. This is useful for creating multi-part objects that move relative to each other but also need to move as a whole unit. For example, say you want to create a tank model with a turret that you can rotate. Assume that the body of your tank model is in the file tank.vo and the turret is in turret.vo. To place the tank in your scene, your input file would look like this:

#define TURRET_ANGLE (30)
// rotation for turret

transform { translate x y z }
// move whole tank

#include “tank.vo”

// include body geometry

transform { rotate 0 0 TURRET_ANGLE }

#include “turret.vo”

// include turret geometry

transform_pop

// clean up transform stack

transform_pop

Using this technique complicated models can be built and positioned with relative ease.

Surfaces with textures, either procedural or image mapped, are also affected by transformations. The surface must be defined inside of a transformation block in order to be affected. If the surface is defined outside of the transformation block then it will appear to stay still while only the geometry moves. For example, let’s say you’ve created a simple chess board and put the geometry in the file chess.vo. You’ve also created a checkered marble texture for it which you call CheckeredMarbleSurf. Then in your input file you have:

CheckeredMarbleSurf

#include “chess.vo”

This gives you your board with the texture all lined up correctly. No lets say you want to twist the board 20 degrees so your scene doesn’t look to rigid. If you do the following the board will be turned but the texture will not. Things will look a bit odd.

CheckeredMarbleSurf

transform { rotate 0 0 30 }

#include “chess.vo”

transform_pop

If you include the surface within the transform block you will get what you want.

transform { rotate 0 0 30 }

CheckeredMarbleSurf

#include “chess.vo”

transform_pop

Now you’re probably asking yourself why you’d ever want to do anything else. Well, by keeping an object static and just translating the texture you can get some great animated effects. This works especially well with the noise based procedural textures.

Lights XE "lights"
Lights come in four flavors, point, directional, spherical and spot. Just as the name implies a point light is a light source occupying a single point in space. It has position, color, and attributes determining how much the intensity of the light falls off with distance. A directional light acts like a point light source infinitely far away with no reduction in intensity over distance. A spherical light source actually has a radius to it and can provide shadows with penumbra (soft edges). This feature, however, adds a considerable amount to the time needed to render the image. Spot lights produce a cone of light that falls off on the edges. These are quite nice for highlighting areas of your model. In most cases they also produce the least number of shadow rays making them quicker than just putting a point light inside a cone.

Point Light XE "lights:point"

 XE "point light"
The definition for a point light source looks like this:

light {

type point

falloff f // defaults to 0

position x y z

color r g b

}

The falloff parameter determines how the intensity of the light is reduced over distance(dist). In the real world the light intensity falls off as 1/(dist*dist) (f=2). Vivid also allows the light to fall off as 1/dist (f=1) and not to fall off at all (f=0). Why would you want to use anything except f=2? Simplicity is one reason. With f=0 you can set the light's color to 1 1 1 and know that whatever objects the light falls on will be illuminated fully regardless of the distance of the light from the object. With f=2 you must take into account this distance. If the object you wish to be illuminated is 3 units away from the light then in order to get the same amount of illumination that f=0 provides you must set the color to 9 9 9 i.e. 3^2. For f=1 the color would have to be 3 3 3. In the real world much of the light around us does not come directly from the light source. It often bounces off of other objects on its way to the object we are interested in. Since Vivid, like most ray tracers, does not model this interobject diffuse reflection we can achieve much the same effect by have the light intensity fall off linearly with distance, i.e. f=1. The default value is f=0.

Directional Light XE "lights:directional"

 XE "directional light"
The definition for a directional light source looks like:

light {

type directional

color r g b

direction dx dy dz

}

or the direction can be replaced by a from and at pair:

light {

type directional

color r g b

from x y z

at x y z

}

The direction vector points along the direction the light is traveling. Since the light is assumed to be at infinity, there is no falloff parameter. If you are having difficulty understanding how the direction parameter works is sometimes useful to note that direction x y z is the same as “from 0 0 0 at x y z.”

Spherical Light XE "lights:spherical"

 XE "spherical light"
The definition for a spherical light source looks like:

light {

type spherical

position x y z

radius r

color r g b

falloff f

samples n

}

Spherical lights differ from point lights in that the shadows they cast have penumbra. Normally when a ray hits a surface a shadow ray is shot toward each light. If the shadow ray hits any surface on the way to the light then that light is blocked and the surface is in the shadow of the blocking object. With spherical light sources multiple shadow rays are shot. Each one is shot to a random point within the radius of the light. If the light is half blocked by an object, approximately half the shadow rays will be blocked and half will pass through to the light. The ratio of blocked to not-blocked shadow rays is then used to determine how strong the shadow is. As you might expect, the extra shadow rays will add a lot of extra time to the rendering. Some references refer to these light sources as extended light sources. The number of shadow rays shot each time is controlled by the samples parameter. The default value for this is 16.

