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ABSTRACT

The paper presents an approach for deriving test plans
for the conformance testing of a system implementation
with respect to the formal description of its Software
Architecture (SA). The SA describes a system in terms
of its components and connections, therefore the de-
rived test plans address the integration testing phase.
We base our approach on a Labelled Transition System
(LTS) modeling the SA dynamics, and on suitable ab-
stractions of it, the Abstract Labelled Transition Sys-
tems (ALTSs). ALTSs offer specific views of the SA
dynamics by concentrating on relevant features and ab-
stracting away from uninteresting ones.

ALTS is a tool we provide to the software architect that
lets him/her focus on relevant behavioral patterns and
more easily identify those that are meaningful for vali-
dation purposes. Intuitively, deriving an adequate set of
functional test classes means deriving a set of paths ap-
propriately covering the ALTS. In the paper we describe
our approach in the scope of a real-world case study and
discuss in detail all the steps of our methodology, from
ALTS identification to test plan generation.

Keywords
Functional Test Plans, Integration Testing, Labelled
Transition Systems, Software Architectures.

1 INTRODUCTION

In recent years the focus of software engineering is con-
tinuosly moving towards systems of larger dimensions
and complexity. Software production is becoming more
and more involved with distributed applications run-
ning on heterogeneous networks, while emerging tech-
nologies such as commercial off-the-ghelf (COTS) prod-
ucts are becoming a market reality [21]. As a result,
applications are increasingly being designed as sets of
autonomous, decoupled components, promoting faster
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and cheaper system development based on commercial
off-the-shelf integration, and facilitating architectural
changes required to cope with the dynamics of the un-
derlying environment.

The development of these systems poses new challenges
and exacerbates old ones. A critical problem is under-
standing if system components integrate correctly. To
this respect the most relevant issue concerns dynamic
integration. Indeed, component integration can result in
architectural mismatches when trying to assemble com-
ponents with incompatible interaction behavior [10, 5],
leading to system deadlocks, livelocks or in general fail-
ure to satisfy desired functional and non-funtional sys-
tem properties.

In this context Software Architecture (SA) can play a
significant role. SAs have in the last years been con-
sidered, both by academia and software industries, as a
means to improve the dependability of large complex
software products, while reducing development times
and costs [20, 1]. SA represents the most promising ap-
proach to tackle the problem of scaling up in software
engineering, because, through suitable abstractions, it
provides the way to make large applications manage-
able. The originality of the SA approach is to focus on
the overall organization of a large software system (the
glue) using abstractions of individual components. This
approach makes it possible to design and apply tractable
methods for the development, analysis, validation, and
maintenance of large software systems.

A crucial part of the development process is test-
ing. While new models and methods have been pro-
posed with respect to requirements analysis and de-
sign, notably the Unified Modeling Language (UML)
[17], scarce attention has been devoted so far to the
testing of these kinds of systems. The paradox is that
these new approaches specifically address the design of
large scale software systems. However, for such sys-
tems, the testing problems not only do not diminish,
but are intensified. This is especially true for integra-
tion testing. In fact, due to the new paradigms centered
on component-based assembly of systems, we can easily
suppose a software process in which unit testing plays



a minor role, and testers have to focus more and more
on how components work when plugged together.

Lot of work has been devoted to the analysis of formal
descriptions of SAs. Our concern is not in the analysis
of the consistency and correctness of the SA, but rather
in exploiting the information described at the SA level
to drive the testing of the implementation. In other
words, we assume the SA description is correct and in-
vestigate approaches to specification-based integration
testing, whereby the reference model used to generate
the test cases is the SA description.

In general, deriving a functional test plan means to
identify those classes of behavior that are relevant for
testing purposes. A functional equivalence class col-
lects all those system executions that, although differ-
ent in details, carry on the same informative contents for
functional verification. The tester’s expectation/hope is
that any test execution among those belonging to a class
would be equally likely to expose possible non confor-
mities to the specification.

We identify interesting test classes for SA-based testing
as sequences of interactions between SA components.
More precisely, starting from an architectural descrip-
tion, we first derive a Labelled Transition System (LTS),
that graphically describes the SA dynamics. The prob-
lem is that the LTS provides a global, monolithic de-
scription of the set of all possible behaviors of the sys-
tem. It is a tremendous amount of information flattened
into a graph. It is quite hard for the software architect
to single out from this global model relevant observa-
tions of system behavior that would be useful during
validation.

