University of California at Berkeley Physics 111 Laboratory Basic Semiconductor Circuits (BSC)

Lab 12

Analog-to-Digital (ADC) and Digital-to-Analog Conversion (DAC)

Copyrighted © ${ }^{1999}$ The Regents of the University of California. All rights reserved.

Reading:

Horowitz \& Hill	Chapter 9.15-9.26
Haynes \& Horowitz	Pages 406-415
Stubbins	Chapter 12 (see Appendix 2)
Higgins	Pages 258-285 (see Appendix 2)
Millman \& Grabel	Chapter 16.4-16.5
Senturia \& Wedlock	Chapter 18.3
Sedra \& Smith	Chapter 10.9-10.11

In this week's lab you will learn the basics of digital circuits, including digital logic, (TTL) switches, flip-flops, and counters.

General remarks: CMOS ADC and DAC chips are very sensitive to static electricity. Be sure to touch the conductive foam and the circuit ground before you remove the chips from the foam. Double Check your wiring carefully before turning on power. In particular, check that the ADC is connected to the +5 V supply, in contrast to the DAC, which needs +15 V and -15 V . Input signals for the ADC must always be in the range 0 to +5 V

Pre-lab questions:

1. What is an ADC? DAC? How are these useful?
2. What is Shannon's sampling theorem?

Give a short, plausible argument for this theorem.
(no negative inputs!). Check input signals using the scope (set to DC) before connecting them to the ADC.

Analog-to-Digital (ADC) and Digital-to-Analog Conversion (DAC) Lab 12

In the lab:

The conversion of voltage levels into digital numbers is important in the interface between digital processors (computers, transmission lines, etc.) and the real world. The integrated circuit ADC0804 (pin layout is in Figure 12.1 and data sheet is in the Appendix) contains a complete 8-bit analog-todigital converter and the necessary circuitry to interface it to a microprocessor. Details about the operation can be obtained from the data sheets following this section. The ADC0804 is based on the successive-approximation principle (see, for example, Horowitz and Hill, p. 622). The following connections are available (also see list below).

Figure 12.1 Pin assignment of ADC 0804 chip

Description of 20-pin-DIP ADC0804 chip

Pin $1 \overline{\mathrm{CS}}$ (chip select): it activates the ADC when a ' 0 ' is at this input. The ADC will not accept read/write commands unless the chip is selected. This is very important when the ADC is connected to a computer data bus with many other devices (memory, other ADCs, DACs, I/O support, etc.).

Pin 2 RD : a ' 0 ' at this input will cause the (digital) result to be applied to the output pins if the chip is selected.

Pin 3 WR : a ' 0 ' at this input will start the conversion process if the chip is selected.
Pin 4 ClkIn: input of the clock generator trigger circuit. It can be used for an external clock signal.

Pin 5 INTR : a ' 0 ' at this output signals the end of a conversion process.

Analog-to-Digital (ADC) and Digital-to-Analog Conversion (DAC) Lab 12

Pins 6 \& 7 Differential inputs. The voltage difference between these inputs is converted into an 8bit number.

Pin 8 ADC ground.
Pin 9 Reference voltage. It determines the coefficient between the analog input and the digital output. The maximum digital output, $2^{8}-1$, corresponds to twice the voltage of this pin.

Pin 10 Separate ground for the clock generator.
Pins 11-18 Digital outputs such that pin 11 corresponds to MSB (Most Significant Bit=27) and pin 18 is $\operatorname{LSB}\left(\right.$ Least Significant Bit=2 2^{0}).

Pin 19 ClkR: output of the clock generator trigger circuit. Feedback of the trigger output to the input via an RC circuit causes the clock generator to oscillate.
Pin $20 \quad V_{c c}$: positive supply voltage (+5 V).

Normally, the ADC is interfaced to a microprocessor ($\mu \mathrm{p}$) or computer as shown in Figure 12.2.

Figure 12.2 Connection of ADC0804 to a computer bus

The μ p selects the ADC by asserting $\overline{\mathrm{CS}}$, and sends a $\overline{\mathrm{WR}}$ signal to start a conversion and then goes off to do something useful. After the ADC is finished with the conversion, it sends an interrupt (INTR) get the μ 's attention. Once the $\mu \mathrm{p}$ is ready to use the digitized output, it selects the ADC (CS) and sends a RD signal to cause the result to be applied to the outputs at pins 11 to 18 , which are connected to the data bus. The outputs are so-called tri-state outputs (' 0 '- ' 1 ' - 'inactive')
which in their inactive mode $\left(\overline{\mathrm{RD}}={ }^{\prime} 1\right.$ ') they don't influence the data bus. The latter feature allows the

Analog-to-Digital (ADC) and Digital-to-Analog Conversion (DAC) Lab 12

outputs to be connected directly to the bus; without the $\overline{\mathrm{RD}}={ }^{\prime} 0$ ' signal, they don't interfere with the normal operation of the bus.