 Spot Light XE "lights:spot"

 XE "spot light"
The definition for a spot light source looks like:

light {

type spot

position x y z

direction dx dy dz

min_angle angle1

max_angle angle2

color r g b

falloff f

}

Like the directional light, the direction parameter may be replaced with the at x y z to specify where the light is shining. Min_angle and max_angle define the shape of the cone of light produced by the spot light. Everything within the min_angle angle of the axis of the light will be fully illuminated. From there the light intensity will fall off until max_angle is reached. For example if you want a cone of light 30 degrees wide with sharp edges you would define min_angle and max_angle to be 30. To get the same size light but one that fades out at the edges you would define max_angle to be 30 and min_angle to be 0.

 Other Light Options XE "lights:options"
Each light source can also have a couple of other parameters. They are no_shadows and no_spec. As you've probably guessed, these allow you to turn off shadows and specular highlights for each light. Used together with a directional light source of low intensity (.2 .2 .2) this is often a nice alternative to global ambient light. Global ambient light tends to make objects appear flat whereas this technique will provide subtle shading without the shadows and spots of your "real" light sources.

One thing to note is that even if a light is within the viewing scene it will not appear as an object. If you want you lights to be visible you can wrap a transparent shell around them using a sphere. Example:

// Define a point light at 2 3 4 that shows up in the scene

// as a light with radius 1.

light {

center 2 3 4

type point

color white

}

// glass shell

surface {

ambient white// same color as the light

transparent white // totally transparent

}

sphere {

center 2 3 4

radius 1

}

 For details on spheres and surfaces skip ahead.

Surfaces XE "surfaces"
Surface structures allow you to define the surface characteristics of the objects you are rendering such as color, reflectivity and texture. When a surface is defined in the input file, it is applied to all the primitives following it until a new surface is defined. This allows multiple objects to be entered without having to repeat the surface characteristics. A simple surface structure looks like this:

surface {

diffuse r g b

// defaults to 0 0 0 (black)

ambient r g b

// defaults to 0 0 0

specular r g b

// defaults to 0 0 0

shine pow

// defaults to 0

transparent r g b
// defaults to 0 0 0

ior num

// defaults to 1.0

fuzz magnitude

// defaults to 0.0

no_antialias

// turn off antialiasing

}

All of these components of the surface are figured in when the ray tracer determines the color of an object in the scene. The diffuse color is the actual color of the object as seen when illuminated by a full white light. A value of 0 0 0 signifies a black object while a value of 1 1 1 indicates white. The brightness of this component depends on the amount of light falling on the surface at that point. The ambient term is sometimes also referred to as the self-luminous component. This is the color the object will appear in a totally dark scene. The specular component specifies the reflectivity of the surface. A value of 1 1 1 will produce a mirror-like reflection. The shine value determines how large the specular spot will appear on a surface. Low values, 1..10, will produce large, soft-edged specular highlights while high values, 1000 or more, will produce a small, sharp spot. Traditionally the brightness and color of the spot is in direct proportion to the specular component. The problem is that sometimes it would be nice to have a blue object with specular highlights without having the extra overhead of tracing reflected rays. Therefore Vivid allows a second form for defining specular spots:

shine pow r g b

 In this case the color given will be used instead of the specular component of the surface. The transparent component allows you to define how transparent the surface is. A value of 1 1 1 will appear glass-like because it allows all colors to pass through while a value of 1 0 0 will produce a surface like red glass since it only allows red light to pass through. A surface with a transparent component of .9 .9 .9 will appear partially transparent with the amount of light passed through based on the thickness of the object the light is passing through. The index of refraction, ior, determines how much the ray is bent as it passes into the transparent surface. In reality this is related to the relative density of the surface. To simulate glass values of about 1.1 to 1.3 seem to work best. The ior of diamond is 2.6. Fuzz is a way of adding random noise to the surface normal of the object when its color is determined. Since the diffuse color of the object is affected by the angle the light hits the surface this randomization can produce a sort of coarse texture to an object. Applied to mirrored or transparent surfaces this produces an affect much like frosted glass. Generally, small values of fuzz, .01 to .3, seem to work best. Since fuzz uses random numbers it should be avoided when doing animations unless you like the effect of having your surface shimmer from frame to frame.

