On Exponential Time Algorithm for £-SAT

Subhas Kumar Ghosh

Abstract. In this work we present and analyze a simple algorithm for finding satisfying assign-
ments of k-CNF (Boolean formulae in conjunctive normal form with at most k literals per clause).
Our work is motivated by a simple question: Are there any structural property of the k&-CNF which
could help us to understand if a formula accepts isolated assignment? And can we determinis-
tically find such isolated assignment if formula has one? In this work we show such a property
exists in almost all non-trivial k-CNF formula, and we call it rigidity of a clause. Informally,
rigidity of a clause can be defined to be how well connected a clause is to other clauses having
same literals. If we satisfy a rigid clause for most of its literals then some of the variables are
forced to take fixed values. Since, we can force such property and still get a satisfiable assignment;
we save some of the decision paths in the algorithm and reduce its time complexity. Our main
lemma shows that the number of branches in a depth n decision tree for k-CNF will be at least
w(45)(3) (=5) .
2 2k ®8) with, §, a constant depending on k. This is at least 2" 61("*52), where
0 <e1 <1and 0 < ez < 0 are constants. As a result we obtain a deterministic algorithm for
k-SAT with bound on running time approaching O(poly(n) - 2"~™*), when formula has large
number of overlapping clauses.

Keywords. Computational and structural complexity, Satisfiability of Boolean formulae, Conjunc-
tive normal form, Deterministic algorithm.

1. Introduction

The problem of finding a satisfiable assignment for a propositional formula in k-CNF (conjunctive
normal form with at most k literals per clause) is notably the most important problem in theory
of computation. The decision problem for k£ > 3 was one of the first problem shown to be NP-
complete[l, 3]. The obvious algorithm can solve the problem in time poly(n)2” using exhaustive
search, where, n is the number of variables in the formula.

In this paper we look at certain structural properties of the k-CNF, and its corresponding set
of variable assignment. For o € {0,1}", we let o; denote the ith bit of o, and by z7’, we denote the
ith variable of a formula F' taking the ith bit of o as its assigned value. We say o € {0,1}" satisfies
F, iff by assigning the ith bit o; of o to ith variable x; of F' makes F(x7*,292,...,2%") = true, we
denote it as o F F. If o does not satisfy F', then we denote it as o ¥ F.

The study of exponential time algorithm for k-CNF is long and rich. We focus on worst case
running time of algorithms which is provably better than poly(n)2™. There exists several works that
analyzes the structure of the assignment set of k-CNF and uses its structural properties to suggest
better exponential time algorithm, see [6, 4, 7, 2, 5]. We briefly discuss the structural properties
used in [6].

An assignment o E F is isolated in the direction j if flipping the jth bit of o makes ¢ no more
a satisfiable assignment for F'. An assignment of F', that satisfies F' will be called i-isolated if it has

