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Abstract

We derive the optimality results for key pre distribution scheme for distributed sensor networks,
and relations between interesting parameters. Namely, given a key-pool of size n we derive the optimal
value that is jointly achievable for parameters like, Size optimality: using less memory per node - while
supporting large network, Connectivity optimality: possibility of establishing secure communication
between any two nodes over short path, and Resiliency optimality: large fraction of network remains
working under compromise or node capture. We characterize this relation in graph theoretic framework.
Our result shows that the desired graph (a combination of network topology graph on which key-share
graph is embedded) must have small clique and independent set and must have high expansion properties,
in other words Expander graphs are best suited for forming secure networks.

Keywords: key pre distribution scheme, distributed sensor networks, expander graph, combinatorial de-
sign, random key distribution

1 Introduction

Security is an important issue in deploying distributed sensor networks (DSN). One of the approaches
to establish secure communication is constructing protocol based on pre-distributed keys. Basic model
we consider here is key pre-distribution mechanism (KPS) as defined by Eschenauer and Gligor [13] (see
Section-2). Several extensions and variations can be found in the works of Chan, Perrig, and Song [10], Liu
and Ning [17], Du, Deng, Han and Varshney[11], which considers random key pre-distribution mechanism
(randomized-KPS). These works extended the basic random key assignment schemes using conference key
distribution schemes of Blom [4] and Blundo et el [5]. A random subset assignment key predistribution
scheme, and a hypercube-based key predistribution scheme was studied in [19]. A closest pairwise keys
predistribution scheme and a location-based pairwise keys scheme which takes advantage of sensors’ expected
locations was described in [18].

Under the basic model of key pre-distribution mechanism for a secure sensor network, Camtepe and
Yener [6] considered a deterministic pre-key distribution mechanism (deterministic-KPS). Camtepe and
Yener’s method uses block design techniques in combinatorial design theory. Very similar approaches based
on combinatorial design theory are proposed in [16, 15] along with probabilistic approaches yielding hybrid
designs (hybrid-KPS) to support arbitrary network sizes. Recently Chakrabarti, Maitra and Roy [9] con-
sidered combinatorial design followed by a probabilistic merging applied to key pre-distribution in sensor
nodes. They used a transversal design to construct a configuration and then used random merging of blocks
to form sensor nodes providing flexibility in adjusting the number of common keys between any two nodes.

All previous works derive bounds on properties of the network under respective schemes. However, it is
not clear what properties are desired, and what are possible bounds on achievable parameters, as well as their
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relations. This is precisely what we analyze in this work. In this work we consider both randomized-KPS and
deterministic-KPS and look at their optimality for three most desired set of parameters, namely, (i) using
less memory per node - while supporting large network, (i7) possibility of establishing secure communication
between any two nodes in the network over a short path (possibly O (logn), where n is the order of the
network), and (i¢7) resiliency under compromise or node capture. In this work we derive optimality results
for key pre-distribution scheme, and trade-off relations between parameters.

1.1 Contribution

In this paper, we focus on key pre-distribution problem for DSN. We first define the efficiency and security
properties of a key pre-distribution procedure. Then we show how these parameters map to properties of
shared key graph combined with network graph. Our main contribution comes from deriving optimality
results for key pre-distribution scheme on this combined graph expressed as a function of properties of
the resulting graph. We are able to show that if one requires a key pre-distribution mechanism which is
both efficient and secure then combined network graph with shared key graph need to have good expansion
properties.

1.2 Remainder of this paper

In section-2 we define some basic terminologies. We describe random key pre-distribution scheme and show
how a set system or combinatorial design can be used as a deterministic key pre-distribution scheme. In
section-3 we derive optimality results for key pre-distribution scheme. Following which we compare the
derived parameters in this work with other known results in section-4.

2 Key Pre-distribution Mechanism
2.1 Randomized KPS

First we describe the random key pre-distribution schemes. Random key pre-distribution scheme works by
selecting a pool of keys X from some pre-specified key-space of size | X| = n. Each node is then assigned
a random subset of keys generated by sampling X by a fixed number of times [. The idea is that after
deployment, any two nodes can initiate communication with the common key if they have one. Thus a
randomized-KPS is defined by a set X and a family of subsets of X, A = {41, As, ..., A}, where Vi, |4;| =1
is the size of key-ring.