The no_antialias flag tells the adaptive antialiasing to effectively turn off for that surface. In general this is not something that you want to do except in a few special cases. The original reason for this parameter was that fuzzy surfaces can cause the adaptive antialias option to shoot lots of rays and slow down the image generation considerably. By adding the no_antialias flag to the surface definition you still get the benefits of the adaptive antialiasing along the edges of the objects but you avoid the slowdown that can be caused by any large, fuzzy surfaces. Note, however, that this will change the look of the surface. Try cutting the amount of fuzz in half when using this option to preserve the amount of color variation in the surface.

As an aid to those of us that can't type, some keywords may be abbreviated: surf, diff, amb, spec and trans. I trust that you'll be able to figure out what goes with what.

Some examples are probably in order.

// simple red surface with a white highlight

surface {

diff 1 0 0

spec 100 1 1 1

}

// same thing using the macros defined in color.vc

surface {

diff blue

spec 100 white

}

// self-luminous blue

surface {

ambient 0 0 1

}

// mirror with specular highlights

surface {

spec 1 1 1

shine 100

}

// glass with some reflection

surface {

spec .3 .3 .3

shine 30

trans .7 .7 .7

ior 1.2

}

In general, the rule of thumb is that amb+diff+spec+trans should be less than or equal to 1 1 1. Of course since we are defining our own universe anything is possible.

Bump Mapping

 Bump mapping is a means of giving a surface some texture which enhances the realism of the surface by adding ripples or bumps to the surface. The surface isn't actually distorted but its normal is. This allows a simple surface to appear very complicated. Bump definitions are included inside of the simple surface definitions, i.e.:

surface {

diffuse red

bump {

...

}

}

 A sample wave bump map looks like this:

bump {

wave {

center 1 2 3

wavelength 2.0

amplitude 0.2

damping 0.9// defaults to 1.0

phase 0.0 // defaults to 0.0

}

}

 Center defines the source of the wave. Wavelength defines the crest to crest distance of the wave. Amplitude defines the maximum amount that the surface normal is bumped. Values under 1 are definitely best. The damping parameter defines how much the amplitude falls with distance. In the example given the amplitude will decrease by 10% for each wavelength of distance from the source. The phase is a number between 0 and 1 which defines a starting offset for the phase of the wave. This can be used in animations to create a wave which appears to move realistically by incrementing the phase by a small amount for each frame. More than one wave may be defined within the bump structure. By defining three or four wave sources at various locations with differing wavelengths and amplitudes a very realistic rippled surface can be created.

Turbulence can also be used to perturb the normal of a surface. The definition of turbulence looks like this:

bump {

turbulence {

scale 1 1 1

offset 0 0 0

amplitude .5

terms 4

}

}

 The turbulence function takes the location of the ray intersection and returns a random number in the range +- amplitude. The scale and offset factors are applied to the xyz location before the turbulence function is called. The terms parameter allows you to build a fractal-like surface. When terms>1 the turbulence function is summed multiple times. Each successive term in the sum has its scaling doubled and the amplitude halved. This produces the varying levels of self-similarity associated with fractals. The sample file vivid1.v uses this feature and a non-symmetric scaling to produce the "spun-chrome" look on the large sphere. Turbulence and wave definitions may be included with each other inside a bump definition.

Procedural Textures

Vivid also allows the use of solid texturing to enhance the realism of the surfaces rendered. Textured surfaces are really just two surfaces with some definition of which appears where on the object and how the two surfaces are blended together. The surfaces can be "layered" in one of three patterns checker, spherical or noise. The checker pattern produces a 3-d checker. The size of the blocks is controlled by the scale factor. If one of the scale parameters is 0 then the pattern is assumed not to change along that axis. An example would be a simple checkerboard pattern with checkers 2 units on a side colored black and white. This pattern is defined to extend infinitely along the z axis.

surface {

texture {

pattern checker

scale 2 2 0

offset 0 0 0
// default

fuzz 0

// default

blend 0

// default

surface { diff black }

surface { diff white }

}

}

 A scale of 2 0 0 would create a pattern which changes every 2 units in the x direction but is continuous in the y and z directions. This is equivalent to 2-unit thick slabs of material stacked along the x axis. The spherical pattern produces concentric layers of alternating surfaces. When one of the scale parameters is 0 concentric cylinders are formed with the axis of the cylinders along the zero'ed axis. This is useful for wood textures. The spherical pattern also requires 2 radius definitions for the layers. The first radius is used for the first surface, etc.

