
THE PLEASURES OF
MATHEMATICS

F. W. Niedenfuhr, Professor of Engineering Mechanics
at Ohio State University, lures the amateur scientist
into an encounter with integral calculus

IT MAY COME as something of a surprise to amateurs
to learn that they often skate dangerously close to the edge of
integral calculus. Integral calculus is not nearly so formidable as it
sounds. It is a study, at least in part, of the problem of measuring
area. In view of the fun that can be got out of mathematics, and of
the understanding of advanced work in science which it can afford,
it is unfortunate that more amateurs do not devote some of their
time to the subject. Experiments with problems of area can make
an interesting starting point. I will give an example of a difficult
problem later on, but first let us look into an easier case.

Imagine that we have drawn a simple closed curve on a sheet
of writing paper. (Simple means that the curve does not cross
itself.) This curve marks out an area on our paper. How many
ways can you think of to find this area?

The problem is interesting to me because I like to watch the
ways in which students at various stages of sophistication at-
tempt to solve it. A third-year college student may begin by trying
to write the equations of the curve. A mature mathematician will
ask: "How accurately do you want to know the area?" A graduate
student in mathematics will sometimes protest that he is not sure
he understands the problem, and that anyway it probably cannot
be solved. An engineer may admit that he once knew how to find
the area but has now forgotten, or he may produce a machine
called a planimeter and proceed to measure the area for you.
Usually he will not know why this machine works, but he is pretty
sure that it does. But don't press the poor fellow — he has another
job to do.

I saw a very clever (and most significant) solution to this
problem at a model-airplane meet some years ago. The contest
rules required that the models have a fuselage whose cross-
sectional area was not less than a certain minimum. This area
was easy to check in the good old days when all the models had
rectangular cross sections, but with the advent of more stream-
lined shapes the judges began to have trouble making sure the
rules were being followed.

They finally decided to find the required area by first having
an accurate drawing of it, and then cutting out the drawing and
weighing it. Since the weight per unit area of the paper was known,
the area of the cut-out drawing was easy to obtain. Now this
solution to the area problem is a splendid example of applied
integral calculus. It is a little surprising then, that people who
have actually studied calculus will laugh at the method, or dis-
miss it as impractical. Yet when an accurate balance or scale is
at hand it is the quickest way to determine an area. (How many
ways can you think of for improvising a balance to "weigh areas"? )

Another obvious way to find an area is to draw the figure on
graph paper and count the number of little squares inside the
simple closed curve. Then if we know the area of each square



we find the total area by multiplying the area per square by the
number of squares enclosed by the curve. Of course near the
edges of the figure we will have to count partial squares, and
some error will be introduced each time we estimate the size of
such a square.

   But the total error will generally be small for two reasons. First
we will sometimes overestimate and sometimes underestimate
the area of a partial square, and our errors from this source will
tend to cancel out. Second, the human eye is an excellent judge
of the relative sizes of small areas. This process is not so tedious
as might be imagined, because on the interior of the figure we
can count great blocks of squares at once, rather than each square
individually. I find that making drawings on 8 ½ X 11-inch paper
with quarter-inch squares printed on it provides excellent ac-
curacy and is not too time-consuming.

A variation on the system of counting squares is the Monte Carlo
method. You might like to try this one experimentally. Draw the
area on a piece of paper again, and put your finger down at
random. One of four things will happen: (1) your finger will
come down on the paper inside the unknown area, (2) it will
come down outside the area, (3) it will come down on the bound-
ary of the area, or (4) it will miss the paper entirely. Now on
a separate tally sheet keep track of the results as follows: In the
first case  (your finger lands inside the area)  write "Yes" on the
tally sheet. In the second case write "No" on the sheet. In the
third and fourth cases do not write on the sheet at all. After a
large number of tallies have been made you can find the un-
known area by multiplying the total area of the paper by the
number of "'Yes" tallies divided by the number of "Yes" plus "No"
tallies. The accuracy of the answer will depend on two things.
First, the number of tallies must be large; second, you must put
your finger down in a random manner each time. Obviously if
you always put your finger down outside the given area, you
would have no "Yes" tallies, and the formula given above would
indicate that the unknown area is zero.