2.2 Deterministic KPS

Now we describe deterministic key pre-distribution schemes. A set system or combinatorial design (X,.A)
consists of a finite set X of elements called points, X = {x1,z2,...,2,}, and a family of subsets of X,
ie. A= {A1,As,..., A}, with A; C X,Vj : 1 < j < m called blocks. If all blocks are of same size,
say [, then (X,.A) is said to be uniform design (of rank ). A set system (X,.A) can be used to design a
deterministic- KPS for DSNs as follows. Let us denote the sensor nodes by U = {uy,us, ..., uy,}. We then
identify each block A; € A with one sensor node u; € U, and we identify the ground set X as the set of n
keys. Then, for 1 < j < m, sensor node u; receives the set of keys in block A;.

2.3 Vital Parameters

Let (X, A) be a KPS (deterministic or randomized). As noted in previous section, several proposals exists
for key pre-distribution in DSN, however, with a possible loss in specific cases, one could unify them. Almost
all KPS has three important design objectives, namely: (1) A pre-distribution of shares, (2) Shared key
discovery, and establishing path keys when two nodes do not share a key, (3) Resiliency of the network
under node capture. We have already described the step pre-distribution of shares. In shared key discovery



phase nodes interact in their neighborhood to assess possible common shares. Hence, possibility of finding
a neighbor having common key depends on distribution scheme, as well as network topology. Objective of
path key establishment is to have a secure communication link between a pair of nodes which do not share
a common key, but through their neighbors with which they have common key they can establish a secure
path. For resiliency observe that when a sensor node is compromised all its I keys will become unusable.
We need to consider how many secure links will still exist in the network. Assume u,, u; and u. are three
nodes sharing a common key. If u. is compromised then u, and wu; can no longer communicate, as their
only common key is assumed to be compromised now, however they may still be able to establish a path
key (with extra communication cost). In sequel we formally define these parameters and conditions under
which we say optimality is achieved.

2.4 Optimality Considerations

For any of the above key pre-distribution schemes, parameters we will be interested about are from two
directions, efficiency, and security. Efficiency in fact captures several aspects of the design. First, for every
network of size m > 1 we must be able to provide a construction using as small share per-node as possible.
We capture this in the following definition:

Definition 2.1. (Share Size Optimal KPS): A key pre-distribution scheme (X, A) with |X| = n, and
|Al = m, where the size of each set A; € A is | will be calld a (m,l,n)-KPS. For a fized |X| = n, a
(m,l,n)-KPS is share size optimal if it achieves minimum | and mazimum m.

Few comments are in place about Definition-2.1. Note that X is identified with the key-pool. Hence,
idea of defining optimality with respect to fixed | X| = n and achieving smallest | and maximum m implies
supporting maximum size network (m) using smallest share size per node (I). A more constructive definition
is indeed possible, where one may require that, given m,[,n and i one can generate the share for ith node
A; efficiently (possibly in time polynomial in (logm,l,n), however we will not consider the optimality issue
from computational perspective in this work.

Second aspect of an efficient design is the ability to form a secure network. As described above this has
two objectives, having shared key in the neighborhood, and having path key between any pairs. Two sensor
nodes u; and u; € U, share a key if and only if A; N A; # 0, and they are neighbors on the network graph.
We would like to have at least one node in the neighborhood for a node with which it shares a key.

Condition to ensure the existence of path key between any pair of nodes is slightly complicated. To be
able to establish a path key between u; and u; € U we must have following: Let P; ; be the set of all possible
paths between u; and u;, then to be able to establish a path key there must be at least one path (denoted
by natural sequence of vertices on network graph) p = w;uy ...u; € P;; such that there is a common key
between every consecutive pair of vertices in p. Formally:

Definition 2.2. (Connectivity Optimal KPS): Let (X,.A) be a KPS (deterministic or randomized).
Then we shall call (X, A) a (¢, k)-connectivity optimal KPS if for any pair of nodes uw and v, the probability
that they can establish a path-key over shortest path of length k is greater than e, where the probability is
taken over all pairwise vertices of the network graph.