surface {

texture {

pattern spherical

scale 2 2 0

radius 1

radius 2

surface { diff black }

surface { diff white }

}

}

The noise pattern uses the output of the noise function directly to pick between the two surfaces. This is useful for producing textures like granite. By using unequal scaling values in the x y and z directions you can get a streaked looking surface. I've also used this using tan and brown surfaces to produce a fine wood-grain look.

surface {

texture {

pattern noise

terms 4

scale x y z

edges

surface { diff white }

surface { diff black }

}

}

 The fuzz and blend parameters may be used to soften the edges between the two surfaces. Their values range from 0 to 1. The blend parameter produces a smooth transition between the surfaces. The value of the blend parameter determines the width of this transition area. The fuzz parameter adds noise to the point being checked in proportion to its value. This produces a coarse, speckled transition between the surfaces.

The turbulence function mention in the bump map section may also be applied to textured surfaces. By varying the parameters the effect can be made to range from a slight perturbation of the pattern, to a marble look, to excessive turbulence. A simple example is presented below.

Due to the way Vivid's parser works if you want to bump map a surface which is also textured the bump definition must appear in the surface structure before the texture definition. Also notice that the surfaces defined in a texture definition need not be simple surfaces. They may also be textured. The following is a definition for a checkerboard surface with checks 10 units on a side. Half the checks are black while the other half have a red/white marble finish.

surface {

texture {

pattern checker

scale 10 10 0

surface { diff black }

surface {

texture {

pattern checker

scale 1 0 0

blend 0.7

turbulence {

amplitude 3

terms 4

}

surface { diff white }

surface { diff red }

}

}

}

}

Vivid also allows a Mandelbrot pattern as demonstrated in the sample input file vivid1.v. The Mandelbrot pattern was put into Vivid as a joke one evening. Currently the format for specifying it is terrible. The first two parameters of the scale value determine the x y scaling of the set while the 3rd parameter determines the maximum number of iterations. The result of the iteration calculation is then scaled by the max number of iterations to determine the relative percentages of the surface parameters for that point.

OK, the way it works is like this. The actual point of intersection, x y z, is translated using the scale and offset values before being put into the Mandelbrot calculation.

new_x = x * scale_x + offset

Like I said, this is about a backwards as I could make it and still have it work. Since the point is multiplied by the scale rather than divided the pattern gets bigger as the scale value gets smaller. Normally the Mandelbrot set extends from -2 to +1 along the x axis (more or less). If you want to get it to fit from -20 to +10 you would have to scale it by 0.1 in the x and y axes. Stupid? Yes. Now, since the offset is added on after the multiplication that makes it work in the Mandelbrot coordinate system rather than the world coordinate system. Continuing the example above, if you wanted to move the center of the set to world coordinates 300, 100 you would have to give an offset of 30 10.

Using macros I think you can alleviate most of this garbage:

#define ITERATION_LIMIT (64)

#define SCALE (10)

#define X_OFFSET (300)

#define Y_OFFSET (100)

surf {

texture {

pattern mandelbrot

scale (1/SCALE) (1/SCALE) ITERATION_LIMIT

offset (X_OFFSET/SCALE) (Y_OFFSET/SCALE) 0

// etc...

}

}

Now all you have to do is change the defines and things will work much more like you expect.

Once I figure out a reasonable way of doing this Mandelbrot and Julia sets will become a real part of Vivid. (Yeah, I know I said that last time and the time before but it's still true. Sort of.)

Image Mapping

Primitives

Sphere XE "sphere"

 XE "primitive:sphere"
 The sphere is the simplest of the primitives supported by Vivid and generally the fastest to perform an intersection test with. The format for a sphere is:

sphere {

center x y z

radius r

}

 where x y z is the location in space for the center of the sphere and r is the sphere's radius. As an example here is the definition for two glass spheres, one which is hollow and one which is solid.

// glass surface

surface { trans 1 1 1 shine 200 1 1 1 ior 1.2 }

// solid globe

sphere { center 1 0 0 radius .9 }

// hollow globe

sphere { center -1 0 0 radius .9 } // outer surface

sphere { center -1 0 0 radius .8 }// inner surface

 Just for laughs vivid also includes a fuzzy spheres option. These spheres appear fuzzy because they have no fixed radius. To define a fuzzy sphere define a normal sphere and add a fuzz parameter. This defines how much larger the radius will randomly be. Each time the ray tracer performs an intersection test with the fuzzy sphere, the radius to test against is randomly chosen to lie between the radius and radius+fuzz.