We provide the software architect with a key to deci-
pher the LTS dynamic model: the key is to use abstract
views of the LTS, called ALTSs, on which he/she can
easily visualize relevant behavioral patterns and identify
those that are more meaningtul for validation purposes.
Test classes in our approach correspond to ALTS paths.
However, once test class selection has been made, it is
necessary to return to the LTS and retrieve the infor-
mation that was hidden in the abstraction step, in order
to identify LTS paths that are appropriate refinements
of the selected ALTS paths. This is also supported by
our approach.

In the following we describe in detail the various steps
of the proposed approach in the scope of a case study.
In Section 2 we provide the background information:
we recall the Cham formalism, that is used here for SA
specification, and outline the case study used as a work-
ing example. In Section 3 we provide a general overview
of the approach. In Section 4, we give examples of us-
ing the approach, and address more specific issues. In
Section 5, we clarify better the relation between ALTS
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paths and test specifications. Finally, in the Conclu-
sions, we summarize the paper contribution and address
related work.

2 REPRESENTING SA DYNAMICS

A key feature of SA descriptions is their ability to spec-
ify the dynamics. Finite State Machines, Petri Nets
or Labelled Transition Systems (LTSs) can be used to
model the set of all possible SA behaviors as a whole.

In the following subsection we briefly recall the Cham
description of SA. From this description we derive an
LTS which represents the (global) system behavior of a
concurrent, multi-user software system.

The Cham Model
The Cham formalism was developed by Berry and
Boudol in the field of theoretical computer science for
the principal purpose of defining a generic computa-
tional framework [2].

Molecules my, mq,... constitute the basic elements of
a Cham, while solutions So,S1,... are multisets of
molecules interpreted as defining the states of a Cham.
A Cham specification contains transformation rules
Ti,Ts,... that define a transformation relation S; —
S; dictating the way solutions can evolve (i.e., states can
change) in the Cham. Following the chemical metaphor,
the term reaction rule is used interchangeably with the
term transformation rule. In the following, with abuse
of notation, we will identify with R both the set of rules
and the set of corresponding labels.

The way Cham descriptions can model SAs has already
been introduced elsewhere [12]. Here we only summarize
the relevant notions. We structure Cham specifications
of a system into four parts:

1. a description of the syntax by which components of
the system (i.e., the molecules) can be represented;

. a solution representing the initial state of the sys-
tem;

. a set of reaction rules describing how the compo-
nents interact to achieve the dynamic behavior of
the system.

. a set of solutions representing the intended final
states of the system.

The syntactic description of the components is given
by a syntax by which molecules can be built. Follow-
ing Perry and Wolf [16], we distinguish three classes of
components: data elements, processing elements, and
connecting elements. The data elements contain the in-
formation that is used and transformed by the process-
ing elements. The connecting elements are the “glue”



that holds the different pieces of the architecture to-
gether. For example, the elements involved in effecting
communication among components are considered con-
necting elements. This classification is reflected in the
syntax, as appropriate.

The initial solution corresponds to the initial, static con-
figuration of the system. We require the initial solution
to contain molecules modeling the initial state of each
component. Transformation rules applied to the ini-
tial solution define how the system dynamically evolves
from its initial configuration. One can take advantage of
this operational flavor to derive an LTS out of a Cham
description. In this paper we will not describe how an
LTS can be derived (see [9]). We only recall the LTS
definition we will rely on.

Definition 2.1 A Labelled Transition System is a
quintuple (S, £, Sp, S, T), where S is the set of states,
L is the set of labels, Sy € S is the initial state, S C S

is the set of final states and T = {—+C S x S|l € L}
is the transition relation.

Each state in the LTS corresponds to a solution, there-
fore it is made of a set of molecules describing the states
of components. Labels on LTS arcs denote the trans-
formation rule that lets the system move from the tail
node state to the head node state.

We also need the definition of a complete path:

Definition 2.2 Let
p=So 2+ 5 4 8 ...ty s,

be a path in an LTS. p is complete if Sy is the initial
solution and S,, is a final one.

Although our approach builds on the Cham description
of a SA it is worthwhile stressing that it is not commit-
ted to it. Our choice of the Cham formalism is dictated
by our background and by its use in previous case stud-
ies. We are perfectly aware that other choices could be
made and want to make clear that the use of a specific
formalism is not central to our approach.