Final consideration is the security. Again looking at the key sharing graph and the network graph, we can
estimate that any chosen pair of nodes will not have a secure link when a fraction of nodes are compromised
in the network.

Definition 2.3. (Resiliency Optimal KPS): Let (X, .A) be a KPS (deterministic or randomized). Then
forv,6 € R and 0 <~,6 <1 we shall call (X, A) a (v,0)-resiliency optimal KPS if with probability greater
than v remaining (1 — 8) fraction of the network can establish secure connection even when a § fraction of
nodes are compromised.

Following Table (Table-1) lists the parameters.



Table 1: Design Parameters

Parameter Meaning Objective
n Key-pool size Fixed
m Network size Maximize
l Share size Minimize
€ Key sharing probability Maximize
k Key path length Minimize
¥ Resiliency Maximize
1) Fraction compromised Maximize

3 Optimality of KPS

We have described the set of desired properties of key-pre-distribution scheme for a DSN. Next we will
derive the condition that achieves the optimal values for the set of parameters as described in definition-2.1,
definition-2.2, and in definition-2.3. In following we shall denote the key sharing graph by G with a associated
set-system (X,.4). We shall also by H denote the network graph of the sensor nodes. Graph G has vertex
set A, and two vertex A; and A; are connected by an edge iff A; N A; # 0.

Modeling H is somewhat delicate. Since sensor nodes are randomly deployed in a geographic region, it
might appear a random graph might be suitable as a network model. In their work Eschenauer and Gligor
[13] considered random graph model and used classical result of Erdos and Rényi [12] on connectivity. Erdés
and Rényi model allows one to relate local connectivity(i.e., the probability that two nodes are connected)
and the global connectivity (i.e., the probability that the whole network is connected). However, model
used in [13], and many other subsequent works on randomized-KPS has been questioned recently ([14, 21]),
as most of these works assumed that the underlying physical network is dense enough to enable their key
pre-distribution to be effective. This issue can be stated as follows: assuming sensors are deployed in a
two-dimensional plane, by placing each node uniformly and independently at a random location, let us also
assume that nodes can transmit at various power levels, then a combination of these two factor determines
the relation between global vs. local connectivity. As an example, if we assume that the given network is
connected - what can we say about the degree of each node?

To characterize H we will use a result of Xue and P. R. Kumar [22]. Let S be a unit square in IR?, and
suppose n nodes identified with set V' : |V| = m are placed uniformly and independently in S. Then H is
the network graph formed when each node is connected to its neighborhood. More precisely, there exists
an edge between u,v € V if when u € A (v), where Yu € V, N (u) a {v: (u,v) € E}. We also assume this
implies v € N (u), in other words we consider undirected network graphs. If Vu € V,|N (u)| = ¢, then
main result by Xue and P. R. Kumar can be stated as:

Theorem 3.1. [22] :For H (m, ¢,,) to be asymptotically connected, © (logm) neighbors are necessary and
sufficient. Specifically, there are two constants 0 < ¢1 < co such that:

lim Pr[H (m,c1logm) is disconnected] = 1 and (1)
lim Pr[H (m,cologm) is connected] = 1. (2)
m—00

It is possible to choose ¢c; = 0.074 and co = 5.1774, however the critical value of the constant is unknown.

With Theorem-3.1,when we write H, we will essentially mean H (n, ¢,,), where ¢,, is of order © (logm).
Given G = (V, E) and H = (V,T) (note, both of them are defined on the same set of vertices), to “embed” G
over ‘H we consider the product G- H - defined as the graph whose vertex set is the Cartesian product V' x V
in which vertices (u,v) and (u',v’) are adjacent if u,u’ are either equal or adjacent in G and v, v’ are either
equal or adjacent in H. Observe that when (u,u’) has non-empty intersection on G and (v,v’) are adjacent
on H, (u,v) and (v,v’) has a secure link on G - H.