// fuzzy sphere with radius between 0.5 and 2

sphere {

center 0 1 2

radius .5

fuzz 1.5

}
Ring XE "ring"

 XE "primitive:ring"
 The ring primitive may also be described as a washer or disk. The definition for a ring consists of a location, a surface normal, and a minimum and maximum radius. The minimum radius may be zero producing a disk without a center hole. Because the intersection for the ring is faster than for a polygon the ring is a good choice for use as a ground plane underneath the objects you are ray tracing. The format for the ring definition is:

ring {

center x y z

normal a b c

min_radius r0

max_radius r1

}

The surface normal a b c does not have to be normalized. If you just want a disk without a center hole the min/max radius definitions may be replaced with a single radius definition as follows.

ring {

center x y z

normal a b c

radius r

}

Whoa, just got a clue that not everyone knows what a surface normal is. A surface normal is a vector that is perpendicular to a surface, i.e. one that points straight out from the surface. For example, the surface normal for the floor in you room would be a vector pointing straight up into the air. The surface normal of your monitor is the vector pointing straight out between you eyes. Simple enough? OK, now a normalized vector is one which has been scaled to have its length equal exactly 1. This is usually done by calculating the length of the vector then dividing each of the vector's components by the length. Vectors of length 0 cause no end of problems.

Polygon XE "polygon"

 XE "primitive:polygon"

 XE "primitive:triangular patch"
 Polygons may have any number of vertices (well, a minimum of three is required). The vertices must all lie within the same plane otherwise the results will be strange. The order of the vertices may be either clockwise or counter clockwise.

polygon {

points 4

vertex 1 1 0

vertex 1 -1 0

vertex -1 -1 0

vertex -1 1 0

}

This will produce a square polygon 2 units on a side centered at the origin with a surface normal equal to 0 0 1.

Triangular Patch XE "triangular patch"
 The triangular patch is useful for building objects with complex shapes that you want to appear smooth. The patch is defined by three vertices and explicit surface normals for each vertex. In general, manually entering in patches will probably be too tedious to be of much use but when using computer generated input files the results will be worth the extra programming effort.

patch {

vertex 1 0 0 normal .1 0 1

vertex 0 1 1 normal 0 .1 1

vertex 0 0 .5 normal -.1 -.1 1

}
Cone XE "cone"

 XE "primitive:cone"
 The cones implemented by Vivid are actually truncated cones. They have a radius both at their base and at their apex. When these radii are equal the cone does a fair imitation of a cylinder. To get a pointed cone enter 0 for one of the radii.

cone {

base 1 1 1 base_radius 4

apex 0 0 5 apex_radius 1

}
To get a cylinder you can also specify a cone with a single radius.

cone { base 1 1 1 apex 0 0 5 radius 1 }
 Rings are useful for putting caps on the ends of cones. Even for a cone at an odd angle the position and normal of the ring can be easily calculated. To cap the apex end of the cone the ring's center is equal to the apex, the ring's radius is equal to the apex_radius and the ring's normal is equal to apex-base. Using the example above the definition for a ring to cap the apex end of the cone would look like this:

ring {

center 0 0 5

radius 1

normal -1 -1 4

}
If you want caps at both ends of the cone you can also use the keyword “capped XE "capped" .” This will automatically add the proper rings to cap the end of the cone.

cone {

base 1 1 1 base_radius 4

apex 0 0 5 apex_radius 1

capped

}
Other Primitive Options

Clipping XE "clipping"

 XE "primitive:clipping"
Primitives can also be "clipped" to produce more complicated shapes. Basically the way a clip works is that a primitive is defined with a clipping surface which cuts off part of that primitive. For example a sphere can be clipped against a plane to produce a hemisphere or a cone can be used to clip a hole through another cone. There are three types of clipping surface: planes, spheres and cones. Clips are defined within a primitive's definition. You may have more than one clip per primitive. Clips also transform along with their primitives.

A clipping plane is defined by a point and a normal.

clip {

center x y z

normal x y z

}
The part of the primitive on the normal side of the plane will be kept while the part on the other side will disappear into the Ronald Reagan Memorial Library. (You may think I'm lying but you'll never really know until you go check.) For example, if you want to get a hemisphere of radius 1 centered at the origin if would look like:

sphere {

center 0 0 0 radius 1

clip {

center 0 0 0 normal 0 0 1

}

}
 Note that the clip's normal is pointing upward. This will give you the top half of the sphere. If you change the normal to 0 0 -1 you will get the bottom half.