In more general terms what we have done so far can be
summarized as follows: we have assumed the existence
of an SA description in some Architectural Description
Language (ADL) and that from such description an LTS
can be derived, whose node and arc labels represent re~
spectively states and transitions relevant in the context
of the SA dynamics. We also assume that states con-
tain information about the single state of components
and that labels on arcs denote relevant system state
transitions.
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Figure 1: Processes and Channels

The TRMCS Case-Study

The Teleservice and Remote Medical Care System
(TRMCS) provides monitoring and assistance to users
with specific needs, like disabled or elderly people. The
TRMCS is being developed at Parco Scientifico e Tec-
nologico d’Abruzzo, and currently a Java prototype is
running and undergoes SA based integration testing.

A typical TRMCS service is to send relevant information
to a local phone-center so that the family and medical
or technical assistance can be timely notified of critical
circumstances. We define four different processes (User,
Router, Server and Timer), where:

e User: sends either an “alarm” or a “check” message
to the Router process. After sending an alarm, it
waits for an acknowledgement from the Router.

e Router: waits for signals (check or alarm) from
User. It forwards alarm messages to the Server and
checks the state of the User through the control
messages.

e Server: dispatches help requests.

e Timer: sends a clock signal for each time unit.

Figure 1 shows the static TRMCS Software Architec-
tural description, in terms of Component and Connec-
tors. Boxes represent Components, i.e., processing ele-
ments, arrows identify Connectors, i.e., connecting ele-
ments (in this case channels) and arrows labels refer to
the data elements exchanged through the channels.

Figure 2 shows the reaction rules of the TRMCS Cham
Specification. Rules from Ty to Ty represent system
startup, rules T5 and Tg enable the two users to send an
alarm message, rules from T; to 719 handle the check
messages, from Tj; to Tig handle the alarm messages,
from Tig to T2; finally manage the Timer component.

A portion of the LTS of the TRMCS SA is given in Fig.
3. The whole LTS is around 500 states. Note that arc
labels 0, 1, ..., 21 correspond, respectively, to Ty, 17,
..y T2; (the labels of the TRMCS reaction rules),“0”



Reaction Rules

TO: User = Userl, User2

T1: Userl= Userl.o(checkl), Userl.o(alarmUR1).i(ackRU1)
T2: User2= User2.o(check2), User2.o{alarmUR2).i(ackRU2)
T3: Userl.o(check1)= o(checkl).Userl

T4: User2.o{check2)= o(check2).User2

TS: Userl.o(alarmUR1).i(ackRU1) = o(alarmURT1).i(ackRU1).Usert

T6: User2.o(alarmUR2).i(ackRU2) = o(alarmUR2).i(ackRU2).User2
T7: o(checkl).Userl, i(check).Router, NoSent = Userl.o(checkl) , i(check).Router, Sent
T8: o(checkl).Userl, i(check).Router, Sent = Userl.o(check1) , i(check).Router, Sent
T9: o(check?).User2, i(check).Router, NoSent = User2.o(check2) , i(check).Router, Sent
T10: o(check2).User2, i(check).Router, Sent = User2.o(check2} , i(check).Router, Sent
T11: o(alarmUR1).i(ackRU1).Userl, i(alarmUR).o(alarmRS).i(ackSR).o(ackRU).Router

= i(alarmUR).o(alarmRS).i(ackSR).o(ackR U).Router,o(alarmRS 1).i(ackSR 1).o0(ackRU1).Router, i(ackRU1).Userl .o(alarmUR1)
T12: o(alarmUR2).i(ackRU2).User2, i(alarmUR).o(alarmRS).i(ackSR).o(ackRU).Router

= i(alarmUR).o(alarmRS).i(ackSR).o(ackR U}).Router,o(alarmRS2).i(ackSR2).0(ackRU2).Router, i(ackRU2).User2.o(alarmUR2)
T13: o(alarmRS1).i(ackSR1).0(ackRU1).Router , i(alarmRS).o(ackSR).Server

= i(ackSR1).o(ackRU1).Router , i(alarmRS).o(ackSR).Server, o(ackSR1).Server
T14: o(alarmRS2).i(ackSR2).0(ackRU2).Router , i(alarmRS).o(ackSR).Server