2 Subhas Kumar Ghosh

exactly (n —14) neighbors which satisfies F'. Observation made in [6] was, if an assignment is isolated
in the direction i, then there exist at least one clause in F' that is satisfied only by the ith bit of
o for the ith variable in corresponding ordering of variables in o. Such clause is called critical for
assignment o. Consider a rooted tree for assigning values to the variables of F'. In ith step we will
select x; and assign values in {0, 1}, and branch on those two assignment. If we let the tree grow up to
depth n then there will be all possible assignment at the bottom most leaves, and if F' is satisfiable,
some of the leaves will satisfy F'. However, to figure-out which of these are indeed satisfying F' one
need to check all 2" assignments. If one of the assignment is isolated in the direction 4, then at level
i — 1 once we have assigned values to variables zi,...,x;—1 a clause will appear that is still not
satisfied under one of these partial assignments, and has only one literal corresponding to variable
x; left to be assigned a value, making the value of z; fixed. If we can effectively figure out when this
happens we can fix some of the variables and reduce the number of leaves at the bottom most level,
and reduce the exponential factor in the running time of the exhaustive search algorithm. In general
we do not know if F has isolated assignment. In [6] authors bound this property over all possible
ordering of variables, and make an observation, that either there is an isolated assignment, or there
are many assignments. If F' has isolated assignment then we can save some time or if it has many
assignments then one can get success by trying to choose one at random. Their randomized algorithm
has O(poly(n)2"~"/*¥) bound on the running time. One of the open problem identified by authors of
[6], is to find a deterministic algorithm for k-SAT that runs in time O(poly(n)2"~"/*), and mentions
that additional insight into the structure of large set accepted by k-CNF will be necessary for that.
Our work is motivated by a simple question: Are there any structural property of the k-CNF which
could help us to understand if a formula accepts isolated assignment? And can we deterministically
find such isolated assignment if formula has one? In this work we show such a property exists in
almost all non-trivial k-CNF formula, and we call it rigidity of a clause. Informally, rigidity of a
clause ¢ can be defined to be how well connected a clause is to other clause having same literal.
If a clause ¢ shares many variables with other clauses, and we assign values to the variables of c,
we will also satisfy some of the other clauses along with ¢ that has same literals. Then this clause
and its assignment becomes rigid if it is satisfying many other clauses, and can not be changed,
however those clauses sharing negated literals with that of ¢ are now forced towards few remaining
variables and their assignments, and forced to become critical. In the remaining sections we establish
this intuitively appealing idea and provide a deterministic algorithm for k-SAT. In many ways our
algorithm can be seen as a derandomization of main algorithm in [6]. In [4, 5] the algorithm in [6]
has been improved introducing bounded time proof resolution. In almost all papers the essential
ingredient is a restart mechanism, where our method uses the internal structural property, rigidity
of clause, which we introduce in this paper, and build the decision tree deterministically.

2. Background

2.1. Preliminaries

Throughout this paper we fix our alphabet as ¥ = {0,1}. Let A be a set, then by |A| we denote
its cardinality, while for a string € A, |x| denotes the length of string z. For o € {0,1}", we let
o; denote the ith bit of o, and by z7*, we denote the ith variable of a formula F' taking the ith bit
of o as its assigned value. We say o € {0,1}" satisfies F, iff by assigning the ith bit o; of o to ith
variable z; of F makes F(z7',x92,...,2%") = true, we denote it as o E F. If o does not satisfy F,
then we denote it as ¢ # F'. The index 7 for the ith bit of an assignment are termed as coordinates
of o. Given two assignments o, ¢’ € {0,1}", the Hamming distance between o and ¢’ is the number
of coordinates in which o and ¢’ are different.

Here we recall some of the basic definitions and terminologies from the graph theory. A graph
G consists a set of vertices V(G) and a set E(G) of pairs of vertices. Elements of E(G) are called
edges of graph G. u,v € V(G) are called neighbors or adjacent iff {u,v} € E(G). The set of vertices

On Exponential Time Algorithm for k-SAT 3

N(v) are called neighbors of v € V(G) iff Vu € N(v), {u,v} € E(G). The degree of vertex v € V(G),
deg(v) = [N(v)].

For a clause ¢ in formula F, let var(c) denote the set of variables that appear as literals, and
also let lit(c) denote the set of literals in c. |var(c)| is the length of clause ¢, and |F| is the sum of
the length of all clauses of F. We will denote the set of clause in a formula F' by clause(F).

Definition 2.1. A family of clause graph G, can be defined as follows:
V(Ge.) = {c|c is a clause} NVe¢;,¢; € V(Ge),{ci,c;} € E(Ge) < var(c;) Nwvar(cj) # 0

A graph is said to be A-regular if Vv € V(G),deg(v) = A. A subset K C V(G), is a clique,
if every vertex in K is neighbor of all other vertices in K. For a fixed positive integer n,k < n,
let Gy, denote the graphs in the family of clause graph Ge, such that for each ¢ € V(Gp.k),
var(c) C {z1,x2,..., Ty}, the set of n variables and |var(c)| < k. A k-CNF formula can be thought
of a subgraph of G,,.;. Let F;, be the family of formulas that chooses exactly m such vertices. For
a formula F' € F,,, we can talk about the induced subgraph G, m of G with m vertices and
edges of Gy, such that {c;,¢;} € E(Gp.km) iff ¢, ¢; € V(Gpik,m) and {ci,¢;} € E(Gopp).