3.1 Outline of Proof

Now observe that in order to establish the optimality of the desired parameters, we need to express them in
terms of the properties of the graph G - H. Our proof is based on techniques used in [1] and also following
methods and tools used by Alon in [3]. This method (dimension argument) can be described as follows. We
wish to bound the size of some finite combinatorially defined set of objects A. To do this, we first map the
elements of A to a linearly independent set of vectors in some vector space V. Then we apply the dimension
argument: |A| < dim V. On this direction we will take following steps:

1. First we will require a common mechanism to represent G and H. We will do this by considering a
subspace of the space of polynomials in m variables over R. A representation of a graph of order m over
such subspace is an assignment of a polynomial f, to each vertex v along with a point of evaluation
of the polynomial ¢, in R™ to each vertex such that f, (¢,) # 0 but if (u,v) € E(G) then f, (¢,) = 0.
To combine G and ‘H we consider the Tensor product of corresponding vector spaces which represents
G and H, and obtain a combined graph as tensor product G - H.

2. Once we have a representation of the graph G - H we derive the desired parameters expressed in terms
of the vector space representing G - H. A simple proposition suggests that in order to ensure any two
node have a secure key-path, they must be in same connected component of the product graph G - 'H.

3. We consider G - H as a d-regular undirected graph (we justify this choice). Now we observe that a
graph is connected iff its second largest eigenvalue of the adjacency matrix A is greater than 0 (first
eigenvalue \; is same as the degree d), and Ay > As.

4. This characterization allows us to choose [ optimally so that the graph G - H is connected, and based
on which we derive other parameters.

3.2 Combining Graphs

In following to present our results, we first provide a geometric view of the combined key sharing graph
G and network graph H. Let G = (V, E) be a graph of order m and let F be a subspace of the space of
polynomials in m variables over IR. A representation of G over F is an assignment of a polynomial f, € F
to each vertex v € V along with an assignment of a point ¢, € R™ to each v € V such that following two
conditions hold:

1. For each v € V, f, (¢y) # 0.
2. If (u,v) € E(G) then f, (¢,) = 0.

We need few notations first. Let [n] = {1,2,...,n}. With each set A; C [n] we associate its characteristic
vector v; = (Vi1,0i2,...,0in) € IR™ where vij = 1if j € A; and v;; = 0 otherwise. For z,y € R", let
z-y =Y z;y; denote their standard inner product.

Lemma 3.1. Key-sharing graph G (m,l,n) has a representation over P, where P is a subspace of the space
of polynomials in n-variables of degree at most I — 1 over R.

Proof. Let (X, .A) be the KPS. G has vertex set V (G) where each v € V (G) can be identified with a subset
A; C X, and |4;| = . Let Ay, As,..., A, be the vertex set of G. By construction, in the vertex set of G,
between vertex A; and A; there is an edge iff |A; N A;| # 0. Using notations defined above clearly we have

v; - v; = |A; N Aj|, where v is the characteristic vector of set A. For i = 1,...,m, for each A; € A let us
define the following polynomials P; (x1,...,x,) on n variables:
N -1
Vi:l<i<m,Pi(x1,...,2,) = in—k
k=1 \jEA;



For each set A; let us assign polynomial P; and a point ¢; = v;, the characteristic vector of the set A; to
vertex i. Clearly,

Vi:1<i<m,P(¢;) # 0, and
V’L,jlg’t#jgm, andAiﬁAj;é@,Pi(cj) = 0.

Let p; be the multilinear polynomial obtained from the standard representation of P; as a sum of monomials
by using, repeatedly, the relations 27 = z;. Since the vectors ¢; = v; have {0, 1} coordinates, p;(c;) = Pi(c;)

2=
for all A; and A;, and graph G has a representation over P, where P is a subspace of the space of polynomials
in n-variables. Also observe that the degree of multilinear polynomial deg (p;) < I — 1, completing the

proof. O

For a graph G = (V, E) define neighborhood graph NB(G) as: Vi € V (G) let N; = {j : (i,7) € E(GQ)},
then NB (G) = (VNBaENB) VB = {M}ViGV(G) and (./\/“./\/‘J) € Eng — M ﬂ./\/’j 7é 0.