= i(ackSR2).0(ackRU2).Router , i(alarmRS).o(ackSR).Server, o(ackSR2).Server

T15: o(ackSR1).Server, i(ackSR1).o(ackRU1).Router = o(ackRU1).Router
T16: o(ackSR2).Server, i(ackSR2).0(ackRU2).Router = o(ackRU2).Router

a

T17: o(ackRU1).Router, i(ackRU1).Userl.o(alarmUR1) = Userl.o(alarmUR1).i(ackRU1)
T18: o(ackRU2).Router , i(ackRU2).User2.0(alarmUR2) = User2.o(alarmUR2).i(ackRU2)
T19: m1.Router, Timer, Sent = o(nofunc).Router, m1.Router, NoSent

T20: m1.Router, Timer, Sent = mt.Router, Timer, NoSent
T21: o(nofunc).Router, i(nofunc).Server = i(nofunc).Server, Timer

Figure 2: TRMCS Cham Reaction Rules

denotes the initial state and box states denote pointers
to states elsewhere shown in the picture (to make the
graph more readable). Double arrows denote the points
in which the figure cuts LTS paths.

3 AN APPROACH TO SA-BASED TESTING
In this section we introduce our approach to SA-based
testing. Our goal is to use the SA specification as a ref-
erence model to test the implemented system. Needless
to say, there exists no such thing as an ideal test plan
to accomplish this goal. It is clear, on the contrary,
that from the high-level, architectural description of a
system, several different SA-based test plans could be
derived, each one addressing the validation of a specific
functional aspect of the system, and different interac-
tion schemes between components.

Therefore, what we assume as the starting point for our
approach is that the software architect, by looking at
the SA from different viewpoints, chooses a set of im-
portant patterns of behavior to be submitted to testing.
This choice will be obviously driven by several factors,
including specificity of the application field, criticality,
schedule constraints and cost, and is likely the most cru-
cial step to a good test plan (we give examples of some
possible choices in Section 4).

With some abuse of terminology, we will refer to each
of the selected patterns of behavior as to an SA test-
ing criterion. With this term we want to stress that
our approach will then derive a different, specific set
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of tests so as to fulfill the functional requirements that
each “criterion” (choice) implies.

Two remarks are worth noting here. One is that as
the derived tests are specifically aimed at validating the
high-level interactions between SA components, the test
plans we develop apply to the integration test stage.
The second remark is that since we are concerned with
testing (i.e., with verifying the software in execution),
we will greatly base our approach on the SA dynamics.
In particular, starting from a selected SA testing crite-
rion, we will primarily work on the SA LTS and on other
graphs derived from the latter by means of abstraction
(as described in the following).

Introducing obs-functions over SA dynamics

An SA testing criterion is initially derived by the soft-
ware architect in informal terms. We want to translate
it in a form that is interpretable within the context of
the SA specification, in order to allow for automatic
processing.

Intuitively, an SA testing criterion abstracts away unin-
teresting interactions. Referring to the Cham formal-
ism, an SA testing criterion naturally partitions the
Cham reaction rules into two groups: relevant inter-
actions (i.e., those we want to observe by testing) and
not relevant ones (i.e., those we are not interested in).
This suggests to define an interpretation domain D, to
which the relevant transformation rules (i.e., the arc la-
bels of the LTS) are mapped, and a distinct element 7,



Figure 3: A portion of the TRMCS LTS

to which any other (not relevant) rule is mapped.

We therefore associate with an SA testing criterion an
obs-function. This is a function that maps the relevant
reaction rules of the Cham SA description to a particu-
lar domain of interest D. More precisely, we have:

obs : R — DU {7}.

The idea underlying the set D is that it expresses a
semantic view of the effect of the transition rules on the
system global state.

From LTS to ALTSs

We use the obs-function just defined as a means to de-
rive from the LTS an automaton still expressing all high
level behaviors we want to test according to the selected
SA testing criterion, but hiding any other unrelevant be-
haviors. The automaton is called an ALTS (for Abstract
LTS).

This is the LTS that is obtained by relabelling, accord-
ing to the function obs, each transition in R(So), and
by minimizing the resulting automaton with respect to a
selected equivalence (trace- or bisimulation-based equiv-
alence), preserving desired system properties (as dis-
cussed in [3]).