Since we do not want to bother with a $\mu \mathrm{p}$, we operate the ADC in a simplified mode: the $\overline{\mathrm{WR}}$ input is connected to the INTR output, and CS and RD are connected to ' 0 .' As a result, when the ADC is done with one conversion, it sets the digital outputs and starts the next conversion. Strictly speaking, one has to provide a way to start the first conversion after power-up; usually, transients due to the power-up will take care of this.

Note: If your circuit is not working, it may be that the first conversion has not started. Look at WR on the scope. There should be many small, quick spikes appearing on it. If not, you must signal the first conversion To do this, momentarily short WR to ground with a second wire.

Digital Voltmeter

12.1 We can use the ADC to build a simple 2-digit DVM (Figure 12.3). Use the 25 k potentiometer and a DC input signal between 0 and 5 V .

Figure 12.3 Circuit of a 2-digit DVM

Analog-to-Digital (ADC) and Digital-to-Analog Conversion (DAC) Lab 12

Note that the display is hexadecimal; it shows $1,2,3 \ldots 8,9, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$.

Measure the clock frequency by examining the signal at pin 19. We advise that you use a frequencycompensated probe (a "10x probe"); the ordinary scope probe will disturb your measurement since the cable capacitance will alter the clock's capacitance. Measure the conversion time by connecting the scope to pin 5. Does the conversion time depend on the size of the input signal? Do you expect it to, given that the ADC is based on the successive-approximation principle? How many clock cycles does a conversion take? See data sheets for more information.
12.2 Determine precisely the input voltages corresponding to steps of 10 hex in the digital output, and plot the result. Is the ADC linear? From the data, calculate the conversion coefficient (counts/Volt). Does it agree with your expectations?

DAC and digital transmission

The currents from the analog outputs (pins 2 and 4) of the DAC08 (See Figure 12.4) correspond to the digital input number (pin $5=\mathrm{MSB}$ to pin $12=\mathrm{LSB}$), with a conversion coefficient determined by the currents applied to the reference inputs (pins 14 and 15). Whenever the digital input is changed, the output settles to the new analog value within 100 ns . The DAC has two outputs (pins 4 and 2), a normal and an inverting one, which usually drive a differential amplifier. (See below, Section 12.3)
12.3

We are now ready to simulate a digital transmission chain, for example, used in modern phone systems or (with intermediate digital storage) in compact disc players. Build the circuit in Figure 12.4 and connect the digital outputs of the ADC to the inputs of the DAC and connect the scope to the DAC outputs. Connect $V_{\text {out }}$ - to Y input on the scope, invert it, and $\mathrm{V}_{\text {out }}+$ to X input. Generate a $100 \mathrm{~Hz}, 1 \mathrm{~V}$ p-p sine wave oscillating between about +2 and +3 V and apply it to the ADC input; you will need to use a DC level shifter. Readjust the offset and the amplitude of the signal generator such that the DAC output signal does not clip. Try different input signal shapes and frequencies and sketch how the DAC output tracks the ADC input.

Analog-to-Digital (ADC) and Digital-to-Analog Conversion (DAC)

Circuit for connecting ADC to DAC

Figure 12.4

Analog-to-Digital (ADC) and Digital-to-Analog Conversion (DAC) Lab 12

12.4 Shannon's sampling theorem for minimal reproduction of a signal requires a sampling rate corresponding to twice the highest input frequency. This rate is often called the Nyquist frequency.

Study this situation with your ADC/DAC system. What happens if the input signal is increased beyond half the sampling rate? Particularly interesting are the cases where the input frequency is close to a multiple of the sampling rate.
12.5 In practical applications, one usually wants to get rid of the steps in the output signal. This can be achieved by a low-pass filter to smooth the DAC output. Build the active filter circuit with an operational amplifier LF356 as shown in Figure 13.5 and measure its frequency response with sine waves. (Use the 10 X scope probe.)

Figure 12.5 Active filter for smoothing the DAC output (use a LF356 OpAmp)
Connect the filter to the DAC output and observe its effect. Measure the frequency response of the ADC/DAC/filter transmission chain by measuring the output voltage with the scope. Try again to increase the input frequency well above the sampling frequency - at certain frequencies, you will still observe significant output signals at a lower frequency than the input frequency. This is called "ghosting." To avoid this effect, real digital transmission systems have low-pass filters both in the inputs and outputs.

