University of California at Berkeley Physics 111 Laboratory Basic Semiconductor Circuits (BSC)

Lab 12

Analog-to-Digital (ADC) and Digital-to-Analog Conversion (DAC)

Copyrighted $\[mathbb{@}_{1999}\]$ The Regents of the University of California. All rights reserved.

Reading:

Horowitz & Hill Haynes & Horowitz Stubbins Higgins Millman & Grabel Senturia & Wedlock Sedra & Smith Chapter 9.15-9.26 Pages 406-415 Chapter 12 (see Appendix 2) Pages 258-285 (see Appendix 2) Chapter 16.4-16.5 Chapter 18.3 Chapter 10.9-10.11

In this week's lab you will learn the basics of digital circuits, including digital logic, (TTL) switches, flip-flops, and counters.

Pre-lab questions:

1. What is an ADC? DAC? How are these useful?

2. What is Shannon's sampling theorem? Give a short, plausible argument for this theorem.

General remarks: CMOS ADC and DAC chips are very sensitive to static electricity. Be sure to touch the conductive foam and the circuit ground before you remove the chips from the foam. **Double Check your wiring** carefully before turning on power. In particular, check that the ADC is connected to the +5 V supply, in contrast to the DAC, which needs +15 V and -15 V. Input signals for the ADC must always be in the range 0 to +5 V

(**no negative inputs!**). Check input signals using the scope (set to DC) before connecting them to the ADC.

In the lab:

The conversion of voltage levels into digital numbers is important in the interface between digital processors (computers, transmission lines, etc.) and the real world. The integrated circuit ADC0804 (pin layout is in Figure 12.1 and data sheet is in the Appendix) contains a complete 8-bit analog-to-digital converter and the necessary circuitry to interface it to a microprocessor. Details about the operation can be obtained from the data sheets following this section. The ADC0804 is based on the successive-approximation principle (see, for example, Horowitz and Hill, p. 622). The following connections are available (also see list below).

Figure 12.1 Pin assignment of ADC 0804 chip

Description of 20-pin-DIP ADC0804 chip

Pin 1CS (chip select) : it activates the ADC when a '0' is at this input. TheADC will notaccept read/write commands unless the chip is selected.This is very important when the ADCis connected to a computer data buswith many other devices (memory, other ADCs, DACs, I/Osupport, etc.).

Pin 2 RD : a '0' at this input will cause the (digital) result to be applied to the output pins if the chip is selected.

Pin 3WR : a '0' at this input will start the conversion process if the chip isselected.Pin 4ClkIn: input of the clock generator trigger circuit. It can be used for anexternal clocksignal.

Pin 5 INTR : a '0' at this output signals the end of a conversion process.

Pins 6 & 7 Differential inputs. The voltage difference between these inputs is converted into an 8-bit number.

Pin 8 ADC ground.

Pin 9 Reference voltage. It determines the coefficient between the analog input and the digital output. The maximum digital output, 2⁸-1, corresponds to twice the voltage of this pin.

Pin 10 Separate ground for the clock generator.

Pins 11-18 Digital outputs such that pin 11 corresponds to MSB (Most Significant $Bit=2^7$) and pin 18 is LSB(Least Significant $Bit=2^0$).

Pin 19ClkR: output of the clock generator trigger circuit. Feedback of thetrigger outputto the input via an RC circuit causes the clock generator tooscillate.

Pin 20 V_{cc} : positive supply voltage (+5 V).

Normally, the ADC is interfaced to a microprocessor (µp) or computer as shown in Figure 12.2.

Figure 12.2 Connection of ADC0804 to a computer bus

The μp selects the ADC by asserting CS , and sends a WR signal to start a conversion and then goes off to do something useful. After the ADC is finished with the conversion, it sends an interrupt (INTR) get the μp 's attention. Once the μp is ready to use the digitized output, it selects the ADC (CS) and sends a RD signal to cause the result to be applied to the outputs at pins 11 to 18, which are connected to the data bus. The outputs are so-called tri-state outputs ('0'- '1' - 'inactive') which in their inactive mode (RD ='1') they don't influence the data bus. The latter feature allows the

outputs to be connected directly to the bus; without the RD = '0' signal, they don't interfere with the normal operation of the bus.

Since we do not want to bother with a µp, we operate the ADC in a simplified mode: the WR

input is connected to the INTR output, and CS and RD are connected to '0.' As a result, when the ADC is done with one conversion, it sets the digital outputs and starts the next conversion. Strictly speaking, one has to provide a way to start the first conversion after power-up; usually, transients due to the power-up will take care of this.