Lemma 3.2. Let H (m, ¢m) be a network-graph, then NB (H (m, ¢m)) has a representation over Q, where
Q is a subspace of the space of polynomials in m-variables of degree at most ¢,, — 1 over IR.

Proof. Recall, ¢, is the cardinality of neighborhood for every vertex i € V (H), and observe that for the
graph ‘H to be disconnected, following must hold:

1. Vi e V(H),|N;| = ém, and

2. There exists at least two connected component Hy = (Vi, Ey) and Hy = (Va, Es), such that V (H) =
ViUV, ViNVe =0, and E(H) = E; U Fs.

For each vertex i € V (H) define neighborhood of i as the set A;. For the neighborhood of each vertex

1 <4 <m,N; let us define the following polynomials Q; (y1,- .., Ym) on m variables:
¢m_1
. . A
Vi:1<i<m,Q;(yi, ---,Ym) = H Zyj—t
t=1 jENi

For each set N let us assign polynomial @Q; and a point d; = v;, the characteristic vector of the set N;.
Lemma follows using similar argument as above considering space of multilinear polynomials ¢; of degree

Lemma-3.2 is for the neighborhood graph of H. While we need to show that H has a similar property.
Following lemma asserts that.

Lemma 3.3. H (m, ¢,,) has a representation over Q iff NB (H (m, ¢p)) has a representation over Q and
H (m, ¢p) is connected, moreover Q is a subspace of the space of polynomials in m-variables of degree at
most ¢, over R.

Proof. By Lemma-3.2, NB (H (m, ¢.,,)) has a representation over Q as

¢Gm—1
H Zyj—t ,dZZEV(H)
t=1 \jeN;

Then we can represent H over Q by considering

¢Gm—1
Qi=wi- [T | Y wi—t] 00,1007 +di:ieV(H)
t=1 JEN;

for ith vertex in V (H), only ith entry of the vector v; = (0,0,...,1,... ,O)T is 1 and other entries are 0.
Observe that Q) (v; + dj) # (0 <= i =j. Also, polynomials are defined over the space @ and have degree
at most ¢p,. O



Lemma-3.1 and Lemma-3.3 provides a characterization of the graphs G and H as a vector space of
polynomials P and Q over the same field, and we can combine them now considering the space spanned by
the polynomials p (z1,22,...,2n) - q (Y1,Y2,---,Ym) where p € P and ¢ € Q using tensor product P @ Q of
the two vector spaces. We have the following lemma.

Lemma 3.4. [3]: Let G = (V,E) and H = (V,T) be two graphs. Assume G has a representation

{pv (1, 22,...,21),¢p : v €V} over P and H has a representation {qu (y1,Y2,..-,Yr),dy : u € V} over Q,
where P and Q are spaces of polynomials over the same field R.

Then {py * qu, cody : (v,u) € V x V'} is a representation of the graph product of G and H as G-H over PR Q,
where c,d, denotes the concatenation of ¢, and d,.

Proof. Observe, for every ((u,v), (u/,v')) €V xV,
Pv - Gu (Cv’du/) = Do (Cu') m (du/) .

Product is non-zero when ¢,d,, = ¢,yd, and it is zero when ((u,v), (u’,v")) is an edge. Hence this is indeed
a representation of G - H over P ® Q. O

3.3 Expressing Parameters by Properties of Product Graph

While, we have a characterization of the graph H to be connected by Theorem-3.1, we need to establish
such criteria for the graph G - H in terms of ¢,, and [. Observe that, by Theorem-3.1, choosing ¢,,, we can
ensure connectivity of the network graph H and also there exists a choice of [ (though smallest { which will
ensure connected graph might not be trivial to derive) which ensures the connectivity in key-sharing graph
G, we need to establish a condition on the product graph G- H such that any two node can establish a secure
key-path. Following proposition provides a necessary condition for that.