If we derive a complete path over an ALTS (see Defi-
nition 2.2), this quite naturally corresponds to the high
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level specification of a test class of the SA (we give ex-
amples in the next section). Therefore, the task of de-
riving an adequate set of tests according to a selected
SA testing criterion is converted to the task of deriv-
ing a set of complete paths appropriately covering the
ALTS associated with the criterion via an obs-function.

In an attempt of depicting a general overview of the ap-
proach, we have so far deliberately left unresolved some
concrete issues. Most importantly, what does it mean
to look at the SA from a selected observation point, i.e.,
which are meaningful obs-functions? And, also, once an
ALTS has been derived, how are paths on it selected?
Which coverage criterion could be applied? We will de-
vote the next section to answer these questions, with
the help of some examples regarding the TRMCS case
study.

4 APPLYING SA-BASED TESTING TO
THE TRMCS CASE-STUDY
Considering the informal description of the TRMCS in
Section 2, because of obvious safety-critical concerns,
we may want to test the way an Alarm message flows in
the system, from the moment a User sends it to the mo-
ment the User receives an acknowledgement. Casting
this in the terms used in the previous section, the soft-
ware architect may decide that an important SA testing
criterion is “all those behaviors involving the flow of an



D = {SendAlarm1, SendAlarm2, ReceiveAckl, ReceiveAck2)

obs (Tu) =SendAlarm1l
obs (Tn) = ReceiveAckl
obs(T,,) = SendAlarm2
obs (Tm) = ReceiveAck2

: Userl issues an Alarm msg
s Userl receives an Ack
s+ User2 issues an Alarm msg
¢+ User2 receives an Ack

For any other T,, obs (T)) = tau

Figure 4: Alarm flow: Obs-function

RecetveAck]

ReceiveAckl

Figure 5: Alarm flow: ALTS

Alarm message through the system”.

From this quite informal specification, a corresponding
obs-function could be formally defined as in Figure 4.
As shown, we have included in the interpretation do-
main D all and only the Cham transition rules that
specifically involve the sending of an Alarm message by
a User, or the User’s reception of an acknowledgement
of the Alarm message from the Router. Note that this
information is encoded, at the LTS level, in the arcs
labels.

With reference to this obs-function, and applying reduc-
tion and minimization algorithms (in this case we have
minimized with respect to trace equivalence), we have
derived the ALTS depicted in Figure 5 (the shaded cir-
cle represents the initial state, that in this example also
coincides with the only final one). This ALTS repre-
sents in a concise, graphical way how the Alarm flow is
handled: after an Alarm ig issued (e.g., SendAlarm1l),
the system can nondeterministically react with one
of two possible actions (elaborating this Alarm and
sending back an Acknowledgement (ReceiveAckl) or
receiving another Alarm message from another User
(SendAlarm2)).

Note the rather intuitive appeal of such a small graph
with regard to the (much more complex) complete LTS
(for the TRMCS it is one hundred times bigger). One
could be tempted to consider some rather thorough cov-
erage criterion of the ALTS, such as taking all complete
paths derivable by fixing a maximum number of cycles
iterations. However, as we will see better in the next sec-
tion, each ALTS path actually will correspond to many
concrete test cases. Therefore, less thorough coverage
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D = {SendCheck1_1, SendCheckl_2, SendCheck2_1,
SendCheck2_2, CheckOk, CheckERR}

obs (T,) = SendCheckl_1: Userl sends the first Check msg
obs (Ty) = SendCheckl 2 : Userl sends a further Check msg
obs (T,) = SendCheck2_1 : User2 sends the first Check msg

obs (T,) = SendCheck2_2: User2 sends a further Check msg

obs (T,,) = CheckOk
obs (T,,) = CheckERR

s every User has sent a Check msg
: some User has not sent a Check msg

For any other T, , obs (T)) = tau

Figure 6: Check flow: Obs-function

criteria seem more practical. In particular, we found
that McCabe’s technique of selecting all basic paths [14]
offers here a good compromise between arc and path
coverage. A list of ALTS test paths derived according
to McCabe’s technique is the following:

Pathl: ABA

Path2: ABDBA
Path3: ABACA
Path4: ABDCA
Path5: ABDCECA
Path6: ABDCEBA

Let us consider, for example, Paths No. 2, 3 and 4.
These three paths are all devoted to verify that the
system correctly handles the consecutive reception of
two Alarm messages issued by two distinct Users. By
putting these three ALTS paths in the list, we explicitly
want to distinguish in the test plan the cases that: i)
each Ack message is sent rightly after the reception of
the respective Alarm message (Path3); or, the acknowl-
edgements are sent after both Alarms are received and
ii) in the same order of Alarm receptions (Pathd4); or
finally iii) in the opposite order (Path2). So the three
test classes are aimed at validating that no Alarm mes-
sage in a series of two is lost, whichever is the order they
are processed in. .