Pursued by hand, the Monte Carlo method will only lead to
bruised thumbs and poor estimates of the area, but it does appear
to be a useful method when automatic machines can be devised
to make and record a large number of tallies. Machines have been
constructed which integrate (calculate areas) by this method,
but they are handicapped by the difficulty of providing random
numbers which tell the machine how to "put its finger down."

    Any mechanical device to produce random numbers will be sub-
ject to wear, and this wear introduces a bias in favor of a par-
ticular number. For a time it was thought the sequence of digits
in pi (3.14159...) would be random, but this is not the case.
There still is no completely satisfactory way to produce random
numbers. In spite of this practical difficulty, the Monte Carlo
method of integration holds great promise.

There is still another way in which the original problem can
be solved. Suppose our unknown area has been divided up into
a large number of narrow strips by equally spaced vertical lines
drawn on the paper [Fig. 1].  By itself each strip differs little
from a long, narrow rectangle. Suppose we have numbered each
strip for identification purposes and measured its length. If the
lengths of the strips are L1, L2, L3 and so on, the following is an
obvious formula for the area:



Area = (L1 + L2 + L3 . . . ) × B

B is the width of the strips. Now the ends of each strip will not
be rectangular but tapered or cut on the bias. If a strip is rather
wide, you may have difficulty in deciding its length, and the ac-
curacy of the final result will depend on how well you define the
length of each strip. If the strips are narrow, however, it will be
easy to decide the length. Imagine, for instance, that each strip
is as narrow as the thickness of the paper. If the strips were lit-
erally cut apart, we could measure the length of a number of
threads. This would be tedious but not difficult. Thus the accur-
acy of the formula increases as B becomes very small, and as the

Fig. 1
Division of irregular area into strips
of uniform width

Fig. 2
Laminated area (top) does not change in size when canted (bottom)

Fig. 3
Irregular area divided by rays of equal angle

O

Fig. 4
Element of irregular area divided by rays of equal angle



number of strips increases. The "fundamental theorem" of integral
calculus is based on this formula.

    The area given by formula will not be changed if the strips
are moved with respect to one another. This explains why the
areas of the parallelogram and the rectangle in the accompany-
ing illustration [Fig. 2] are the same. The parallelogram is just
the rectangle with its strips pushed over a little. The pushing
process does not change either the length or width of a strip.

    Another process for finding areas is to divide the unknown area
into a large number of triangles, find the area of each triangle,
and add up the areas. We split the area by drawing rays, each
of which has the same angular relationship to the others [Fig. 3].
Now look at a typical element of this area [Fig. 4]. Let C be
the center of AB, and R be the distance from 0 to C. Imagine
that we swing an arc of radius R ( OC ) between the lines OA
and OB. If the angle AOB is very small, this arc will appear to
be practically a straight line of length W. The area of the triangle
is then one-half R × W.

Fig. 5
Angle measured by graphic method

If the angle AOB is denoted by the symbol (dϕ), you see that
the two lengths R and W determine the angle. In fact, we may
say by definition that (dϕ) = W/R. You are familiar with meas-
uring angles in degrees, but this new method of measuring angles
is generally more useful in mathematics. The units of this meas-
urement are called "radians." For instance, if in the above ex-
ample R = 3 inches and W = .3 inch, then (dϕ) is an angle of,
.1 radians, which is equivalent to just under six degrees.

Measurement of larger angles in radians may be done by draw-
ing a circular sector [Fig. 5]. Let R be the radius of the sector,
and L be the length of the arc. The angle ϕ, expressed in radians,
is ϕ = L/R. If we keep increasing the angle ϕ, the sector opens
up into a circle, and the angle ϕ  becomes 360 degrees.