Note: If your circuit is not working, it may be that the first conversion has not started. Look at WR on the scope. There should be many small, quick spikes appearing on it. If not, you must signal the

first conversion To do this, momentarily short WR to ground with a second wire.

Digital Voltmeter

12.1 We can use the ADC to build a simple 2-digit DVM (Figure 12.3). Use the 25k potentiometer and a DC input signal between 0 and 5 V.

Figure 12.3 Circuit of a 2-digit DVM

Note that the display is hexadecimal; it shows 1,2,3...8,9,A,B,C,D,E,F.

Measure the clock frequency by examining the signal at pin 19. We advise that you use a *frequency-compensated probe* (a "10x probe"); the ordinary scope probe will disturb your measurement since the cable capacitance will alter the clock's capacitance. Measure the conversion time by connecting the scope to pin 5. Does the conversion time depend on the size of the input signal? Do you expect it to, given that the ADC is based on the successive-approximation principle? How many clock cycles does a conversion take? See data sheets for more information.

12.2 Determine precisely the input voltages corresponding to steps of 10_{hex} in the digital output, and plot the result. Is the ADC linear? From the data, calculate the conversion coefficient (counts/Volt). Does it agree with your expectations?

DAC and digital transmission

The currents from the analog outputs (pins 2 and 4) of the DAC08 (See Figure 12.4) correspond to the digital input number (pin 5=MSB to pin 12=LSB), with a conversion coefficient determined by the currents applied to the reference inputs (pins 14 and 15). Whenever the digital input is changed, the output settles to the new analog value within 100 ns. The DAC has two outputs (pins 4 and 2), a normal and an inverting one, which usually drive a differential amplifier. (See below, Section 12.3)

12.3 We are now ready to simulate a digital transmission chain, for example, used in modern phone systems or (with intermediate digital storage) in compact disc players. Build the circuit in Figure 12.4 and connect the digital outputs of the ADC to the inputs of the DAC and connect the scope to the DAC outputs. Connect V_{out} - to Y input on the scope, invert it, and V_{out} + to X input. Generate a 100 Hz, 1V p-p sine wave oscillating between about +2 and +3 V and apply it to the ADC input; you will need to use a DC level shifter. Readjust the offset and the amplitude of the signal generator such that the DAC output signal <u>does not clip</u>. Try different input signal shapes and frequencies and sketch how the DAC output tracks the ADC input.

12.4 Shannon's sampling theorem for minimal reproduction of a signal requires a sampling rate corresponding to twice the highest input frequency. This rate is often called the Nyquist frequency. Study this situation with your ADC/DAC system. What happens if the input signal is increased beyond half the sampling rate? Particularly interesting are the cases where the input frequency is close to a multiple of the sampling rate.

12.5 In practical applications, one usually wants to get rid of the steps in the output signal. This can be achieved by a low-pass filter to smooth the DAC output. Build the active filter circuit with an operational amplifier LF356 as shown in Figure 13.5 and measure its frequency response with sine waves. (Use the 10X scope probe.)

Figure 12.5 Active filter for smoothing the DAC output (use a LF356 OpAmp)

Connect the filter to the DAC output and observe its effect. Measure the frequency response of the ADC/DAC/filter transmission chain by measuring the output voltage with the scope. Try again to increase the input frequency well above the sampling frequency — at certain frequencies, you will still observe significant output signals at a lower frequency than the input frequency. This is called "ghosting." To avoid this effect, real digital transmission systems have low-pass filters both in the inputs and outputs.

OPTIONAL: How about designing your own ADC? With your knowledge in analog and digital electronics, is shouldn't be too hard to build a 4-bit ADC. Start out with a home-made 4-bit DAC. The DAC resistors, if they are not too small, can be driven directly by any TTL output. Hook the DAC up to a 7490 counter driven by a gated clock signal (made using the 555), and add an opamp to compare DAC output and analog input. Now you need only a little logic circuit to stop the counter when the DAC output exceeds the input signal. Hint: switching transients from the DAC may be a problem - if necessary, add an appropriate RC low-pass filter at the DAC output. See the following diagram:

Figure 12.6 A simple ADC circuit

Note that the opamp is running at full open-loop gain and is used as a voltage comparator. The resistor-diode combination in its output limits the signal driving the gate. TTL gates don't like 15 V input signals.