Still considering the TRMCS, the software architect
could decide that also the Check flow is worth testing.
Thus, analogously to what we have done for the Alarm
flow, the Check flow obs-function is derived in Figure
6 and the corresponding ALTS is depicted in Figure 7.
It represents a different “observation” of the TRMCS
behavior.

We have reasoned so far in the hyphotetical scenario of
the TRMCS system being developed and of a software
architect that is deriving interesting architectural be-
haviors to be tested. An alternative scenario could be
that the TRMCS is already functioning, and that one
of the components is being modified.



SendCheck2 2 SendCheckl 2

Figure 7: Check flow: ALTS

We want then to test whether the modified component
still interacts with the rest of the system in conformance
to the SA original description. In this case, the obser-
vation point of the software architect will be “all the
interactions that involve this component”. If, specifi-
cally, the component being modified is the Server, then
the corresponding obs-function is given in Figure 8 and
the resulting ALTS in Figure 9. McCabe’s coverage cri-
terion yields the following set of test clagses:

Pathl: A A

Path2: ABA

Path3: ABBA
Path4: ABDBA
Path5: ABACA
Path6: ABDCA
Path7: ABDDBA
Path8: ABDCCA
Path9:: ABDCDBA

This example evidences that even in deriving the basic
ALTS paths we do not blindly apply a coverage cri-
terion, but somehow exploit the semantics behind the
elements in D. For instance, consider Path5 above. If
we interpret it in light of McCabe’s coverage criterion,

it is aimed at covering transition FRa2 from State A

to State C. The shorter path A C A would be equally
good for this purpose. But for functional testing this
shorter path is useless, because it would be perfectly
equivalent to the already taken Path2 (A B A): both
paths in fact test the forwarding of one Alarm message
to the Server. Therefore, to cover the transition from
A to C we have instead selected the longer path A B
A C A that serves the purpose to test the consecutive
forwarding of two Alarms.
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D = {FRal, FRa2, TRackl, TRack2, FRno}

obs(Ty;) =FRal : Alarm! msg From Router
obs(T,) =FRa2 : Alarm2 msg From Router

obs (T,;) = TRackl : Ackl msg To Router

obs (T, ) = TRack2 : Ack2 msg To Router

obs (Tu) =FRno : NeFunction mnsg From Router

For any other T, , obs (T}) = tau

Figure 8: Component Based: Obs-function

FRal

TRack2 TRack1

{
FRno

Figure 9: Component Based: ALTS

5 FROM ALTS PATHS TO TEST SPECIFI-
CATION

ALTS paths specify functional test classes at a high ab-

straction level. One ALTS path will generally corre-

spond to many concrete test cases (i.e., test executions

at the level of the implemented system).

It is well-known that several problems make the test-
ing of concurrent systems much more difficult and ex-
pensive than that of sequential systems (for reasons of
space we do not discuss these problems in depth here;
see, e.g., [7]). Said simply, a trade-off can be imagined
in general between how tightly is the test specification
of an event sequence given, and how much effort will
be needed by the tester to force the execution of that
sequence. The point is that the tester, on receiving
the high level test specifications corresponding to ALTS
paths, could choose among many concrete test execu-
tions that conform to them. For example, considering
Path2: A B D B A on'Fig. 5, a possible test execution
can include the sending of an Alarm message from Userl
immediately followed by the sending of an Alarm mes-
sage from User2; another test execution could as well
include, between the two Alarm messages, the Router
reception of other messages, e.g., a Check or a Clock,
and still conform to the given high level test specifica-
tion.

This flexibility in refining test specifications descends



from the fact that to derive the ALTS from the com-
plete LTS we have deliberately abstracted away transi-
tions not involving the Alarm flow from and to a User.
However after an ALTS-based list of paths has been
chosen, we can go back to the complete LTS and ob-
serve what the selected abstraction is hiding, i.e., we
can precisely see on the SA LTS which are the eguiv-
alence assumptions' behind ALTS paths (test classes)
selection.