How many radians is this? The "arc length" L has become equal
to the circumference of the circle which is 2πR. Then ϕ = L/R =
2πR/R = 2π. Thus 2π radians equals 360 degrees. The advan-
tage of using the radian measure for angles lies in the fact that
if we say "angle equals arc length over radius," we may also say

 "arc length equals angle times radius."

Back to our little triangle. Since (dϕ) = W/R, or W= B (dϕ),
the area of the little triangle is ½RW = ½ R2 (dϕ). Let R1, R2,

R3 . . .  be the radii of the small triangular "slices" of the big area.
Then, since each "slice" has the same central angle (dϕ), the
big area is given by the formula:

A = ½ (R1
2 + R2

2+ R3
2 + . . .) (dϕ)



This represents the sum of the areas of the little triangles. This
formula too is very close to a calculus formula. Its accuracy will
increase as (dϕ) decreases and the number of terms increases.

Fig. 6
Basic elements of planimeter

You now have enough information to build a machine to meas-
ure areas (a planimeter). Imagine a straight bar which serves
as the axle of a knife-edged wheel [Fig. 6] Now imagine that
this bar moves a small amount parallel to the plane of the paper,
while the wheel rolls and slides on the paper. Let the bar move
from BC to B'C' [Fig. 7}. This motion could be accomplished
by first moving the bar parallel to itself from BC to B'C” and

Fig. 7
Geometry of planimeter action

then rotating it about B' until it reaches B'C'. How far would
the wheel roll during this motion? In moving from BC to B'C”,
the wheel rolls (and slides sideways a little) a distance (ds), and
in moving from B'C" to B'C’ the wheel rolls a distance a (dϕ).
[Here again (dϕ) is measured in radians, and is a small angle.]
So the total distance the wheel rolls is (dp), where (dp) =
(ds) + a (dϕ).

    What area did the bar sweep out? In moving from BC to B'C”
the area covered was L(ds), and in moving from B'C” to B'C'
the area covered was ½ L2 (dϕ), so if the total area swept out
is called (dA):

(dA) = L(ds)+ ½ L2 (dϕ)

Combining the last two equations:

(dA)= L (dp) - La (dϕ) + ½ L2 (dϕ)
= L (dp) + (½L2 - La) (dϕ)

Now you should know, if you have not already guessed, that
in the notation of calculus if x is any quantity, the symbol (dx)
stands for a little bit of x. For instance, if A is an area, (dA) is a



very small "slice" of that area. If p is a distance, (dp) is a short
step along the way.

Having mastered this much calculus, we may now play a trick
on our little wheel and axle—or tracer arm, as it is properly
called. We attach another bar to it at point B. This second bar
is called a polar arm. The polar arm has one end hinged to the
tracer arm at B, and one end fixed (but free to pivot) at point 0
[Fig. 8].

Now trace around the circumference of an area with the tracer
point C . The area swept out by BC will be the area we are at-
tempting to measure plus the area hatched in the illustration. But
the hatched area will be covered twice, once with the wheel rolling
forward and once with the wheel rolling backward, so it cancels
out. If we consider the total area swept out by the tracer arm

Fig. 8
Demonstration of integration by use
of the planimeter

as being the sum of a large number of very small areas (dA), as
described above, we may write:

A= (dA)1 + (dA)2 + (dA)3 + ...
   = L [(dp)1 + [(dp)2 + . . . ] +
     (½L2 - La) [(dϕ)1 + (dϕ)2 + . . . ]

Now we must interpret each of these sums. The total distance
( p ) through which the wheel rolled is:

p  = [(dp)1 +(dp)2+. . . ]

The total angle through which the tracer arm BC turned is:

ϕ = [(dϕ)1 + [(dϕ)2 + . . . ]

    But since the polar arm forced the tracer arm to return to its
exact starting point, the total angle turned is zero. Thus A = Lp
(p, again, is the distance the wheel rolled). This is easily ob-
tained from scale markings on the rim of the wheel.

