Assignment #3: Queuing Systems

 

Course:

CEG 4183

 

Name:

Jim Sellers

 

Student #:

2030251

 

Due:

2003.02.04

1)  [2 marks] What is the utilization of an M/M/1 queue that has four (4) people waiting on average?

 

ω

=

ρ2 / (1 – ρ)

4

=

ρ2 / (1 – ρ)

4 * (1 – ρ)

=

ρ2

4 – 4ρ

=

ρ2

ρ2 + 4ρ - 4

=

0

 

 

 

Now using the Quadratic Equation, I solved for p to get values of aprox. 0.828 and –4.828. Since you can’t have a negative utilization, the answer is aprox. 0.828

 

2)  [6 marks] At an ATM machine in a supermarket, the average length of a transition is 2 minutes, and on average, customers arrive to use the machine once every 5 minutes. 

a)      How long is the average time that a person must spend waiting and using the machine?

ρ

=

λ / μ

 

=

2 / 5

 

=

0.4

 

 

 

Tw

=

ρ Ts / (1 - ρ)

Tw

=

(0.4) Ts / (1 – (0.4))

Tw

=

(0.4) * (5 min) / (0.6)

Tw

=

3.333… min

 

b)      What is the 90th percentile of residence time? 

mq(r)

=

Tw / p * ln(10p)

mq(90)

=

3.333… / 0.4 * ln(10 * 0.4)

mq(90)

=

11.55 minutes

 

c)      On average, how many people are waiting to use the machine? Assume M/M/1.

ω

=

ρ2 / (1 – ρ)

 

=

(2/5) / (1 – 2/5)

 

=

2/5 / 3/5

 

=

2/3

On average, there is 2/3 of a person waiting to use the machine.

 

3)  [4 marks] Messages arrive at a switching center for a particular outgoing communication line in a

Poisson manner with a mean arrival rate of 180 messages per hour. Message length in distributed exponentially with a mean length of 14,400 characters.  Line speed is 9600 bps.

a)      What is the mean waiting time in the switching center?

λ

=

180 messages / hour * 1 hour / 3600 seconds

 

=

0.05 messages / second

 

Assume 8 bits per character.

Ts

=

(14 400 chars) * (8 bits / char) / 9600 bps

 

=

12 seconds

 

 

 

ρ

=

λ Ts

 

=

(0.05 msg / s) * (12 s)

 

=

0.6 messages

 

 

 

Tq

=

Ts / (1 – ρ)

 

=

12 s / (1 – 0.6)

 

=

30 seconds

 

b)      How many messages will be waiting in the switching center for transmission on the average?

Assume “in switching centre” means both the queue and the message being processed.

 

q

=

p / (1 – p)

 

=

0.6 / 0.4

 

=

1.5

 

4)  [8 marks] Refer to the attached pages.  Calculate p, Tw, and mtw(90) and  mtw(95) for M/M/3, and 5 M/M/1’s. Correct steps are needed.

 

For 5 M / M / 1’s:

p

=

λ Ts / number of workstations-queue’s

 

=

5 (1/8) / 5

 

=

0.125

 

 

 

Ts

=

½ hour use / 8 hours

 

 

1/16

 

 

 

Tw

=

(p Ts ) / (1 - p)

 

=

(1/8 * 1/16) / (1 – 0.125) * (8 hours / day * 60 min / hour)

 

=

4.29 min / day

 

 

 

mtw(y)

=

Tw / p * ln(100p / 100 – y)

mtw(90)

=

4.29 / 0.125 * ln(10 * 0.125)

 

=

7.650 (aprox)

 

 

 

mtw(y)

=

Tw / p * ln(100p / 100 – y)

mtw(95)

=

4.29 / 0.125 * ln(20 * 0.125)

 

=

31.416 (aprox)

 

For M / M / 3:

p

=

λ Ts / N

 

=

5 (1/8) / 3

 

=

5 / 24

 

 

 

K

=

Sum( (Np)i / i! ) from i=0 to n-1

Sum( (Np)i / i! ) from i=0 to n

 

=

1 + (5/24) + (5/24)^2 / 2

1 + (5/24) + (5/24)^2 / 2 + (5/24)^3 / 3!

 

=

0.998 776 297

 

 

 

C

=

(1 – K) / (1 – pK)

 

=

(1 - 0.998 776 297) / (1 – (5/24) * 0.998 776 297)

 

=

0.001 545 232

 

 

 

Tw

=

C / N * Ts / (1 - p)

 

=

0.001 545 232 / 3 * 5 / (1 – 5 / 24)

 

=

0.003 253 12  * (8 hours / day * 60 min / hour)

 

=

1.56 min / day

 

 

 

mtw(y)

=

Ts / (N – p) * ln(100C / 100 – y)

mtw(90)

=

5 / (3 – 5 / 24) * ln(10 * 0.001 545 232)

 

=

- 7.469 (aprox)

 

 

 

mtw(y)

=

Ts / (N – p) * ln(100C / 100 – y)

mtw(95)

=

5 / (3 – 5 / 24) * ln(20 * 0.001 545 232)

 

=

- 6.227 (aprox)

 

The negative numbers mean that 90% of the time, you will not wait at all.