OPTIONAL: How about designing your own ADC? With your knowledge in analog and digital electronics, is shouldn't be too hard to build a 4 -bit ADC. Start out with a home-made 4 -bit DAC. The DAC resistors, if they are not too small, can be driven directly by any TTL output. Hook the DAC up to a 7490 counter driven by a gated clock signal (made using the 555), and add an opamp to compare DAC output and analog input. Now you need only a little logic circuit to stop the counter when the DAC output exceeds the input signal. Hint: switching transients from the DAC may be a problem - if necessary, add an appropriate RC low-pass filter at the DAC output. See the following diagram:

Figure 12.6 A simple ADC circuit

Note that the opamp is running at full open-loop gain and is used as a voltage comparator. The resistor-diode combination in its output limits the signal driving the gate. TTL gates don't like 15 V input signals.

Questions:

1. (See Section 12.5) Calculate the transfer function of the active filter as a function of the component values R and C .

See the following pages for part of the data sheets on ADC-0804 and the DAC 08

Specifications and Applications Information

HIGH SPEED 8-BIT MULTIPLYING D-TO-A CONVERTER

The DAC-08 series is a monolithic 8-bit high speed multiplying digital-toanalog converter, capable of settling to within $1 / 2$ LSB (0.19%) in 85 ns Monotonic multiplying performance is retained over a wide 40 -to- 1 reference current range. Full scale and reference currents are matched to within 1 LSB, therefore eliminating the need for full scale trim in most applications.
Dual complementry current outputs with high voltage compliance provide added versatility and allow differential mode of operation to effectively doubie the peak-to-peak output swing. In many applications, output current-tovoltage conversion can be accomplished without requiring an external op amp. Noise-immune inputs permit direct interface with TTL and DTL levels when the logic threshoid control, V_{LC}. (Pin 1) is grounded. All other logic family thresholds are attainable by adjusting the voltage level of Pin 1. Performance characteristics are virtually unchanged over the entire $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supply range. Power consumption is typically 33 mW with $\pm 5.0 \mathrm{~V}$ supplies.
The DAC-08 is available in several versions, with nonlinearity as tight as $\pm 0.1 \%(\pm 1 / 4 \mathrm{LSB})$ over temperature. Al versions are guaranteed monotonic over 8 bits. For an extra margin of performance, Motorola utilizes thin-film resistors permitting very accurate resistive values which are extremely stable over temperature.
High performance characteristics along with low cost, make the DAC-08 an excellent selection for applications such as CRT displays, waveform generation, high-speed modems, and high-speed analog-to-digital converters

- Fast Settling Time - 85 ns
- Full Scale Current Prematched to ± 1 LSB
- Nonlinearity Over Temperature to $\pm 0.1 \%$ Max
- Differential Current Outputs
- High Voltage Compliance Outputs -10 V to +18 V
- Wide Range Multiplying Capability
- Inputs Compatable With TTL, DTL, CMOS, PMOS, ECL, HTL
- Low Full Scale Current Drift
- Wide Power Supply Range $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Low Power Consumption
- Thin-Film Resistors
- Low Cost

Device	Nonlinearity	Temperature Range	Package
DAC-08AO	$\pm 0.1 \%$	$-55^{\circ} \mathrm{C}$ to	Ceramic
DAC-08Q	$\pm 0.19 \%$	$+125^{\circ} \mathrm{C}$	Ceramic
DAC-08HO	$\pm 0.1 \%$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic
DAC-08EO	$\pm 0.19 \%$		Ceramic
DAC-08C0	$\pm 0.39 \%$		Ceramic
DAC-08CD	$\pm 0.39 \%$		SO-16
DAC-08ED	$\pm 0.19 \%$		SO-16
DAC-08HP	$\pm 0.1 \%$		Plastic
DAC-08EP	= 0.19%		Plastic
DAC-08CP	$=0.39 \%$		Plastic

©MOTOROLA INC., 1986
DS9681

Appendix DAC-08 Motorola data sheet

MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
V+ Supply to V-Supply	-	36	V
Logic Inputs	-	V - to V - Plus 36	V
Logic Threshold Control	V_{LC}	V - to $\mathrm{V}+$	V
Analog Current Outputs	tout	See Figure 7	mA
Reference Inputs (V14, V15)	$V_{\text {REF }}$	V - to $\mathrm{V}+$	V
Reference Input Differential Voltage (V14 to V15)	$\mathrm{V}_{\text {REF }} \mathrm{D}$)	± 18	V
Reference Input Current (114)	$l_{\text {REF }}$	5.0	mA
Operating Temperature Range DAC-08AO, 0 DAC-08HO, EQ, CQ, HP, EP, CP, ED, CD	${ }^{T}$ A	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature	${ }^{\text {T }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation Derate above $100^{\circ} \mathrm{C}$	$\begin{gathered} P_{D} \\ \mathrm{R}_{\theta J \mathrm{~A}} \end{gathered}$	$\begin{gathered} 500 \\ 10 \end{gathered}$	$\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{ }$