Clipping spheres are defined as:

clip {

center x y z

radius r

inside or outside

}
 With a clipping sphere you can choose to either keep the part of the primitive inside of the sphere or the part of the primitive outside of the sphere. You may have already guessed this but that's why the inside and outside keywords are there.

Clipping cones look like:

clip {

apex x y z apex_radius r

base x y z base_radius r

inside or outside

}
 Just like the cone primitive you may also just define a single radius to get a cylinder.

Sometimes you will want to apply the same clips to a group of primitives. To do this define global clips using the global_clip keyword:

global_clip {

clip { ... }

clip { ... }

clip { ... }

}
The clip_pop keyword will cause the previous section of clips to be popped off the stack much like the transform_pop does for transformations.

Cutting XE "cutting"

 XE "primitive:cutting"

Cutting allows you to define a polygon which is used to cut a hole in another primitive. The definition of a cut uses syntax similar to that of a polygon. For instance, cutting a square hole in a ring looks like this:

ring {

center 0 0 0

normal 0 0 1

radius 10

cut { points 4

vertex -1 -1 0

vertex -1 1 0

vertex 1 1 0

vertex 1 -1 0

}

}
The polygon is projected infinitely along its normal so you can also use it to cut a hole in a non-planar primitive. As with clips you can also define global cuts which affect a bunch of primitives at once. The syntax is similar:

global_clip {

clip { ... }

clip { ... }

clip { ... }

clip { ... }

}

// insert primitives to be clipped here

clip_pop

==

+ from an e-mail by Stephen 27 July 1998

Hi Renzo,

Stephen Coy here. I'm mailing this from my housemate's email account since I don't

have my own account from home yet. Here's the information about image mapping and

other changes to Vivid that may not have made it into the new docs. These are from a

series of notes I made about the new features as I added them. Sometimes they are a

bit mixed up but they shouldn't be too hard to figure out. Let me know if you have

any questions.

I've decided to leave Microsoft and take a long vacation so for the immediate future

you can reach me at this email address. I'll let you know when I get my own.

take care,

Stephen

þ You can now use an image for the background of your scenes. In

the studio definition specify the backdrop image like this:

backdrop { image "stars.tga" }

This image will be used only for eye rays that miss any of the

primitives in the scene. All reflected and refracted rays that

miss will be colored using the background color.

þ Image mapping is now supported in a somewhat crude way. You can

use a .tga file for the diffuse, transparent, specular, or ambient

component(s) of a surface. Support for other file formats will

hopefully follow. The syntax looks like:

surf {

diff {

 image "foo.tga"

position x y z // upper left hand corner of image

across x y z // vector pointing across top of image

// from upper left to upper right corners

normal x y z // surface normal for the image plane

scale n // size the image

}

}

The default scale, 1.0, means that the top edge of the image will measure

1 unit across. For a 640x480 image that means that the image will

be 1.0 x 0.75 units in size. Images are tiled in a regular, repeating

pattern. Other tiling patterns will be supported later. Transformations

of surfaces with image maps should work fine except if you use non-uniform

scaling in your transform statement. So don't do that. The image is

not "wrapped" around the objects affected, rather it is projected straight

along the normal vector. Have fun.

þ Texture maps are now more interesting. Instead of just being

able to project a map flat onto a surface Vivid now also supports

spherical, cylindrical and radial mapping. These options also

work with bump mapping. For testing, try the spherical mapping

on a sphere, the cylindrical mapping on a cylinder and the

radial mapping on a large disk or polygon.

// spherical mapping example

surf {

diff {

spherical

 image "pattern.tga"

center 0 0 1

normal 0 0 1 // direction of north pole

across 1 0 0 // direction for longitude 0

reps 4.0 2.0 // # of images around and down

}

}

// cylindrical mapping example

surf {

diff {

cylindrical

image "cover.tga"

bilinear // optional but useful

center 0 0 2

normal 0 0 1

across 1 0 0

reps 4.0 // # of images around

scale 2.0 // scale of image in "normal" direction

}

}

// radial mapping example

surf {

diff {

radial

image "vivid1.tga"

center 0 0 0

normal 0 0 1

across 1 0 0

reps 8.0

scale 1.0

}

}

þ Vivid now handles input file names that begin with numbers like

0000.v.

