
Simple Ray Tracer 08/28/1999

 1

Simple Ray Tracer
Course: CS3241 – Computer Graphics
Students: Qin Yan, Wu Yinghui
Instructors: Dr. Tan Tiow Seng, Dr. Teh Hung Chuan
School of Computing
National University of Singapore
Lower Kent Ridge Road
Singapore 119260

Abstract
The assignment aims to extend a ray-casting program to a simple ray-tracer. The
functionality that is extended includes reflection, refraction, and shadow effects.

Introduction
A ray-tracer is a program that generates images of three-dimensional scenes by trying to
simulate the behaviour of light rays in the real world. This algorithm is usually more
suitable for relatively highly reflective scenes. The drawback of this algorithm, however,
is that it is usually too computationally intensive to be implemented for real-time
performance.

Implementation
There are four major parts that needs to be extended in order to turn the provided ray-
caster skeleton into a simple ray-tracer:

(i) Parsing of scene script files;
(ii) Calculation of reflected and transmitted ray, and colour intensity;
(iii) Calculation of ray-sphere and ray-box intersection;
(iv) Implementation of recursive ray tracing algorithm.

1. Scene script file parsing (script.cpp)

After a keyword of "SPHERE" is encountered and the radius of the sphere is read
successfully, a temporary sphere object is created with the specified values. This
temporary object is then added to the object list with type = OBJ_SPHERE.

After a keyword of "BOX" is encountered and the min, max vectors are read
successfully, a temporary box object is created. This temporary object is also added to
the object list with type =OBJ_BOX.

A do loop is added to the readline method to skip the comment lines in the scene
script file which start with a hash sign ("#").

2. Reflection vector, refraction vector, and colour intensity calculations
(calculation.cpp)

The reflection vector is calculated from the formula
NRdNRdnewRd ⋅−•⋅+=))((2 (1)

Simple Ray Tracer 08/28/1999

 2

where Rd is the direction vector of the incident ray pointing towards the incident point.
Furthermore, the condition SMALLNRd >• is checked beforehand to test whether the
ray is shot from inside the object or outside. If the ray is from inside, the normal N must
be inverted in order to get the correct reflection vector newRd.

The refraction vector newRd is calculated from the formula

[] NRdNnRdNnRdnnewRd

nnn ri

⋅−•⋅+−•⋅−+⋅=

=

)1)((1)(

,/
22

 (2)

where n is the relative index of refraction of the two media, Rd is the direction vector of
the incident ray pointing towards the incident point. Similarly, the coefficient NRd •
should be tested before being used for calculation. Another condition, whether or not the
value inside the square root is less than SMALL, is tested for complete reflection cases. If
so, the method will return 0.
A loop is used to add up all contributions from all the lights to the intersection point. If a
point is back facing a light (tested by examining NRd •) or totally in the shadow, the
light’s contribution to that particular point is not counted. Otherwise, the Phong
illumination model is used to calculate the contribution of the light.

3. Ray-sphere and ray-box intersection calculation (objects.cpp)

All ray-object intersection calculations are carried out after transforming the ray
from global coordinate into local coordinate system.

Ray-sphere intersection is calculated by examining the roots of a quadratic
equation constructed as following:

.,2,

,0
2

2

rRoRoCRoRdBRdRdA

CtBtA

−•=•⋅=•=

=+⋅+⋅
 (3)

where Rd is the direction vector of the incident ray, Ro is the origin of the ray, and r is the
radius of the sphere. If there are two real roots for this equation, the smaller positive root
will be taken as distance to calculation the near intersection point.

As ray-box intersection is just checking with the three pairs axis-aligned faces of
the box repeatedly, an additional method RayIntersectHelper is added. This helper
method is invoked for three times for each box. If none of the invocations returns 0, the
smaller positive coefficient t is taken to be the distance in the equation

RdtRoonPointIntersecti ⋅+= .

4. Recursive ray tracing implementation (ray.cpp)

When a ray hits an object, reflection vector is first calculated. If the object is
transparent, the refraction vector is also added. The new rays are assigned an attenuation
factor according to the material defined for the object surface. They are then shot from
the incident point but calling the ShootRay method recursively. This process will not
stop until the tracing has reached the desired ray-tree depth.

Simple Ray Tracer 08/28/1999

 3

Discussion
A number of problems was discovered during the implementation of this simple ray-
tracer.

1. Handling complete reflection
 When a ray is shot from inside an object, complete reflection may occur when the
incident angle is relatively large. In this case, we can no longer calculate the correct
refraction angle by applying formula (2). So, the return value of CalcRefractionVector
method is checked to handle this kind of situations explicitly.

2. Negating the normal as necessary
 When a ray shoots from inside an object and is coming out of the object’s surface
again, it’s reflection and refraction rays will not be correct if the surface normal at the
incident point is not negated. Therefore, the value NRd • is checked to ensure a correct
normal for the calculation.

3. Round-off errors of floating point calculations
 Calculation involving floating numbers are inexact and the round-off error can be
quite significant in some cases. For example, when checking a normal’s direction against
a incident ray, SMALL, which is a small positive coefficient, should be used instead of 0.
Otherwise, the error can result in lots noise points on the surface transparent spheres.

4. Multi-threaded rendering
 The original program appears “not responding” to the operating system during its
rendering process. The reason is that the computationally intensive part of rendering
stops other components of the program from responding to system messages. Thus, the
rendering process is put into a separate thread in order to improve the responsiveness of
the application while rendering.

Conclusion
The implemented Simple Ray Tracer is based on the provided skeleton code for ray-
caster. Improvements are made to support more primitives from the script file, and to
generate more realistic ray-traced three-dimensional scenes images. Furthermore, the
rendering process is now put into a separate thread than the application so as to resolve
the “not responding” error during the rendering process.

Appendix

(1) Source code of the four major parts
(2) Sample scenes rendered