This is a quite attractive feature of our approach for
SA-based test class selection. When functional test
classes are derived ad-hoc (manually), as is often the
case for the high level test stages, equivalence assump-
tions those test classes rely upon remain implicit, and
are hardly recoverable from the system specification. In
our approach, first an explicit abstraction step is re-
quired (ALTS derivation). Second, going back from the
ALTS to the complete LTS, we can identify which and
how many LTS paths fulfill a given ALTS path.

We can better explain this by means of an example.
Considering the ALTS for the Alarm flow (Fig. 5),
State B is equivalent (under the test assumptions made)
roughly to forty states in the complete LTS (of course,
we can automatically identify all of them). Not only,
but there are more valid LTS subpaths that we could
traverse to reach each of these forty states. The valid
subpaths for this example are all those going from the
initial state Sy of the LTS to any of the forty states
equivalent to state B of the ALTS, without including
any of the transformation rules in the domain D de-
fined for the Alarm flow obs-function, except for the
last arc that must correspond to the transformation rule
Ty1. All of these (many) subpaths would constitute a
valid refinement of the abstract SendAlarm1 transition
in Path?2.

As such a refinement should be applied to each state
and each arc of the ALTS paths, it is evident then how
the number of potential LTS paths for one ALTS path
soon becomes huge. We cannot realistically plan test
cases for all of them; so the pragmatic question is: how
do we select meaningful LTS paths (among all those
many refining a same ALTS path)? We don’t believe
that a completely automatic tool (i.e., a smart graph
processing algorithm) could make a good choice. What
we prospect, rather, is that the software architect, with
the indispensable support of appropriate graphical tools
processing aids, can exploit his/her semantic knowledge
of the SA dynamics to discern between LTS paths that
are equivalent with respect to an ALTS abstraction. In

IThe term “equivalence” here refers to its usual meaning in
the testing literature, i.e., it denotes test executions that are in-
terchangeable with respect to a given functional or structural test
criterion, and not to the more specific trace/bisimulation equiva-
lence used so far for graph minimization.
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Figure 10: An LTS test path

this perspective, we are currently investigating different
criteria. One straightforward approach is structural cri-
teria, variously based on path length and on limiting
the number of loop interactions within paths. Another
interesting possibility could be to also consider priori-
tizing some nodes, in the construction of paths, because
of their operational profile, or because of their relevance
in an ALTS other than the current one. On the other
hand, the software architect will also take into account
other important factors, not captured in the SA descrip-
tion, such as safety-critical requirements, or time and
cost constraints. Thus we finally expect that the soft-
ware architect produces from the list of ALTS paths a
refined list of LTS paths.

In Fig. 10, for instance, we show an LTS path that is
a valid refinement of Path2 for the Alarm flow ALTS
(uninteresting LTS arcs and nodes are marked in light
grey). This example is the shortest path we could take
to instantiate the ALTS path, in that it only includes in-
dispensable TRMCS transformation rules to fulfill the
path. We precise that Si5 in particular is the state
equivalent to State B of the Alarm flow ALTS (note in
fact that the entering arc is labelled 11). Another of
the forty LTS states equivalent to B is State Syz9 (see
Fig. 3). There is a semantic difference between S5 and
S1s9 that could be relevant for integration testing pur-
poses. Before reaching Sisg (i.e., before Userl sends an
Alarm), User2 can send a Check message, while this is
never possible for any of the LTS subpaths reaching S 5.
We could see this from analyzing the state information
that is associated with LTS nodes. In the refinement of
Path2, the software architect could then decide to pick
one LTS path that includes Sizp in order to test that
a Check from another user does not interfere with an
Alarm from a certain user.



6 CONCLUSIONS

The contribution of this paper consists of an approach
to the use of the architectural description of a system
to define test plans for the integration testing phase of
the system implementation. The approach starts from a
correct architectural description and relies on a labelled
transition system representation of the architecture dy-
namics.

In summary, the proposed approach consists of the fol-
lowing steps:

1. the software architect selects some interesting SA
testing criteria;

2. each SA testing criterion is translated into an obs-
function; in some case, a criterion could also iden-
tify several related obs-functions;

. for each obs-function, an ALTS is (automatically)
derived from the global LTS corresponding to the
SA specification;

generated according to a selected coverage crite-
rion. Each path over the ALTS corresponds to the
high-level specification of a test class;

5. for each ALTS path, the software architect, by tool
supported inspection of the LTS, derives one or
more appropriate LTS paths, that specify more re-
fined transition sequences at the architectural level.