An assignment o E F is isolated in the direction j if flipping the jth bit of o makes ¢ no more
a satisfiable assignment for F. An assignment of F', that satisfies F' will be called i-isolated if it
has exactly (n —) neighbors which satisfies F'. Variable x; corresponding to an isolated assignment
in the direction i is called critical, and the clause that is satisfied only due to assignment of z; is

called critical clause. Let [n] = {1,2,...,n}, be n coordinates of a formula defined over n variables.
We let extend the notion of var() in two ways: for a collection of clauses C' = {c1,¢a,...,¢q} of
F, as var(C) = Ucecvar(c), and with respect to a set of coordinates P C [n], as var(c, P) =

var(c) N (Uie px;).
Definition 2.2. For any set of clauses C' = {c1,ca,...,cq}, with |C| = «, a class C= {C’l, A C'g}
with C" = 3, is a decomposition of C iff C = Ulgigﬁéi and for any 1 <i,j < B,i # j,var(C;) N

var(C;) = 0. Let P C [n], and let F be a k-CNF. Then we define a decomposition C of F with
respect to P, zﬁC satisfies the following:

1. C= {C‘l, cee C'g} 18 a decomposition of set of all clauses of F'.
2. There exists clauses ¢1,¢a,...,¢g such that:

(a) (Vi:1<i<p) e eCi
(b) (Vi:1<i<p) (vc e c) [var(é, [n] — P) Nvar(c, [n] — P) % 0]
(©) (Vi1 <i,j < Bi # j) [var(Cy, In] = P) N var(Cy, [n] — P) = 0]
For each class CZ, ¢; is a speaal clause appears as a maximum degree vertex, and we will call
it a root of decomposition class C;. If C; forms a clique (e.g. in the decomposition of F w.r.t [n] — z;

for any variable z;), then any vertex can be the root. Intuitively, for any P C [n], a decomposition
of F'is a “view” of F from set of coordinates [n] — P.

Lemma 2.1. Let P C [n], then there exists a decomposition of F with respect to P, and such decom-
position can be computed in time O(|F|* h), where h = |[n] — P|.

Proof: Consider the following algorithm:
1: procedure DECOMPOSE(Input: F, P C [n])
2: for all ¢; € F do > let N(¢;) be ¢;’s neighborhood
for all ¢; € N(¢;) do
if var(c;, [n] — P) Nwar(cj, [n] — P) = () then
Remove edge between ¢; and ¢;
end if

A

4 Subhas Kumar Ghosh

7: end for

8: end for

9: for each clause ¢; € F in arbitrary order do
10: Find the vertex with maximum degree in N(¢;) U {¢;}
11: This vertex with maximum degree will be ¢ and C; = N(&) U {¢;}
12: if 3¢; € C; such that 3¢, € N(c¢;) and ¢, ¢ C; then
13: Remove edge between c¢; and ¢
14: end if
15: end for

16: end procedure

It is easy to observe that the algorithm above will compute the decomposition and running time of
this procedure is at most O(h|F|?). [|
Next we define the rigidity of a clause.

Definition 2.3. For a clause ¢, we denote its rigidity by R(c), and define it as:
R(c) = > |lit(c) N lit(c)|
Ve!'eclause(F),c#c!
With respect to a set of coordinates P C [n], we define rigidity of a clause as
R(c,P) = Z lit(c) N lit(<) N (Uiep{zi, —xi})|
V! eclause(F),c#c!
rigidity of a clause ¢ can be defined to be how much connected a clause is to other clause having

same literal. It is easy to see that, rigidity of a clause can be computed in time O(n |F|).