Proposition 3.1. Let H be the network graph and let G be the key-sharing graph. On H any two vertices
u and u' can establish a secure key path p = wuy ...upu’ such that there is a common key between every
consecutive pair of vertices in p iff product graph G -H has a connected component T = Vp, Ep and vertices
(v,u) and (v',u') such that both (v,u), (V' ,u’') € Vr.

Proof. Proof of this proposition is straightforward. First note that a connected component of a graph induces
a partition on its vertex set. Now, between two vertices (v,u) and (v’,u’) on the product graph there is an
edge, iff (v,v’) is an edge in G and (u, u’) is an edge in H. Extending it for path is simple and we omit it. [

We can use the simple proposition for choosing ¢,, (we will do that as per Theorem-3.1), with a bound on
I so that G- 'H is connected. However, to make things simpler, we would like the graph G - 'H to be d-regular,
for some d > 0. Recall, a graph G is d-regular when every vertex in G has exactly d neighbors. Justification
for this choice can be found in the following proposition:

Proposition 3.2. For every integer m,d > 0, if there exists a graph on m wvertices with average degree
d(G) = d, then there exists a d-regular graph G' which is at least as much optimal (connectivity, and
resiliency) as much G is.

Proof. Let G’ be a d-regular graph which is (¢, k')-connectivity optimal, and (7', ¢’)-resiliency optimal. We
need to show that for any G with average degree 6 (G) = d, such that G is (e, k)-connectivity optimal, and
(7, d)-resiliency optimal. Then when k = k’ we have € < ¢/. Similarly, when § = ¢’ we have v < ~/'.
Connectivity:

e = Pryeq[3 apath of length k& between u, v]
= Pry.ea [(u,v) ek (Gk)]

Pr, wea {(u,w) cFk (GUC/Q])} Pr, wec [(w,v) <D (GU“/ZJ)]
(Pru vec (W, v) € E(Q)"
(Pry wec [(u,v) € E (G’)])k < (Pru,UeG/ [(u,v) €eE (G’k)]) <¢

IN



Where, the third line follows by considering the probability that there exists a t < k and a vertex w such
that (u,w) € F(G') and (w,v) € E(Gk_t), and repeating it (G” is the rth power of G, where every
r length path in G is an edge in G"). Inequality follows from the fact that Pr, ,cc [(u,v) € E(G)] <
Pr, vec [(u,v) € E(G')], by noting a regular graph induces uniform probability distribution and G has
average degree equal to d. A similar result can be obtained for resiliency. O

Now our objective is to choose a bound on [ so that graph G - H is connected. We have ¢,,, = O (logm)
and we will assume that the combined graph is regular, and we are sure by Proposition-3.2 that this will not
be any loss of generality.

Lemma 3.5. If ¢,,, = © (logm) and Il > O (1) then graph G - H is a (m,d, \)-connected graph with number
of vertice m = (en/l)!, degree d = 2llogen/l, and expansion ratio 1 — .

Proof. We first present a result for a graph G = (V, E) of order m which is d-regular, and then extend it to
our graph G-H. Let Ag be the m x m symmetric adjacency matrix of a graph G. Ag is real and symmetric,
and has m real eigenvalues which we denote by Ay > Ao > ... > \,,. An associated orthonormal system of
eigenvectors are vy, ..., v, with Av; = \;v;. Note that A\; = d, and it is obtained for all one vector 1. Note
that eigenvalues are closely related to connectedness of a graph. A graph is connected iff Ay > Ay,

Let S C V (G) be a subset of the vertex set. A cut of G is S C V (G) such that |E (S, 5)| =e(5,5) =0,
where for any S C V (G) by S we denote the set V'\ S, and E (X,Y") denotes the set of cross edges between
X,Y C V(G). We note that a graph is connected iff it has no cuts.