ELECTRICAL CHARACTERISTICS ($V_{S}= \pm 15 \mathrm{~V}, \mathrm{I}_{\text {REF }}=2.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	DAC.OBA			DAC-08			Unit
		Min	Typ	Max	Min	Typ	Max	
Resolution	-	8	8	8	8	8	8	Bits
Monotonicity	-	8	8	8	8	8	8	Bits
Nonlinearity, $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	NL	-	-	± 0.1	-	-	± 0.19	\%FS
Settling Time to $\pm 1 / 2$ LSB, Figure 24 (All Bits Switched On or Off, $T_{A}=25^{\circ} \mathrm{C}$)(Note 1)	${ }_{\text {t }}$	-	85	135	-	85	150	ns
Propagation Delay, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1) Each Bit All Bits Switched	$\begin{aligned} & \text { TPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	-	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	-	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	ns
Full Scale Tempco	$\mathrm{TCl}_{\text {FS }}$	-	± 10	± 50	--	± 10	± 80	ppm $/{ }^{\circ} \mathrm{C}$
Output Voltage Compliance Full Scale Current Change $<1 / 2$ LSB, $R_{\text {out }}>20$ megohm typ.	VOC	-10	-	+18	-10	-	+18	V
$\begin{aligned} & \text { Full Range Current } \\ & \quad\left(V_{\text {REF }}=10.000 \mathrm{~V} ; \mathrm{R} 14, \mathrm{R} 15=5.000 \mathrm{k} \mathrm{\Omega}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	IFR4	1.984	1.992	2.000	1.94	1.99	2.04	mA
	IFRS	-	± 0.5	± 4.0	-	± 1.0	± 8.0	$\mu \mathrm{A}$
Zero Scaie Current	Izs	-	0.1	1.0	-	0.2	2.0	$\mu \mathrm{A}$
	$\begin{aligned} & \text { IOR1 } \\ & \text { OOR2 } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & 2.1 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 2.1 \\ & 4.2 \end{aligned}$	mA
```Logic Input Levets ( }\mp@subsup{V}{LC}{}=0\textrm{V}\mathrm{ ) Logic "0" Logic "1"```	$\begin{aligned} & v_{1 L} \\ & v_{I H} \end{aligned}$	2.0	-	0.8 -	2.0	-	${ }_{0}^{0.8}$	v
Logic Input Current ( $\mathrm{V}_{\mathrm{LC}}=0 \mathrm{~V}$ ) Logic input " 0 " ( $\mathrm{V}_{\text {in }}=-10 \mathrm{~V}$ to +0.8 V ) Logic Input "1" $\mathrm{N}_{\text {in }}=+2.0 \mathrm{~V}$ to +18 V )	$\begin{aligned} & \text { IL } \\ & \text { IIH } \end{aligned}$		$\begin{aligned} & -2.0 \\ & 0.002 \end{aligned}$	$\begin{array}{r} -10 \\ 10 \end{array}$	-	$\begin{gathered} -2.0 \\ 0.002 \end{gathered}$	$\begin{gathered} -10 \\ 10 \end{gathered}$	$\mu \mathrm{A}$
Logic input Swing, V- $=-15 \mathrm{~V}$	VIS	-10	-	+18	-10	-	+18	V
Logic Threshold Range, $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$	$V_{\text {THR }}$	-10	-	+13.5	-10	-	+13.5	V
Reference Bias Current	115	-	-1.0	-3.0	-	-1.0	-3.0	$\mu \mathrm{A}$
Reference Input Slew Rate Figure 19 (Note 1)	di/dt	4.0	8.0	-	4.0	8.0	-	$\mathrm{mA} / \mu \mathrm{s}$
$\begin{aligned} & \text { Power Supply Sensitivity ( } \text { REF }=1.0 \mathrm{~mA}) \\ & \mathrm{V}+=4.5 \mathrm{~V} \text { to } 18 \mathrm{~V} \\ & \mathrm{~V}-=-4.5 \mathrm{~V} \text { to }-18 \mathrm{~V} \\ & \hline \end{aligned}$	PSSifs+ PSSifs-	-	$\begin{array}{c\|}  \pm 0.0003 \\ \pm 0.002 \\ \hline \end{array}$	$\begin{array}{r}  \pm 0.01 \\ \pm 0.01 \\ \hline \end{array}$	-	$\begin{gathered} \pm 0.0003 \\ \pm 0.002 \end{gathered}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.01 \end{aligned}$	\%/\%
$\begin{aligned} & \text { Power Supply Current } \\ & V_{S}= \pm 5.0 \mathrm{~V} . I_{\text {REF }}=1.0 \mathrm{~mA} \\ & V_{S}=+5.0 \mathrm{~V},-15 \mathrm{~V}, I_{\text {REF }}=2.0 \mathrm{~mA} \\ & V_{S}= \pm 15 \mathrm{~V}, I_{\text {REF }}=2.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1+ \\ & 1- \\ & 1+ \\ & 1- \\ & 1+ \\ & 1- \end{aligned}$	- - - -	$\begin{gathered} 2.3 \\ -4.3 \\ 2.4 \\ -6.4 \\ 2.5 \\ -6.5 \end{gathered}$	$\begin{array}{r} 3.8 \\ -5.8 \\ 3.8 \\ -7.8 \\ 3.8 \\ -7.8 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 2.3 \\ -4.3 \\ 2.4 \\ -6.4 \\ 2.5 \\ -6.5 \\ \hline \end{gathered}$	$\begin{array}{r} 3.8 \\ -5.8 \\ 3.8 \\ -7.8 \\ 3.8 \\ -7.8 \\ \hline \end{array}$	mA