A k-CNF formula has clauses of at most k literals. Since we assume that all literals in any

clause are of distinct variables, if 3~ ¢ 1,,s¢(r) [Var(c)| > n, then there exists a variable in F', which

has been used in more than checlause(m |var(c)| — n) /nJ many clauses.

Lemma 2.2. If the number of clause in F' is m then there exists at least one clause with rigidity r,
and

n 2n 2n

Lmk - nJ S r> (ZcEclause(F) lvar(c)| — n) . {(m 1) +k— nJ

Proof: Lower bound is considering only one clause of length k and all others are of only one literal.
Also note that the 2n factor in denumerator comes from the fact that in a group of clause sharing
literals of same variable, rigidity due to one literal is least when group could be splitted to equal
halves. The upper bound comes from considering all clauses are of length k, and they form clique
while sharing same literals. n

2.2. Outline of Proof
If we compute the decomposition of F' with respect to P C [n], C = {(i'l, e C‘g}, then we get a

collection of clauses in each decomposition class C; with a root clause ¢; with certain rigidity. Let
us concentrate on one such class (i'i with a root clause é;. Let @ = {x4,,%as, .-, Za,, } be the set
of variables that are present in the root, such that all ¢ € C; are connected to ¢ for one or more
variables in «. If we make a partial assignments to the variables in o/ C « such that all the clauses
that are contributing to the rigidity of ¢; are satisfied, along with ¢;, then: clauses that are connected
to & for variables only in a — o/, or, clauses that has only negated literals that of é; are forced to be
satisfied for variables not in o/. This way we might be able to make some of the clause critical for an
assignment, but assigning values to remaining variables might not lead to a satisfiable assignment.

On Exponential Time Algorithm for k-SAT 5

Thus, question will be to what extent we can “design” such forced isolated assignments? Here we
state our key observations, we omit the proof as they are quite direct:

Observation 1. In one satisfiable assignment a clause can not be critical for more than one variable
[6].

Observation 2. If o’ and o are two partial assignments of variable set o, with Hamming distance
between o’ and o” is at least 1. If o’ forces a clause ¢ to become critical and ¢ has a literal for a
variable in o then o satisfies c.

Observation 3. If ¢’ is a partial assignments of variable set «, forcing a clause ¢ to become critical
for variable z;, and assignment x7' satisfies ¢, then o' and o; can be part of a o E F, iff, there is
no other clause that is critical for x; and satisfied with xif‘”.

Observation 4. Under a partial assignment of F', a clause and corresponding variable becomes critical
under a ordering of assignments, the same clause may not be critical under a different ordering of
assignments.

Our main technical result can be seen the following way. Every, non-trivial k-CNF has a rigid
clause. Otherwise, consider a decomposition of F w.r.t [n]—i, for any coordinate i. The decomposition
obtained is a clique K with r vertices. We can have r odd (or even) and rigidity of every clause can
be [r/2] in worst case, and formula is trivially satisfiable (or unsatisfiable). Now consider a k-CNF
with a rigid clause, and an algorithm for finding its assignment. We form a decision tree by assigning
values to variables of F'. We assign values to one variable in each step and branch on two possible
assignments and form a labeled rooted tree of depth n with 2" branches. Our main lemma shows

k2 1 n
that the number of branches in a depth n decision tree be at least 2n7(2?) (E)<%) , with, 8, a
constant depending on n and k. This is at least 2n_€1(ﬁ), where 0 < €1 <1 and 0 < €3 < 0 are
constants depending on k. As a result we obtain a deterministic algorithm for k-SAT with bound
on running time approaching O(poly(n) - 2"~"/*), when formula has large number of overlapping
clauses..

3. Main Lemma

In this section we obtain a bound on the number of branches of depth n decision tree, where we
deterministically force few variables to become critical by satisfying a rigid clause. While we do force
a set of clause to become critical we must ensure that if the formula is satisfiable we must obtain
such satisfiable assignment. First, we show that behind every i-isolated assignment there is a rigid
clause.

Lemma 3.1. Let o be a satisfiable assignment of F' isolated in direction i, then there is rigid clause
in F.