þ Vivid's exit code have been cleaned up. The current definitions

are:

#define EXIT_OK (0)

#define EXIT_NO_FILE (1)

#define EXIT_FILE_NOT_FOUND (2)

#define EXIT_OUT_OF_MEMORY (3)

#define EXIT_DISK_WRITE_ERROR (4)

#define EXIT_VIDEO_MODE_ERROR (5)

#define EXIT_QUEUE_FULL (6)

#define EXIT_SYNTAX_ERROR (7)

#define EXIT_UNSUPPORTED_FILE_TYPE (8)

þ Waves aren't just for bumps anymore. Now you can use waves to

tweak (technical term) textures just like noise does. For example

to create a very strange version of a checkerboard try this:

surf {

texture {

pattern checker

scale 1 1 1

surf { diff white shine 100 white }

surf { diff red shine 100 white }

wave {

center 5 5 5

amp 1

wavelength 2

}

wave {

center -4 1 0

amp .1

wavelength .2

}

}

}

þ The "no_exp_trans" flag can now be applied on a per surface basis.

This will cause rays passing through this surface not to be

exponentially attenuated. In simpler terms, normally a transparent

surface needs to have some thickness (ie a front and a back) in order

to look correct. The no_exp_trans flag allows single faced object to

work as well. One warning though, if you have a textured surface, the

flag should only be applied to the top-most level. You can't have it

applied to half a checkerboard. For example, the following produces

a red/blue checkerboard transparent surface which can be put in front

of a light to cast interesting shadows.

surf {

no_exp_trans

texture {

pattern checker

scale 1 1 0

surf { trans 1 .5 .5 }

surf { trans .5 .5 1 }

}

}

þ A new keyword has been added for waves. You can now use "offset"

to specify a distance from the wave's center for the waves to start

taking effect. For example the following surface is a blue and red

checkerboard where the waves start 1.75 units from the center and

then fall off in the distance.

surf {

texture {

pattern checker

scale 1 1 0

surf { diff blue shine 50 white }

surf { diff red shine 50 white }

}

bump {

wave {

center 0 0 0

amp -.5

wavelength 1

damping .9

offset 1.75

}

}

}

þ There is a new projection mode called "fisheye". This mode results

in a round image with a 180 degree field of view as if you were looking

through a fisheye lens. There is also a scale parameter which controls

the distortion effect. The default value is 1.0 and useful values

range from about .01 to 10. 2.0 seems to be pretty nice.

studio {

from 2 -5 3

at 0 0 0

up 0 0 1

projection fisheye

scale 2

res 640 480

antialias adaptive

threshold 4

}

þ You can now automatically generate caps for cones by using the

"capped" keyword. This will create rings which cap the ends of

the cone. For instance:

cone { apex 0 0 0 apex_radius 1 base 0 0 8 base_radius 2 capped }

þ The image and bump mapping features now read both Targa files in

addition to .img files. Vivid supports both type 2 (uncompressed)

and type 10 (RLE encoded) files with either 24 or 32 bits per pixel.

For 32 bit images, the alpha plane is ignored.

þ There is now a "bilinear" keyword which can be used in texture map

and bump map definitions. Adding this causes the image to be sampled

using bilinear interpolation rather than just a pixel at a time. In

general this will only be visible when you've zoomed into a map so

much that you can actually see the individual pixels as blocks on the

screen. With the bilinear interpolation turned on things will blur

out gently rather than getting blocky.

þ Added bump maps. Bump maps use a .tga file as input and tweek the

surface normal being rendered based on the intensity changes in the

image. They are defined just like an image map with the addition of

one extra parameter, amplitude, which controls how much the normal is

tweeked. With a positive amplitude lighter colors in the bump map will

appear as raised areas in the image. Darker colors will look like dips.

A negative amplitude will appear to "invert" the bump map, ie lighter

colors will look like dips.

surf {

diff white

bump {

map {

 image "foo.tga"

position x y z // upper left hand corner of image

across x y z // vector pointing across top of image

// from upper left to upper right corners

normal x y z // surface normal for the image plane

scale n // size the image

amp a // amplitude of tweek

}

}

}

þ Added a brilliance component to the surface definition. Normally

the cosine of the angle between the surface normal and the the vector

to a light is used to scale the diffuse color of an object. Brilliance

is used as an exponential scale of this number before the diffuse color

is used. The default is 1.0 which means that if you don't use it

your surfaces will look just like they always have. So far I've found

two instances where this is useful. 1) Rendering something like the

moon where it seems to be fully illuminated all the way across the

day-side rather than fading off to the edges can be done using a

brilliance value less than 1.0. Something like .4 should work.