$\begin{aligned} & \text { Power Dissipation } \\ & V_{S}= \pm 5.0 \mathrm{~V}, I_{R E F}=1.0 \mathrm{~mA} \\ & V_{S}=+5.0 \mathrm{~V},-15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=2.0 \mathrm{~mA} \end{aligned}$	$P_{\text {D }}$	-	$\begin{gathered} 33 \\ 103 \\ 135 \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ 136 \\ 174 \\ \hline \end{gathered}$	-	$\begin{gathered} 33 \\ 108 \\ 135 \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ 136 \\ 174 \\ \hline \end{gathered}$	mW

Note 1. Parameter is not $100 \%$ tested; guaranteed by design.


MOTOROLA Semiconductor Products Inc.

## Appendix DAC-08 Motorola data sheet

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right.$, IREF $=2.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	DAC-08H			DAC-08E			DAC-08C			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Resolution	-	8	8	8	8	8	8	8	8	8	Bits
Monotonicity	-	8	8	8	8	8	8	8	8	8	Bits
Nonlinearity, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	NL	-	-	$\pm 0.1$	-	-	$\pm 0.19$	-	-	$\pm 0.39$	\%FS
Settling Time to $\pm 1 / 2$ LSB (All Bits Switched On or Off, ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ) Figure 24 (Note 1)	$\mathrm{t}_{\text {s }}$	-	85	135	-	85	150	-	85	150	ns
Propagation Delay, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1) Each Bit   All Bits Switched	$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	-	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	-	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	ns
Full Scale Tempco	TCIFS	-	$\pm 10$	$\pm 50$	-	$\pm 10$	$\pm 50$	-	$\pm 10$	$\pm 80$	ppm/ $/{ }^{\circ} \mathrm{C}$
Output Voltage Compliance Full Scale Current Change $<1 / 2$ LSB,   $\mathrm{R}_{\text {out }}>20$ megohm typ.	$\mathrm{V}_{\mathrm{OC}}$	-10	-	+18	-10	-	+ 18	-10	-	+ 18	$\checkmark$
```Full Range Current (VREF = 10.000 V; R14, R15 = 5.000 k\Omega) TA}=2\mp@subsup{5}{}{\circ}\textrm{C```	IfR4	1.984	1.992	2.000	1.94	1.99	2.04	1.94	1.99	2.04	mA
Full Range Symmetry (IFR4-I ${ }^{\text {FR2 }}$)	IfRS	-	± 0.5	± 4.0	-	± 1.0	± 8.0	-	± 2.0	± 16.0	$\mu \mathrm{A}$
Zero Scale Current	Izs	-	0.1	1.0	-	0.2	2.0	-	0.2	4.0	$\mu \mathrm{A}$
Output Current Range $\begin{aligned} & \mathrm{V}-=-5.0 \mathrm{~V} \\ & \mathrm{~V}-=-8.0 \mathrm{~V} \text { to }-18 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { lor1 } \\ & \text { lor2 } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 2.1 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 2.1 \\ & 4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	-	$\begin{array}{r} 2.1 \\ 4.2 \\ \hline \end{array}$	mA
$\begin{aligned} & \text { Logic Input Levels (V } \mathrm{LC}=0 \mathrm{~V}) \\ & \text { Logic " } 0 \text { " } \\ & \text { Logic " } 1 \text { " } \\ & \hline \end{aligned}$	$\begin{aligned} & V_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \hline \end{aligned}$	$\overline{2.0}$	-	0.8	$\overline{2.0}$	-	0.8		-	0.8	V
```Logic Input Current (VLC = 0 V) Logic Input "0" (V}\mp@subsup{\textrm{V}}{\mathrm{ in }}{}=-10\textrm{V}\mathrm{ to }+0.8\textrm{V} Logic Input "1" (Vin = +2.0 V to +18 V)```	$\begin{aligned} & \mathrm{I} \mathrm{IL} \\ & \mathrm{I} \mathrm{IH} \end{aligned}$	-	$\begin{array}{r} -2.0 \\ 0.002 \\ \hline \end{array}$	$\begin{array}{r} -10 \\ 10 \\ \hline \end{array}$	-	$\begin{aligned} & -2.0 \\ & 0.002 \\ & \hline \end{aligned}$	$\begin{gathered} -10 \\ 10 \\ \hline \end{gathered}$	-	$\begin{array}{r} -2.0 \\ 0.002 \\ \hline \end{array}$	$\begin{gathered} -10 \\ 10 \\ \hline \end{gathered}$	$\mu \mathrm{A}$
Logic input Swing, $\mathrm{V}-=-15 \mathrm{~V}$	$\mathrm{V}_{\text {IS }}$	-10	-	+18	-10	-	+18	-10	-	+18	V
Logic Threshold Range, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$V_{\text {THR }}$	-10	-	+13.5	$-10$	-	+13.5	-10	-	+13.5	V
Reference Bias Current	$\mathrm{l}_{15}$	-	-1.0	-3.0	-	-1.0	-3.0	-	-1.0	-3.0	$\mu \mathrm{A}$
Reference Input Slew Rate Figure 19 (Note 1)	d//dt	4.0	8.0	-	4.0	8.0	-	4.0	8.0	-	$\mathrm{mA} / \mu \mathrm{s}$