Proof: Let o be a isolated satisfiable assignment of F for variable x; and clause ¢;. Let C =
{Ca1sCass -3 Ca,, + be set of other clauses in F' having one or more variables in 8 = var(c;) — ;.
Since o is a satisfiable assignment of F', a subset C’ C C' of clause are satisfiable for variables in
B3, and has negated literals that of ¢;. There is a decomposition of F where clause of C’ form a
decomposition class with a rigid root. []
Before we could present our main result on decision tree encoding, we need to present some prop-
erties of root of decomposition. Unless indicated, we will say the maximum rigid root as the root of
decomposition.

Fact 3.1. Let C; be a decomposition class in the decomposition of F with respect to P C [n]. Let
P’ C P, then there exists a decomposition class C'; in decomposition of F with respect to P' such
that C'; C C;.

6 Subhas Kumar Ghosh
Proof: Follows from the fact that ([n] — P) C ([n] — P’) [|

Fact 3.2. Let P1, P, C [n] and P, N Py = (). Then following holds:

o |Pi|+ |Ps| > k and there is no clause c that appear as a root in all Py, Py and P = Py U Py
o There is a clause ¢ that appear as a root in all Py, Py and P = PyUPs, then 2 < |Pi|+|Ps| < k

Proof: Follows from the fact that there is no clause of length greater than k& and Py N Py = (). [|
Combining the above three facts we claim that, if F' has isolated solutions, then there always exists
P, CPy;q C...C P Cln]and |Py| > 1,|Pi| <k, such that the rigidity of a root is non-decreasing
over P, C Py C ... C P, C [n], we will say ¢ is monotonic root over [Py, Pg]. Intuitively, it is easy
to see that if P,_y C P; and ¢ is a root in P;_; then introducing more variable in P; will at least
keep is rigidity same.

We now present an algorithm to encode and reduce the size of a decision tree. Let T be a
deterministic labeled rooted decision tree. Root of T'is labeled with F'. Let F' [o1 ,72 .o denote
a partial assignment of variables of F'. In step ¢ we extend a internal vertex of the tree labeled in
step ¢ — 1 with partial assignment F' [cit, with two branches as assignment z? and z}.

11 7322 ooy ®
There can be at most 2¢~1 vertices after step i — 1, thus if we let extend all of them we will have 2¢
vertices after step . We will show in steps how we can use the existence of a rigid clause to fix the
assignment of some variables, either as 2? or z}, and obtain lesser number of vertices after step i.

79
In sequel we first provide an algorithm for encoding a decision tree.
e W.o.l.o.g. for the procedure, let x1,xo,...,x, be the ordering of the assignments of variables
in the tree over all possible permutation 7 of the set [n]. Let T be the decision tree of depth
n, with vertices t at level i labeled with F rI517I221__'7I:i , and having 2* such vertices in each
level 1 <Vi <n.
o Let v be set of variables for which assignment o, has been fixed till step ¢ — 1 as they have
been forced to become critical, we will call v a cover of [n]. Thus, when we start v = {).

e In step 7 we are considering the set of variables o; = {x1, 2, ...,x;}, thus we check which of
these variables are already being assigned a value, and compute DECOM POSE(F, [n] —),
where o = a; — 7, the remaining unassigned variables in «; = {21, x2,...,2;}.

e After computing decomposition, we will try to fix the assignments of roots. Let C= {(i'l, ceey C‘g}

be decomposition of set of all clauses of F' with é1, ¢z, ..., ¢g asroots. Let 0o/ = 0¢,,00,,...,04,,
with oz, = O¢;,0¢, - - 0¢;, for some p be such that each o¢; is a partial assignment of root
¢j,1 < j < B3, and this partial assignment satisfies all those literals of root ¢;, that contributes
to ¢;’s rigidity. Let o/ C « be corresponding variables for this partial assignment. Also note
that there will not be any conflict in partial assignment as decomposition classes are disjoint
over variable set a.

e Now in each decomposition class determine if there is a critical clause forced by assignment
Oar- Let ¢, be critical for variable , in class C,. Check decomposition of F w.r.t. [n] — p. This
decomposition can have a single clause ¢,, or a clique K with r vertices. If it is a clique and
rigidity of ¢, is less than r — 1, then do not force the assignment of ¢,, and remove og, from
0o. We continue to do this in the while loop. But notice that this loop will run for at most n.

e clearly the algorithm runs in time polynomial in n and |T|.