The little instrument we have been discussing is called a polar
planimeter [Fig. 9]. There are several models on the market
—all rather expensive for beginners, I fear. You can have more
fun constructing your own. An accurate polar planimeter is a
precision machine. If you are not quite up to fine mechanical



Fig.9
Practical form of the planimeter

work, there is another way out. Your pocketknife can be used
as a satisfactory, if approximate, planimeter. Open both blades
as shown in the upper portion of the accompanying drawing
[Fig. 10]. Make sure that blade B makes contact on the cutting
edge, and that blade C makes contact at its point when the opened
knife is held upright on a table. Determine the distance L.

Now pick an area to be measured. The longest diameter of the
area should be considerably shorter than L; say, no more than
half as long. Locate the center of the area approximately. Draw
a straight line (to be used as a reference line) outward from the
center of area [see lower diagram. Fig. 10]. Now hold the knife
so that point C is at the center of the area, and B is on the reference
line. Holding blade C, push the knife along the reference line
until the point of C is on the boundary of the curve. Then, keep-
ing the knife upright, guide point C completely around the area,
tracing out the boundary line, and finally pull it back to the
center. Meantime the supporting blade B will have been riding
freely on the paper. When you return to the starting position,

Fig. 10
The jackknife in position for use as a planimeter (top). Irregular area to
be measured together with reference line (bottom).



blade B will no longer be on the reference line, and the line of
the knife, BC, will make an angle with the reference line. Call
this angle ϕ (measured in radians). The area you have traced
around is then given approximately by the formula A = L2ϕ.
This is so easy to do that it is worthwhile trying it on a few known
areas just to see how good your pocketknife really is.

If it is inconvenient to measure the angle directly in radians,
measure it in degrees, multiply by 2π and divide by 360, in ac-
cordance with the definition of a radian given above. This slid-
ing type of planimeter is often called a "hatchet planimeter."

Now for the more difficult problem I promised earlier. It would
seem natural, in view of all the foregoing, to seek the area of a
curved surface by enclosing the surface in a polyhedron of many
sides and then adding up the areas of the faces of the polyhedron.
For example, the area of a cylinder can be obtained approxi-
mately by adding up the areas of the faces of an octagonal box
in contact with the cylinder [Fig. 11]. The result would be more
accurate if instead of an octagonal box we used a box with
many more sides. Just to show that this is not always such
an easy process, consider the following. Cut the cylinder along
a vertical line and unroll it into a flat sheet. The area of this sheet

Fig. 11
Area of cylinder approximated by
octagonal box

Fig. 12
Cylinder analyzed into rectangles and triangles

is the same as the area of the cylinder. Divide the flat sheet into
rectangles and triangles as shown [Fig. 12].

Now roll up this sheet to form a cylinder again. Let each vertex
of each of the triangles stay on the surface of the cylinder. By
connecting these vertices with straight lines we form a polyhe-
dron with a large number of triangular faces which is inscribed
in the cylinder. The sides of the triangles are not on the surface
of the cylinder, but run inside it from one surface point to an-
other. It is tempting to assume that the area of the polyhedron



more and more closely approximates the area of the cylinder as
the number of triangles is increased, that is, as the grid of rec-
tangles and triangles becomes finer and finer.

This is in fact not true. If the grid is chosen properly, the
polyhedron can be made to approach a kind of Japanese-lantern
shape [Fig. 12]. The area of such a polyhedron can be made very
much larger than the area of the circumscribing cylinder. The
reason for this is that the planes of the triangles slant in and out
with respect to the surface of the cylinder. If the number of
vertical divisions is very large as compared to the number of
horizontal divisions, the triangles become almost perpendicular
to the curved surface. Thus the area of these triangles bears no
particular relation to the area of the cylinder.

Fig. 12
Cylinder of indefinitely large surface area
unrelated to its volume

(From “The SCIENTIFIC AMERICAN Book of Projects for The Amateur Scientist”, by C.L. Stong,
Simon and Schuster, New York 1960)