Questions:

1. (See Section 12.5) Calculate the transfer function of the active filter as a function of the component values R and C.

See the following pages for part of the data sheets on ADC-0804 and the DAC 08

Appendix DAC-08 Motorola data sheet

©MOTOROLA INC., 1986

DS9681

Appendix DAC-08 Motorola data sheet

24.28	19	Qay.	62	r
24	8.3			à

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

(**M**)

Rating	Symbol	Value	Unit
V+ Supply to V-Supply	-	36	V
Logic Inputs	-	V- to V- Plus 36	v
Logic Threshold Control	VLC	V- to V+	v
Analog Current Outputs	lout	See Figure 7	mA
Reference Inputs (V14, V15)	VREF	V- to V+	v
Reference Input Differential Voltage (V14 to V15)	VREF(D)	±18	v
Reference Input Current (I14)	REF	5.0	mA
Operating Temperature Range DAC-08AQ, Q DAC-08HQ, EQ, CQ, HP, EP, CP, ED, CD	TA	-55 to +125 0 to +70	°C
Storage Temperature	TA	-65 to +150	°C
Power Dissipation Derate above 100°C	PD R ₀ JA	500 10	mW mW∕°C

 $\label{eq:electrical characteristics} \textbf{Electrical characteristics} \quad (v_S = \pm 15 \text{ V}, \textbf{I}_{REF} = 2.0 \text{ mA}, \textbf{T}_A = -55^{\circ} \text{ C to } +125^{\circ} \text{ C}, \text{ unless otherwise noted.})$

		DAC-08A		DAC-08]	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Resolution	_	8	8	8	8	8	8	Bits
Monotonicity	_	8	8	8	8	8	8	Bits
Nonlinearity, $T_A = 0^{\circ}C$ to $+70^{\circ}C$	NL			±0.1	-	_	±0.19	%FS
Settling Time to $\pm 1/2$ LSB, Figure 24 (All Bits Switched On or Off, T _A = 25°C)(Note 1)	ts		85	135	-	85	150	ns
Propagation Delay, T _A = 25°C (Note 1) Each Bit All Bits Switched	^t PLH ^t PHL		35 35	60 60		35 35	60 60	กร
Full Scale Tempco	TCIFS	-	±10	±50		±10	±80	ppm/°C
$\begin{array}{l} \mbox{Output Voltage Compliance} \\ \mbox{Full Scale Current Change} < 1/2 \mbox{ LSB}, \\ \mbox{R}_{Out} > 20 \mbox{ megohm typ}. \end{array}$	Voc	-10		+18	-10	-	+18	v
Full Range Current (VREF = 10.000 V; R14, R15 = 5.000 kΩ, T _A = 25°C)	^I FR4	1.984	1.992	2.000	1.94	1.99	2.04	mA
Full Range Symmetry (IFR4 - IFR2)	IFRS	-	±0.5	±4.0	-	±1.0	±8.0	μA
Zero Scale Current	^I ZS	-	0.1	1.0	-	0.2	2.0	μA
Output Current Range V- = -5.0 V V- = -8.0 V to -18 V	IOR1 IOR2	0 0	_	2.1 4.2	0	_	2.1 4.2	mA
Logic Input Levels (V _{LC} = 0 V) Logic ''0'' Logic ''1''	V _{IL} VIH	2.0		0.8 —	2.0	_	0.8	V
Logic Input Current (V _{LC} = 0 V) Logic Input ''O'' (V _{in} = -10 V to +0.8 V) Logic Input ''1'' (V _{in} = +2.0 V to +18 V)	կլ կլ	-	-2.0 0.002	~10 10	_	~2.0 0.002	-10 10	μΑ
Logic Input Swing, V- = -15 V	VIS	-10	-	+18	-10	—	+18	V
Logic Threshold Range, $V_S = \pm 15 V$	VTHR	-10		+13.5	-10	-	+13.5	V
Reference Bias Current	115	_	-1.0	-3.0	—	-1.0	-3.0	μA
Reference Input Slew Rate Figure 19 (Note 1)	di/dt	4.0	8.0		4.0	8.0	-	mA/µs
Power Supply Sensitivity (IREF = 1.0 mA) V+ = 4.5 V to 18 V V- = -4.5 V to -18 V	PSSIFS+ PSSIFS-	_	±0.0003 ±0.002	±0.01 ±0.01	_	±0.0003 ±0.002	±0.01 ±0.01	%/%
Power Supply Current Vs = ±5.0 V, IREF = 1.0 mA	+ -		2.3 -4.3	3.8 -5.8	_	2.3 -4.3	3.8 -5.8	mA
VS = +5.0 V, -15 V, IREF = 2.0 mA	+ - +	-	2.4 -6.4 2.5	3.8 -7.8 3.8	-	2.4 -6.4 2.5	3.8 -7.8 3.8	
- 3	1-	-	-6.5	-7.8		-6.5	-7.8	
Power Dissipation $V_{S} = \pm 5.0 V$, $ _{REF} = 1.0 mA$ $V_{S} = \pm 5.0 V$, $-15 V$, $ _{REF} = 2.0 mA$ $V_{S} = \pm 15 V$, $ _{REF} = 2.0 mA$	PD		33 103 135	48 136 174		33 108 135	48 136 174	mW