1: procedure ENCODE(Input: F,T)

2 y=10

3 for 1 <i<ndo

4: a=q; —7

5 DECOMPOSE(F,[n] — a)

6 ASSIGN values to root such that this partial assignment satisfies all those literals of

each root, that contributes to root’s rigidity
7: UPDATE ~ with new variables o’ C « fixed

On Exponential Time Algorithm for k-SAT 7

8: while There are variables that become critical do
9: Let z,, be the critical variable
10: if =, is not conflicting then
11: vy=yU{x,}
12: else
13: REMOVE those variables in o’ from « which made x,, critical
14: end if
15: end while
16: for each vertex t € T in at level ¢ do
17: if Assignment in ¢ for variables in v does not match with o, then
18: REMOVE that sub-tree rooted at t
19: end if
20: end for
21: end for
22: return encoded T’

23: end procedure

First we will show the correctness of the algorithm above. We need few notions. Under a forced
assignment of the roots of decomposition of F', in every step of the algorithm we fix the assignment
of a set of variables. This also forces some variables to become critical. In the procedure above -y is
the set of variables, whose assignment is fixed in every step. We will call v a cover of [n]. If |y| = d
then we will call v a d-cover of [n]. Since we fix the assignment of all variables in a cover, if the
procedure above produces a d-cover of [n], then number of branches in the encoded tree are at most
27=4_ For the procedure to be correct, it is sufficient to prove that in any step of the algorithm,
there is no clause having variables only in cover v and is unsatisfied by assignment o.,. We will call
such a cover v a good cover of [n].

Claim 3.2. In the procedure above v is always a good cover.

Proof: We will prove it by induction on the invariant that v is always a good cover. If v is a good
cover in step 0 (which is true as v =), and by induction hypothesis we assume that it is a good
cover in step 7 — 1, then it is sufficient to show that after step i it still remains a good cover.

Let us assume that in step ¢ — 1 we consider the set of variables «;—1 = {21, 22,...,2;-1} and
in step ¢ we consider set of variables «; = {21, 22,...,2;}, and o; — a;—1 = {x;}. Let 7 after step
i — 1 be such that z; ¢ v and v C a;_1. It may happen that 7 is not a subset of a;_1 or a; and it
has few more variables outside «;. However, this assumption on v holds for the proof, because, the
only way there can be a variable in v which is outside ¢; is that there exists a clause having variable
in a;—1 N~y for which is is not satisfied and remaining one variable was critical and was forced by
the algorithm.

The way cover -y is expanded at step i is by fixing the value of x; to satisfy a root with z; as
a variable contributing to its rigidity, and if this makes another variable z; critical, then we fix the
assignment of variable x; as well.

By assumption x; is not in y(otherwise, it is part of after step 7 — 1 and claim follows). Thus
x; can be fixed as long as it does not force another variable x; to become critical for more than one
clause with conflicting literals (having x; as literal in one clause and —z; in another and for both x;
is the only remaining critical variable to be assigned). This condition is checked in the while loop
(line 10).]
We have defined |var(c)| as the length of a clause c. We will define a function that captures the
distribution of clauses of different length in a formula F'.

Definition 3.1. Let N;(F') be the number of clauses of length | in F. For k-CNF, No(F) = 0 and
Ni41(F) =0, and Ni(F') has a distribution over 1 <1 <k, with >, -, Ni(F) = m, the number of
clauses in F'. o

8 Subhas Kumar Ghosh

Let us define another function that captures the distribution of the weight of a formula F' over
[n] contributed by various clauses.