Power Supply Sensitivity $\begin{aligned} (\text { IREF } & =1.0 \mathrm{~mA}) \\ \mathrm{V}+ & =4.5 \mathrm{~V} \text { to } 18 \mathrm{~V} \\ \mathrm{~V}- & =-4.5 \mathrm{~V} \text { to }-18 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { PSSIFS + } \\ \hline \text { PSSIFS - } \\ \hline \end{array}$	-	$\begin{array}{\|c\|}  \pm 0.0003 \\ \pm 0.002 \\ \hline \end{array}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.01 \\ & \hline \end{aligned}$	-	$\begin{gathered} \pm 0.0003 \\ \pm 0.002 \\ \hline \end{gathered}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.01 \\ & \hline \end{aligned}$	-	$\begin{array}{r}  \pm 0.0003 \\ \pm 0.002 \\ \hline \end{array}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.01 \\ & \hline \end{aligned}$	\%/\%
Power Supply Current $\begin{aligned} & V_{\mathrm{S}}= \pm 5.0 \mathrm{~V}, \mathrm{I}_{\text {REF }}=1.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=+5.0 \mathrm{~V},-15 \mathrm{~V}, I_{\text {REF }}=2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\text {REF }}=2.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1+ \\ & 1- \\ & 1+ \\ & 1- \\ & 1+ \\ & 1- \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 2.3 \\ -4.3 \\ 2.4 \\ -6.4 \\ 2.5 \\ -6.5 \\ \hline \end{array}$	3.8 -5.8 3.8 -7.8 3.8 -7.8	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 2.3 \\ -4.3 \\ 2.4 \\ -6.4 \\ 2.5 \\ -6.5 \\ \hline \end{array}$	$\begin{array}{r} 3.8 \\ -25.8 \\ 3.8 \\ -7.8 \\ 3.8 \\ -7.8 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 2.3 \\ -4.3 \\ 2.4 \\ -6.4 \\ 2.5 \\ -6.5 \\ \hline \end{array}$	$\begin{array}{r} 3.8 \\ -5.8 \\ 3.8 \\ -7.8 \\ 3.8 \\ -7.8 \\ \hline \end{array}$	mA
$\begin{aligned} & \text { Power Dissipation } \\ & V_{S}= \pm 5.0 \mathrm{~V}, I_{\text {REF }}=1.0 \mathrm{~mA} \\ & V_{S}=+5.0 \mathrm{~V},-15 \mathrm{~V}, I_{R E F}=2.0 \mathrm{~mA} \\ & V_{S}= \pm 15 \mathrm{~V}, I_{\text {REF }}=2.0 \mathrm{~mA} \\ & \hline \end{aligned}$	PD	-	$\begin{gathered} 33 \\ 108 \\ 135 \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ 136 \\ 174 \\ \hline \end{gathered}$	-	$\begin{gathered} 33 \\ 108 \\ 135 \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ 136 \\ 174 \\ \hline \end{gathered}$	二	$\begin{gathered} 33 \\ 108 \\ 135 \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ 136 \\ 174 \\ \hline \end{gathered}$	mW

Note 1. Parameter is not $100 \%$ tested; guaranteed by design.


Absolute Maximum Ratings (Notes 1 \& 2)			
If Military/Aerospace specified	devices are required,	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
please contact the National	emiconductor Sales	Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	875 mW
Office/Distributors for availability	and specifications.	ESD Susceptibility (Note 10)	800 V
Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ ) (Note 3)	6.5 V		
Voltage		Operating Ratings (Notes 1 \& 2)	
Logic Control Inputs	$-0.3 \mathrm{~V} \text { to }+18 \mathrm{~V}$		
At Other Input and Outputs Lead Temp. (Soldering, 10 seconds)	-0.3 V to $\left(\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}\right)$	ADC0801/02LJ, ADC0802LJ/883	$\mathrm{MINS}^{\text {m }}$, $\mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$ $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
Dual-In-Line Package (plastic)	$260^{\circ} \mathrm{C}$	ADC0801/02/03/04LCJ	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
Dual-In-Line Package (ceramic)	$300^{\circ} \mathrm{C}$	ADC0801/02/03/05LCN	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
Surface Mount Package		ADC0804LCN	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$	ADC0802/03/04LCV	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$	ADC0802/03/04LCWM Range of $\mathrm{V}_{C C}$	4.5 V VC to 6.3 V VC

## Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$ and $\mathrm{f}_{C L K}=640 \mathrm{kHz}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
ADC0801: Total Adjusted Error (Note 8)	With Full-Scale Adj. (See Section 2.5.2)			$\pm 1 / 4$	LSB