MOTOROLA Semiconductor Products Inc. -2

Appendix DAC-08 Motorola data sheet

	DAC-08H DAC-08E DAC-08C					;					
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Resolution		8	8	8	8	8	8	8	8	8	Bits
Monotonicity	-	8	8	8	8	8	8	8	8	8	Bits
Nonlinearity, $T_A = 0^{\circ}C$ to $+70^{\circ}C$	NL	-	_	± 0.1	_	_	±0.19		_	±0.39	%FS
Settling Time to $\pm 1/2$ LSB (All Bits Switched On or Off, (T _A = 25°C) Figure 24 (Note 1)	ts	_	85	135	_	85	150	-	85	150	ns
Propagation Delay, $T_A = 25^{\circ}C$ (Note 1) Each Bit All Bits Switched	^t PLH tPHI		35 35	60 60		35 35	60 60	_	35 35	60 60	ns
Full Scale Tempco	TCIES		± 10	± 50		± 10	± 50	_	±10	± 80	ppm/%
Output Voltage Compliance Full Scale Current Change < 1/2 LSB, R _{out} > 20 megohm typ.	Voc	- 10	_	+ 18	- 10	-	+ 18	- 10		+ 18	v
Full Range Current (VREF = 10.000 V; R14, R15 = 5.000 kΩ) T _A = 25°C	IFR4	1.984	1.992	2.000	1.94	1.99	2.04	1.94	1.99	2.04	mA
Full Range Symmetry (IFR4 - IFR2)	IFRS		±0.5	± 4 .0	_	±1.0	± 8.0	_	± 2.0	± 16.0	μA
Zero Scale Current	Izs	-	0.1	1.0	—	0.2	2.0	-	0.2	4.0	μA
Output Current Range V- = -5.0 V V- = -8.0 V to -18 V	IOR1 IOR2	0 0	+	2.1 4.2	0 0	—	2.1 4.2	0 0	-	2.1 4.2	mA
Logic Input Levels (V _{LC} = 0 V) Logic "0" Logic "1"	V _{IL} VIH	 2.0		0.8			0.8 —	 2.0		0.8 —	v
Logic Input Current ($V_{LC} = 0$ V) Logic Input "0" ($V_{in} = -10$ V to $+0.8$ V) Logic Input "1" ($V_{in} = +2.0$ V to $+18$ V)	հլ	_	- 2.0	- 10 10		- 2.0	- 10 10	_	- 2.0	- 10 10	μA
$\frac{1}{100} = \frac{1}{100} = \frac{1}$	Vic	- 10	-	+ 18	- 10		+ 18	- 10		+ 18	v
Logic Threshold Bange Vo = +15 V	VTUD	- 10	_	+135	- 10	_	+ 13 5	- 10		+135	v
Poterence Bies Current	VINK		-10	-30		-10	-30		-10	-30	γ Δ
Reference Input Slew Rate Figure 19 (Note 1)	di/dt	4.0	8.0	_	[.] 4.0	8.0	_	4.0	8.0	_	mA/μ
Power Supply Sensitivity (IREF = 1.0 mA) V + = 4.5 V to 18 V V - = -4.5 V to -18 V	PSSIFS + PSSIFS –	-	± 0.0003 ± 0.002	± 0.01 ± 0.01	_	± 0.0003 ± 0.002	±0.01 ±0.01		± 0.0003 ± 0.002	± 0.01 ± 0.01	%/%
Power Supply Current $V_S = \pm 5.0 V$, IREF = 1.0 mA	+ - +		2.3 4.3 2.4	3.8 - 5.8 3.8		2.3 -4.3 2.4	3.8 - 25.8 3.8		2.3 4.3 2.4	3.8 - 5.8 3.8	mA
$V_{S} = +5.0 V, -15 V, I_{REF} = 2.0 mA$	- +	_	-6.4 2.5	-7.8 3.8	=	-6.4 2.5	-7.8 3.8	_	-6.4 2.5	-7.8 3.8	
$v_S = \pm i_D v$, IREF = 2.0 mA	1- P	-	- 0.5	- 7.8		- 0.5	- 7.8		- 0.5	- /.8	
Power Dissipation $V_S = \pm 5.0 V$, $I_{REF} = 1.0 mA$ $V_S = +5.0 V$, $-15 V$, $I_{REF} = 2.0 mA$	PD		33 108	48 136	_	33 108	48 136	=	33 108	48 136	mw