Our approach allows the software architect to move
across abstractions in order to get confidence in his/her
choices and to better select more and more refined test
plans. It is worth noticing that in our approach a test
plan is a path, that is not only a sequence of events
(the labels on a path), but also a set of states, which
describes the state of the system in terms of the sin-
gle state components. This is a much more informative
test plan with respect to the one that could be derived
from e.g., the requirements specifications. In fact, using
the SA LTS, we also provide the tester with information
about state components that can be used to constrain
the system to exercise that given path.

Related Work

In conventional software systems, integration testing is
generally approached by trying to systematically exer-
cise the system subunits in an incremental fashion, fol-
lowing a bottom-up or top-down order, or a variously
mixed strategy. Such approaches are clearly no longer
adequate for modern systems, where a structural hierar-
chy cannot be identified, and the pervasiveness of char-
acteristics such as concurrency and distribution make
the integration testing task more difficult.

. on each derived ALTS, a set of coverage paths is -
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Lot of work has been devoted to testing concurrent and
real-time systems, both specification driven and imple-
mentation based [7, 13, 6). We do not have room here
to carry out a comprehensive survey; we will just out-
line some main differences with our approach. These
works addressed different aspects, from modelling time
to internal nondeterminism, but all focus on unit test-
ing, that is they either view the concurrent system as
a whole or specifically look at the problem of testing a
single component when inserted in a given environment.
Our aim is different, we want to derive test plans for
integration testing. Thus although the technical tools
some of these approaches use are obviously the same of
ours (e.g., LTS, abstractions, event sequences), their use
in our context is different. This goal difference emerges
from the very beginning of our approach: we work on an
architectural description that drives our selection of the
abstraction (i.e., the testing criterion) and of the paths
(i-e., the actual test classes).

In a related research work [15], a dedicated specification
formalism is being defined, called Information Space, in
parallel with the development of a method for the au-
tomatic derivation of integration test steps, deploying a
notion of slicing over the system specification. Although
using different approaches and terminologies, this re-
search and ours address the same goal, and in fact they
can be considered as parties of a common project.

Our approach of defining ALTS paths for specifying high
level test classes has lot in common with Carver and
Tai’s use of Sequencing Constraints for specification-
based testing of concurrent programs [7). Indeed, se-
quencing constraints specify restrictions to apply on the
possible event sequences of a concurrent program when
selecting tests, very similarly to what ALTS paths do for
a SA. In fact, we are currently working towards incorpo-
rating within our framework Carver and Tai’s technique
of deterministic testing for forcing the execution of the
event sequences (refined LTS paths) produced with our
approach.

As far as architectural testing is concerned, the topic
has raised interest and received a good deal of attention
in recent years [18, 4, 19]. Our approach indeed stems
from this ground.

The Future

QOur aim is to achieve a usable set of tools that would
provide the necessary support to our approach. So far
we have experimented with our approach the described
case study of which a running Java prototype exists.
The way we did it was not completely automatically
supported with respect to the ALTS definitions, the
criterion identification and path selection. As tool sup-
port we could rely on a LTS generator starting from the
Cham description, which also allows for keeping track



of the state and arc labels. Work is ongoing to general-
ize it to ALTS generation and to implement a graphical
front-end for Cham descriptions. We definitely believe
that the success of such an approach heavily depends
on the availability of simple and appealing supporting
tools. Our effort goes in two directions, on one side we

are investing on automating our approach and we would * .
also like to take advantage of other existing environ-

ments and possibly integrate with them, e.g. [11, 8], on
the other we are involved in more experimentation. The
latter is not an easy job. Experimenting our approach
requires the existence of a correct architectural descrip-
tion and a running implementation. The case study pre-
sented here could be carried out since the project was
entirely managed under our control, from the require-
ments specification to the coding. This is obviously not
often the case. The results we got so far are quite sat-
isfactory and there are other real world case studies we
are working on at the moment. For them we have al-
ready a running implementation and we have been asked
to give a model of their architectural structure. We are
confident these will provide other interesting insights to
validate our approach.
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