Definition 3.2. Let w;(F) denote the number of clauses that has variable x;, under a fized ordering
of the variables. wi(F) = 3 yeequse(r) lvar(c) N{ai}], let po =1/m3 2, wi(F).

Clearly, ;e wi(F) = Xo1<i<p L Ni(F). We next prove our main lemma.
Lemma 3.3. Let F be a satisfiable k-CNF, and F has a rigid monotonic root over [P, P'],P C
[n], P’ C P with rigidity r, such that P' is a good cover. Then there exists a cover of size at most

=

TN (- P -0\
y (e () () (M)
over [P, P'].

Proof: Let N;(F) be the distribution of clauses of different length in a formula F' over [1, k], and let
w;(F) denote the number of clauses that has variable x;, under a fixed ordering of the variables over
[1,n]. Also let p; be the indicator binary random variable for ith variable being fixed with p; =1 if
variable being fixed p; = 0 otherwise. Then

E(|7|)=E< > Pz'): > E(p) (1)

icP—P' ieP—P’

E(p;) = Pr[p; = 1], and it will be sufficient for us to give a bound on this. There are two different
events that fix the assignment of a variable. Either, it happens when we force the assignment of a
root (we shall indicate this by random variable pgorced), Or it becomes critical(we shall indicate this
by random variable peritica1). Then we need to compute, assuming prorced and Peritical are disjoint:

Pr [pi = 1] <Pr [pforced] + Pr [pcritical] (2)

First, we will compute Pr [peritical]. Let 7/ denote the cover in P’. We need to compute over all
clause having variable only in {z;} U+, that are unsatisfied by +/, and the remaining variable is z;,
which does not conflict. To simplify farther consider || = |P’| = ¢, then

k

IN(F) g\t
Pr [pcritical] = ZZ; W (5) (3)
To compute Pr [pgorced|, we want to find out the probability that we can force the value of ;. Which
is the probability of fixing the bit x; while there exists a rigid clause with rigidity r, and forcing the
value of x; does not create any conflicting critical variable. Since +' is already a good cover we look
for clauses that has at least one variable outside the cover and that variable is x;, and it does not
force another variable x; to become critical, which is conflicting. This gives us:
k -1 k -1
INy(F) (n—1 IN(F) (g+1 n—q—1
P orced| — | —— . —_— | — _ 4

F [Prorced] [; rmn n ; 2 n n)

After simplification, we get,

Prip — 1] < [ﬁ <1NZ<F>/m>‘°’] (@) (M) ())

=1

k 3
Since the term U g really the average weight distribution we can take {Z (M) } as a

m m
=1

constant for a formula, and we denote it by 3.

prip = 1< - (4) (1222) (L) ©

On Exponential Time Algorithm for k-SAT 9

and
|P—P’|

B Y |0 () ('P'L”)kz ~ (”(Z;m; “)k @

i=1

Corollary 3.4. Every non-trivial satisfiable k-CNF, over n wvariables and m clauses has a decision

tree with at least
() o) (=25 0

branches, with, § = N{(F) for all 1 <1< k.

Proof: In the main lemma 3.3, considering |P’| = 0, and summing over 1 to n, we get,

o<) (7) 20)

mk—n
n

1=)" () 22 (10)

and by lemma 2.2, that there exists a rigid clause with rigidity r < , we get:

mk —n

with, 8 = N;(F) for all 1 <1 <k, and m = kS and Zle IN/(F)/m = (k+1)/2,we get,

h=(3=)(3) (#) (1)

and there exists constant 0 < ¢; < 1 and 0 < €3 such that

< e (le) (12)

Thus, decision tree will have 2"~ = 2”761(ﬁ) branches.]