-

~

National Semiconductor

ADC0801/ADC0802/ADC0803/ADC0804/ADC0805 8-Bit μP Compatible A/D Converters

General Description

The ADC0801, ADC0802, ADC0803, ADC0804 and ADC0805 are CMOS 8-bit successive approximation A/D converters that use a differential potentiometric ladder—similar to the 256R products. These converters are designed to allow operation with the NSC800 and INS8080A derivative control bus with TRI-STATE® output latches directly driving the data bus. These A/Ds appear like memory locations or I/O ports to the microprocessor and no interfacing logic is needed.

Differential analog voltage inputs allow increasing the common-mode rejection and offsetting the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

Features

- Compatible with 8080 µP derivatives—no interfacing logic needed access time 135 ns
- Easy interface to all microprocessors, or operates "stand alone"

- Differential analog voltage inputs
- Logic inputs and outputs meet both MOS and TTL voltage level specifications
- Works with 2.5V (LM336) voltage reference
- On-chip clock generator
- OV to 5V analog input voltage range with single 5V supply
- No zero adjust required
- 0.3" standard width 20-pin DIP package
- 20-pin molded chip carrier or small outline package
- Operates ratiometrically or with 5 V_{DC}, 2.5 V_{DC}, or analog span adjusted voltage reference

Key Specifications

- Resolution
- Total error
- Conversion time
- \pm 1/4 LSB, \pm 1/2 LSB and \pm 1 LSB 100 μs

8 bits

TRI-STATE® is a registered trademark of National Semiconductor Corp. Z-80® is a registered trademark of Zilog Corp.

TL/H/5671-31

©1995 National Semiconductor Corporation TL/H/5671

RRD-B30M115/Printed in U. S. A.

ADC0801/ADC0802/ADC0803/ADC0804/ADC0805 8-Bit µP Compatible A/D Converters

December 1994

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage (V_{CC}) (Note 3) 6.5V

Storage Temperature Range -65°C to $+150^\circ\text{C}$ Package Dissipation at T_A = 25°C 875 mW ESD Susceptibility (Note 10) 800V

Operating Ratings (Notes 1 & 2)

Voltage		Operating Ratings (Note	es 1 & 2)
Logic Control Inputs At Other Input and Outputs Lead Temp. (Soldering, 10 seconds)	-0.3V to +18V -0.3V to (V _{CC} +0.3V)	Temperature Range ADC0801/02LJ, ADC0802LJ/883	$T_{MIN} \le T_A \le T_{MAX}$ -55°C $\le T_A \le + 125$ °C
Dual-In-Line Package (plastic) Dual-In-Line Package (ceramic)	260°C 300°C	ADC0801/02/03/04LCJ ADC0801/02/03/05LCN	$-40^{\circ}C \le T_A \le +85^{\circ}C$ $-40^{\circ}C \le T_A \le +85^{\circ}C$
Surface Mount Package Vapor Phase (60 seconds) Infrared (15 seconds)	215°C 220°C	ADC0804LCN ADC0802/03/04LCV ADC0802/03/04LCWM Range of V _{CC}	$\begin{array}{c} 0^{\circ}C \leq T_{A} \leq +70^{\circ}C \\ 0^{\circ}C \leq T_{A} \leq +70^{\circ}C \\ 0^{\circ}C \leq T_{A} \leq +70^{\circ}C \\ 4.5 \ V_{DC} \ to \ 6.3 \ V_{DC} \end{array}$

Electrical Characteristics

Capacitance (Data Buffers)

Logical "1" Input Voltage (Except Pin 4 CLK IN)

V_{IN} (1)

Voltage

The following specifications apply for V_{CC}=5 V_{DC}, T_{MIN} \leq T_A \leq T_{MAX} and f_{CLK}=640 kHz unless otherwise specified.