ADC0802: Total Unadjusted Error (Note 8)	$\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}$			$\pm 1 / 2$	LSB
ADC0803: Total Adjusted Error (Note 8)	With Full-Scale Adj. (See Section 2.5.2)			$\pm 1 / 2$	LSB
ADC0804: Total Unadjusted Error (Note 8)	$\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}$			$\pm 1$	LSB
ADC0805: Total Unadjusted Error (Note 8)	$\mathrm{V}_{\text {REF }} / 2-\mathrm{No}$ Connection			$\pm 1$	LSB
$\mathrm{V}_{\text {REF }} / 2$ Input Resistance (Pin 9)	$\begin{aligned} & \text { ADC0801/02/03/05 } \\ & \text { ADC0804 (Note 9) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2.5 \\ 0.75 \\ \hline \end{gathered}$	$\begin{aligned} & 8.0 \\ & 1.1 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \hline \end{aligned}$
Analog Input Voltage Range	(Note 4) V(+) or V(-)	Gnd-0.05		$\mathrm{V}_{C C}+0.05$	$\mathrm{V}_{\mathrm{DC}}$
DC Common-Mode Error	Over Analog Input Voltage Range		$\pm 1 / 16$	$\pm 1 / 8$	LSB
Power Supply Sensitivity	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}} \pm 10 \% \text { Over } \\ & \text { Allowed } \mathrm{V}_{\text {IN }}(+) \text { and } \mathrm{V}_{\mathrm{IN}}(-) \\ & \text { Voltage Range (Note 4) } \end{aligned}$		$\pm 1 / 16$	$\pm 1 / 8$	LSB

## AC Electrical Characteristics

The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{T}_{\mathrm{C}}$	Conversion Time	$\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$ (Note 6)	103		114	$\mu \mathrm{s}$
$\mathrm{T}_{\mathrm{C}}$	Conversion Time	(Note 5, 6)	66		73	1/fCLK
${ }_{\text {f CLK }}$	Clock Frequency Clock Duty Cycle	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V},(\text { Note } 5) \\ & \text { (Note 5) } \end{aligned}$	$\begin{gathered} 100 \\ 40 \end{gathered}$	640	$\begin{gathered} 1460 \\ 60 \end{gathered}$	$\begin{gathered} \hline \mathrm{kHz} \\ \% \end{gathered}$
CR	Conversion Rate in Free-Running Mode	$\overline{\text { INTR }}$ tied to $\overline{\text { WR }}$ with $\overline{\mathrm{CS}}=0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$	8770		9708	conv/s
$t_{W}(\overline{W R})$ L	Width of WR Input (Start Pulse Width)	$\overline{\mathrm{CS}}=0 \mathrm{~V}_{\mathrm{DC}}$ (Note 7)	100			ns
${ }^{\text {taCC }}$	Access Time (Delay from Falling Edge of RD to Output Data Valid)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		135	200	ns
$\mathrm{t}_{1 \mathrm{H},}, \mathrm{t}_{\mathrm{OH}}$	TRI-STATE Control (Delay from Rising Edge of RD to Hi-Z State)	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$   (See TRI-STATE Test Circuits)		125	200	ns
${ }_{\text {t }}^{\text {W }}$, $\mathrm{t}_{\text {RI }}$	Delay from Falling Edge of $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ to Reset of $\overline{\mathrm{INTR}}$			300	450	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance of Logic Control Inputs			5	7.5	pF
COUT	TRI-STATE Output Capacitance (Data Buffers)			5	7.5	pF
CONTROL INPUTS [Note: CLK IN (Pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately]						
$\mathrm{V}_{\text {IN }}(1)$	Logical "1" Input Voltage (Except Pin 4 CLK IN)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}_{\mathrm{DC}}$	2.0		15	$\mathrm{V}_{\mathrm{DC}}$

AC Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
CONTROL INPUTS [Note: CLK IN (Pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately]						
$\mathrm{V}_{\text {IN }}(0)$	Logical " 0 " Input Voltage (Except Pin 4 CLK IN)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}}$			0.8	$\mathrm{V}_{\mathrm{DC}}$
$\mathrm{I}_{\text {IN }}(1)$	Logical "1" Input Current (All Inputs)	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}_{\mathrm{DC}}$		0.005	1	$\mu A_{D C}$
IIN (0)	Logical " 0 " Input Current (All Inputs)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}_{\mathrm{DC}}$	-1	-0.005		$\mu A_{D C}$
CLOCK IN AND CLOCK R						
$\mathrm{V}_{\mathrm{T}}+$	CLK IN (Pin 4) Positive Going Threshold Voltage		2.7	3.1	3.5	$\mathrm{V}_{\mathrm{DC}}$