2) Metallic surfaces look really good with a brilliance value of

around 20. For example here's the definition of a macro for the

color Copper and the surface CopperSurf.

#define Copper (1 .61 .32)

#define CopperSurf surf { \

diff Copper * .7 \

brilliance 6 \

spec Copper * .7 \

shine 90 \

}

þ Added cutting polygons. A cutting polygon is a polygon which

cuts a hole in another primitive. This only affects patches, polygons

and rings. The syntax is like a cross between a clip and a polygon

definition. For example, to cut a square hole out of a ring the

input would look like this:

ring {

center 0 0 0

normal 0 0 1

radius 10

cut { points 4

vertex -1 -1 0

vertex 1 -1 0

vertex 1 1 0

vertex -1 1 0

}

}

þ Fixed patches to now accept individual clips rather than only

taking global clips.

þ Added a new type of texture mapping for polygon patches. You can

now specify the coordinate in the texture map for each vertex. This

is probably totally useless for anyone creating models by hand. It

was put in primarily to support models translated from other systems.

The syntax looks like:

patch {

vertex x y z normal x y z uv i j

vertex x y z normal x y z uv i j

vertex x y z normal x y z uv i j

}

Where i and j are the texture map coordinates for that vertex. Remember

that the texture maps go from 0.0 -- 1.0 in both directions.

þ Transformations can now be specified directly as a transformation

matrix. This feature has been provided mainly for people writing

file translation software who have to deal with already concatenated

matrices instead of seperate rotation, translation and scale commands.

If you want to know what's happening, read Foley, vanDam, Feiner and

Hughes. The syntax is:

transform {

matrix 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

}

þ The resume flag (-r) now works fine if there is no image to resume.

It now just starts from the beginning instead of halting.

þ Transformations now affect textured and bump mapped surfaces. Any

transformations in effect when a surface is declared will now cause

that surface texture to transform just like objects do. This means it

is now much easier to rotate and scale surfaces.

þ File names (for include files and palettes) may now be enclosed

in quotes. The advantage of this is that you can now have file

names begining with a number or containing a - in them. For

example:

#include "000.vs"

#include "foo-bar.vo"

are both valid now.

þ A Vivid environment variable is now recognized and is used to search

for any files Vivid tries to open. To set the variable put the

following line in you autoexec.bat:

set vivid=c:\vivid

(or use any path you like) You can now put the input files you use

often into this directory and they will be found no matter where you

run Vivid from. Potential candidates for this include color.vc,

.map files and any models you build and often use. Multiple paths

are also supported ala

set vivid=c:\vivid\colors;c:\vivid\models;d:\foo\bar

When trying to open a file Vivid will first look in the current

directory and then look through the path list if the file is not

found.

Support Programs

raw2rle rle2raw convert

Bibliography

For anyone interested in ray tracing and how it works the following books are highly recommended. Further references may be found in the bibliography at the end of Glassner's book.

"Computer Graphics, Principles and Practice, 2nd Ed.", Foley, van Dam, Feiner and Hughes, 1990, ISBN 0-201-12110-7

"An Introduction to Ray Tracing", Andrew S. Glassner, ed., Academic Press, 1989, ISBN 0-12-286160-4

"Illumination and Color in Computer Generated Imagery", Roy Hall, Springer-Verlag, 1989, ISBN 0-387-96774-5

Index

A

ambient
10

angle
9

antialias
11

aperture
11

aspect
10

aspect ratio
10

at
9

B

background
10

bunching
12

C

capped
23

caustics
12

clipping
24

cone
23

cutting
25

D

depth
12

directional light
14

E

eye rays
5

F

field-of-view angle
9

focal_length
11

from
9

H

haze
10

J

jitter
11

L

lights
14

directional
14

options
15

point
14

spherical
15

spot
15

N

no_exp_trans
12

no_shadows
12

P

point light
14

polygon
22

preprocessor
8

primitive

clipping
24

cone
23

cutting
25

polygon
22

ring
22

sphere
21

triangular patch
22

projection
10

R

reflected rays
5

refracted rays
5

resolution
5, 9

ring
22

S

samples
11

shadow rays
5

sphere
21

spherical light
15

spot light
15

start
9

statistics
5

stop
9

surfaces
16

T

threshold
11

transform
12

transform_pop
13

transformation
12

triangular patch
23

texturizing.................by Stephen e-mail.....24/31

U

up
9

26
33