	Parameter		Conditions	Min	1	Тур	Max	Units
ADC0801:	Total Adjusted Error (Note 8)	With F (See S	ull-Scale Adj. ection 2.5.2)				± 1/4	LSB
ADC0802:	Total Unadjusted Error (Note 8)	V _{REF} /	2=2.500 V _{DC}				± 1/2	LSB
ADC0803:	Total Adjusted Error (Note 8)	With F (See S	ull-Scale Adj. ection 2.5.2)				± 1/2	LSB
ADC0804:	Total Unadjusted Error (Note 8)	V _{REF} /	2=2.500 V _{DC}				±1	LSB
ADC0805:	Total Unadjusted Error (Note 8)	V _{REF} /	2-No Connection				±1	LSB
V _{REF} /2 Inp	out Resistance (Pin 9)	ADC08 ADC08	301/02/03/05 304 (Note 9)	2.5 0.75	5	8.0 1.1		kΩ kΩ
Analog Inp	ut Voltage Range	(Note	4) V(+) or V(−)	Gnd-0	0.05		$V_{CC} + 0.05$	V _{DC}
DC Commo	on-Mode Error	Over A Range	nalog Input Voltage			± 1⁄16	± 1/8	LSB
Power Sup	ply Sensitivity	V _{CC} = Allowe Voltag	5 V _{DC} \pm 10% Over d V _{IN} (+) and V _{IN} (-) e Range (Note 4)			± 1⁄16	± 1⁄8	LSB
AC Ele	ectrical Characteristi ving specifications apply for V _{CC} =	CS 5 V _{DC} ar	nd T _A =25°C unless oth	erwise sp	ecified.			
Symbol	Parameter		Conditions		Min	Тур	o Max	Units
TC	Conversion Time		f _{CLK} =640 kHz (Note	96)	103	_	114	μs
TC	Conversion Time		(Note 5, 6)		66	_	73	1/f _{CLK}
fCLK	Clock Frequency Clock Duty Cycle		V _{CC} =5V, (Note 5) (Note 5)		100 40	640) 1460 60	kHz %
CR	Conversion Rate in Free-Runni Mode	ng	$\overline{\text{INTR}}$ tied to $\overline{\text{WR}}$ with $\overline{\text{CS}} = 0 \text{ V}_{\text{DC}}$, $f_{\text{CLK}} = 6$	i 40 kHz	8770		9708	conv/s
t _{W(WR)L}	Width of WR Input (Start Pulse	Width)	CS=0 V _{DC} (Note 7)		100			ns
t _{ACC}	Access Time (Delay from Fallin Edge of RD to Output Data Vali	ig id)	C _L =100 pF			135	5 200	ns
t _{1H} , t _{OH}	TRI-STATE Control (Delay from Rising Edge of RD to Hi-Z State)		$C_L = 10 \text{ pF}, R_L = 10 \text{k}$ (See TRI-STATE Tes Circuits)	st		125	5 200	ns
t _{WI} , t _{RI}	Delay from Falling Edge of WR or RD to Reset of INTR					300	450	ns
CIN	Input Capacitance of Logic Control Inputs					5	7.5	pF
COUT	TRI-STATE Output					5	7.5	pF

 $V_{CC} = 5.25 V_{DC}$

2.0

15

V_{DC}

CONTROL INPUTS [Note: CLK IN (Pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately]