$\mathrm{V}_{\mathrm{T}}-$	CLK IN (Pin 4) Negative Going Threshold Voltage		1.5	1.8	2.1	$\mathrm{V}_{\mathrm{DC}}$
$\mathrm{V}_{\mathrm{H}}$	CLK IN (Pin 4) Hysteresis $\left(\mathrm{V}_{\mathrm{T}}+\right)-\left(\mathrm{V}_{\mathrm{T}}-\right)$		0.6	1.3	2.0	$\mathrm{V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}(0)$	Logical "0" CLK R Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$			0.4	$\mathrm{V}_{\mathrm{DC}}$
$V_{\text {OUT }}(1)$	Logical " 1 " CLK R Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	2.4			$\mathrm{V}_{\mathrm{DC}}$
DATA OUTPUTS AND INTR						
$\mathrm{V}_{\text {OUT }}(0)$	Logical " 0 " Output Voltage   Data Outputs   INTR Output	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{I}_{\mathrm{OUT}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$V_{D C}$   $V_{D C}$
$\mathrm{V}_{\text {OUT }}(1)$	Logical "1" Output Voltage	$\mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}}$	2.4			$V_{D C}$
$\mathrm{V}_{\text {OUT }}(1)$	Logical "1" Output Voltage	$\mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}}$	4.5			$V_{D C}$
Iout	TRI-STATE Disabled Output Leakage (All Data Buffers)	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	-3		3	$\mu A_{D C}$   $\mu A_{D C}$
Isource		$\mathrm{V}_{\text {OUT }}$ Short to Gnd, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	4.5	6		$m A_{D C}$
ISINK		$\mathrm{V}_{\text {OUT }}$ Short to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	9.0	16		$m A_{D C}$
POWER SUPPLY						
$I_{\text {cc }}$	Supply Current (Includes Ladder Current)   ADC0801/02/03/04LCJ/05 ADC0804LCN/LCV/LCWM	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{REF}} / 2=\mathrm{NC}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { and } \overline{\mathrm{CS}}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.1 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to Gnd, unless otherwise specified. The separate A Gnd point should always be wired to the D Gnd.
Note 3: A zener diode exists, internally, from $V_{C C}$ to $G$ nd and has a typical breakdown voltage of $7 \mathrm{~V}_{\mathrm{DC}}$
Note 4: For $\mathrm{V}_{I N}(-) \geq \mathrm{V}_{I N}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see block diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the $\mathrm{V}_{\mathrm{CC}}$ supply. Be careful, during testing at low $\mathrm{V}_{\mathrm{CC}}$ levels ( 4.5 V ), as high level analog inputs ( 5 V ) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $\mathrm{V}_{\mathrm{IN}}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 5: Accuracy is guaranteed at $\mathrm{f}_{\text {CLK }}=640 \mathrm{kHz}$. At higher clock frequencies accuracy can degrade. For lower clock frequencies, the duty cycle limits can be extended so long as the minimum clock high time interval or minimum clock low time interval is no less than 275 ns.
Note 6: With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process. The start request is internally latched, see Figure 2 and section 2.0.
Note 7: The $\overline{\mathrm{CS}}$ input is assumed to bracket the $\overline{\mathrm{WR}}$ strobe input and therefore timing is dependent on the $\overline{\mathrm{WR}}$ pulse width. An arbitrarily wide pulse width will hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the $\overline{W R}$ pulse (see timing diagrams).
Note 8: None of these A/Ds requires a zero adjust (see section 2.5.1). To obtain zero code at other analog input voltages see section 2.5 and Figure 5
Note 9: The $\mathrm{V}_{\text {REF }} / 2$ pin is the center point of a two-resistor divider connected from $\mathrm{V}_{\mathrm{CC}}$ to ground. In all versions of the ADC0801, ADC0802, ADC0803, and ADC0805, and in the ADC0804LCJ, each resistor is typically $16 \mathrm{k} \Omega$. In all versions of the ADC0804 except the ADC0804LCJ, each resistor is typically $2.2 \mathrm{k} \Omega$. Note 10: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.