4. Algorithm

In this section we provide a deterministic algorithm for determination of a satisfiable solution for a
k-CNF formula. We start with I’ as a root, and form a tree in number of steps. In step ¢ we consider
ith variable. In this step we expand each node of the tree labeled by variable {1, x2,...,2;-1} to
{z1,z2,...,xi—1,x;} such that z; is the ith variable in this ordering. We will use the procedure
ENCODE to reduce the number of possible assignments at each step. Note, we are considering

k2 1 n

one ordering of the variables, and by main lemma 3.3 we will have at least 2n_(2k?) () ((Y)
branches. Problem is what will be the ordering of variables that will ensure that the algorithm
reaches running time close to expected by corollary-3.47 We will consider the following: consider
decomposition of F' with respect to [n] — i, Vi € [n], each decomposition will be a clique. Let x; be
the variable corresponding to which we get a maximum rigid clause. In next step consider {z;, z;},
for all z; # x;, and again take the maximum rigid clause in the decomposition of F w.r.t [n] —iUj
for all j € [n] — ¢. Continuing this way in n steps we will have an ordering of variables such that we
start with maximum rigid clause in every step of the algorithm in the remaining set of unassigned
variables.

10 Subhas Kumar Ghosh

Claim 4.1. If a formula F has a satisfiable assignment which is isolated in the direction P C [n],
and |P|-isolated assignment is the mazimum isolated assignment F can have, then above ordering
of variables will ensure that algorithm will always find the maximum isolated assignment, and the
constructed tree will have minimum number of branches.

Sketch of proof: It indeed follows from the ENCODE procedure that if we force the assignment
of maximum rigid roots then size of the cover is bigger at a higher levels of the algorithm and will
have the least number of branches, also from lemma 3.2 we can show that a good maximal cover
will ensure the maximal isolated assignment as a leaf node. []
The algorithm thus has two phases. Phase one creates the ordering of the variables as described
above and phase two builds the decision tree while encoding the constructed tree in every step.
Note that in corollary 3.4 we choose Ni(F') to be uniform. This gives us the bound stated with
B depending only on k. Our observation is that the complexity of k-CNF is closely related to the
distribution w;(F) and N;(F'), the distribution of weight over variables and distribution of clauses
of various lengths. These two distribution governs the structural property we define here as rigidity,
and our claim is rigidity implies isolated assignments. Deeper analysis of these factors will be our
direction of future works after this preliminary report.

References

[1] S. A. Cook. The complexity of theorem-proving procedures. In STOC *71: Proceedings of the third annual
ACM symposium on Theory of computing, pages 151-158, New York, NY, USA, 1971. ACM Press.

[2] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P. Raghavan, and
U. Schoning. A deterministic (2—2/(k+1))™ algorithm for k-SAT based on local search. Theor. Comput.
Sci., 289(1):69-83, 2002.

[3] L. Levin. Universal'nyie perebornyie zadachi (universal search problems: in russian). Problemy Peredachi
Informatsii, English translation in [8], 9(3):265-266, 1973.

[4] R. Paturi, P. Pudldk, M. E. Saks, and F. Zane. An improved exponential-time algorithm for k-sat. In
FOCS ’98: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, page 628,
Washington, DC, USA, 1998. IEEE Computer Society.

[5] R. Paturi, P. Pudldk, M. E. Saks, and F. Zane. An improved exponential-time algorithm for k-sat. J.
ACM, 52(3):337-364, 2005.

[6] R. Paturi, P. Pudldk, and F. Zane. Satisfiability coding lemma. In FOCS ’97: Proceedings of the 38th
Annual Symposium on Foundations of Computer Science (FOCS ’97), page 566, Washington, DC, USA,
1997. IEEE Computer Society.

[7] U. Schoning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In FOCS ’99:
Proceedings of the 40th Annual Symposium on Foundations of Computer Science, page 410, Washington,
DC, USA, 1999. IEEE Computer Society.

[8] B. A. Trakhtenbrot. A survey of russian approaches to perebor (brute-force search) algorithms. Annals
of the History of Computing, 6(4):384-400, 1984.

Subhas Kumar Ghosh

Honeywell Technology Solutions Laboratory
151/1, Doraisanipalya, Bannerghatta Road,
Bangalore, India, 560076

e-mail: subhas.kumar@honeywell.com