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
CONTROL	INPUTS [Note: CLK IN (Pin 4) is the	e input of a Schmitt trigger circuit and	is therefor	e specified se	parately]	
V _{IN} (0)	Logical "0" Input Voltage (Except Pin 4 CLK IN)	V_{CC} =4.75 V_{DC}			0.8	V _{DC}
I _{IN} (1)	Logical "1" Input Current (All Inputs)	V _{IN} =5 V _{DC}		0.005	1	μΑ _{DC}
I _{IN} (0)	Logical "0" Input Current (All Inputs)	V _{IN} =0 V _{DC}	-1	-0.005		μΑ _{DC}
CLOCK IN	AND CLOCK R				•	
V _T +	CLK IN (Pin 4) Positive Going Threshold Voltage		2.7	3.1	3.5	V _{DC}
V _T -	CLK IN (Pin 4) Negative Going Threshold Voltage		1.5	1.8	2.1	V _{DC}
V _H	CLK IN (Pin 4) Hysteresis $(V_T+)-(V_T-)$		0.6	1.3	2.0	V _{DC}
V _{OUT} (0)	Logical "0" CLK R Output Voltage	I _O =360 μA V _{CC} =4.75 V _{DC}			0.4	V _{DC}
V _{OUT} (1)	Logical "1" CLK R Output Voltage	$I_{O} = -360 \ \mu A$ $V_{CC} = 4.75 \ V_{DC}$	2.4			V _{DC}
DATA OUT	PUTS AND INTR					
V _{OUT} (0)	Logical ''0'' Output Voltage Data Outputs INTR Output	$I_{OUT} = 1.6 \text{ mA}, V_{CC} = 4.75 V_{DC}$ $I_{OUT} = 1.0 \text{ mA}, V_{CC} = 4.75 V_{DC}$			0.4 0.4	V _{DC} V _{DC}
V _{OUT} (1)	Logical "1" Output Voltage	$I_0 = -360 \ \mu A$, $V_{CC} = 4.75 \ V_{DC}$	2.4			V _{DC}
V _{OUT} (1)	Logical "1" Output Voltage	I_{O} = $-10 \ \mu$ A, V_{CC} = 4.75 V_{DC}	4.5			V _{DC}
I _{OUT}	TRI-STATE Disabled Output Leakage (All Data Buffers)	$V_{OUT} = 0 V_{DC}$ $V_{OUT} = 5 V_{DC}$	-3		3	μΑ _D μΑ _D
ISOURCE		V _{OUT} Short to Gnd, T _A =25°C	4.5	6		mA _D
I _{SINK}		V _{OUT} Short to V _{CC} , T _A =25°C	9.0	16		mA _D
POWER SU	IPPLY		1		1	
ICC	Supply Current (Includes Ladder Current)	$f_{CLK} = 640 \text{ kHz},$ $V_{REF}/2 = \text{NC}, T_A = 25^{\circ}\text{C}$ and $\overline{CS} = 5\text{V}$				
	ADC0801/02/03/04LCJ/05 ADC0804LCN/LCV/LCWM			1.1 1.9	1.8 2.5	mA mA
Ine device bey Note 2: All vol Note 3: A zene Note 4: For V _{II} conduct for an as high level a spec allows 50 code will be co variations, initia Note 5: Accura extended so lo Note 6: With a start request is Note 7: The CS	ong its specified operating conditions. tages are measured with respect to Gnd, un re diode exists, internally, from V _{CC} to Gnd a $N_{\rm N}(-) \ge V_{\rm N}(+)$ the digital output code will be alog input voltages one diode drop below gronalog inputs (5V) can cause this input diode to mV forward bias of either diode. This mean prrect. To achieve an absolute 0 V _{DC} to 5 V _L al tolerance and loading. acy is guaranteed at f _{CLK} = 640 kHz. At higl ong as the minimum clock high time interval in asynchronous start pulse, up to 8 clock per is internally latched, see <i>Figure 2</i> and section 5 input is assumed to bracket the WR strobe n a reset mode and the start of conversion i	less otherwise specified. The separate A Gnd ind has a typical breakdown voltage of 7 V_{DC} . 9 0000 0000. Two on-chip diodes are tied to e- und or one diode drop greater than the V_{CC} su o conduct-especially at elevated temperatures s that as long as the analog V_{IN} does not exc $_{DC}$ input voltage range will therefore require a mer clock frequencies accuracy can degrade. F or minimum clock low time interval is no less t riods may be required before the internal clock 2.0 input and therefore timing is dependent on the s initiated by the low to high transition of the \overline{V}	point should ach analog ir upply. Be care s, and cause eed the supp minimum sup For lower cloo han 275 ns. phases are p WR pulse wi WR pulse (se	always be wired put (see block dii oful, during testing errors for analog i y voltage by mor ply voltage of 4.9 ck frequencies, th proper to start the dth. An arbitrarily e timing diagrams	to the D Gnd agram) which a tow V _{CC} le inputs near fu re than 50 mV 50 V _{DC} over e duty cycle li conversion p wide pulse wi	will forwar el-scale. Th , the output temperatur imits can b rocess. Th idth will ho