Consider vector v = |S|vs — |S|vg, where vx € {0,1}™ denotes the characteristic vector of set X.
Clearly v L 1, and

2 512 215 G G G
V™ = IS IS1+ IS [S] = [S[IS] (|81 + [S]) = mS][S]
Also,
vav? =2 (|E ($)][S]* +|E (S)|151 - I51|S] | E (S, 5)])

As, G is d-regular so substituting 2|E (S)| = d|S|— |E (S, S)| and 2|E (S)| =d|5| - |E (5,5)

, we obtain:
vAVT =md|S||S| — m?®|E (S, 5)]
This allows us to compute A2 by computing the Rayleigh quotient:

vAv' _ m|E(S.9)]

> = —
LT vIP 15[[3]

>d—2|E(8,8)| /S|, with [S] < m/2

Now observe that we have Ay = d > Xy > d—2|E (S, 5)|/|S], in order to ensure that the graph is connected.
Hence for every S C V (G),|S| < m/2, we must ensure that the term 2|E (S, 5)|/[S] is away from 0, but
less than d. Define A
h(G) = i E(S,S S|.
(@)= min |E(S.5)]/1S]
as the expansion ratio of graph G. Define a graph G with Ao/d < A: A < 1 as (m,d, \)-graph G. We have
following claim:

Claim 3.1. If G is an (m,dg, Ag)-graph and H is an (m,dp, \p)-graph, then G -H is an
(m?, dydp, max (Ag, Ap))-graph.

Proof. Considering the normalized adjacency matrix of graph G and H and observing that normalized
adjacency matrix of graph G - H is the tensor product of these two matrices. Thus eigenvalues are pairwise
products of eigenvalues of G and H. Largest eigenvalue is thus 1 -1, and second largest eigenvalue must be
either 1- Ay or Ay - 1. O



To obtain a bound on [ we must relate h (G - H) to I. By the last paragraph, it will sufficient for us to
consider G as an (m,dg, \g)-graph with \; > X\,. Let d be the degree of G - H, and choose d; = d/d) =
d/logm, note that this choice is feasable by Lemma-3.4. Thus we have h (G -H) > d(1 — A;) /2logm. On
the other hand if I < n/2 size subsets of [n] are chosen, then degree of any vertex on G can be at most

-1 .
n en
> (7)< (7)
; { l
i=1
We can possibly support large network (i.e. have a large m) if we allow large degree, but our objective will
be to have a low degree graph with good expantion ratio. This implies d must be of order O (logm). This
gives us the (m,d, \)-connected graph with number of vertice m = (en/l)l7 degree d = 2llog (en/l), and
expansion ratio 1 — A\, when [ = O (1).

O

3.4 Optimality Results

Now we establish bounds on the desired parameters. Intuitively, on the product graph G - H vertices can
establish secure link directly (resp. by a key path) if they have an edge (resp. they are in same connected
component). Notice that all vertices that belongs to a clique on product graph G-H has pair-wise secure link.
Thus cliques on this graph ensure more number of secure connectivity. On the other hand when a vertex is
compromised, all other vertices belonging to the same clique are also compromised, thus larger independent
set ensures more resiliency. This seems contradictory - but not so, when graph has small cliques and many
of them. Concretely, if there is no small set S for which G - H \ S has one very large component and many
small ones then both requirements are met. In other words we show that graph having neither large clique,
nor large independent set are best for product graph G - H if they also have good expansion ratio. We note
the following fact (known as Expander Mixing Lemma) implying large expansion ratio implies the graph is
nearly random:

Lemma 3.6. Let G = (V, E) be a d-regular graph. Then for all S,T CV (G):

15,71 - LT <, s ®

Now we need to answer the following question concerning definition-2.2: for a randomly chosen pair of
vertices u and v, what is the probability that they have a path of length k.

Lemma 3.7. Let G-H be a ((en/l)l ,2l1og (en/l), )\) graph, then corresponding KPS is
(O (logn),O0 (1)) - connectivity optimal.

Proof. The distance d(u,v) between vertices v and v in a graph G = (V, E) is the length of the shortest
path between them. The diameter of G can be defined as max, , {d(u,v)}. Also B(u,r) = {v: d(u,v) <r},
is the ball or radius r around w. We claim that an (m,d, A)-graph G has diameter O (logm). This follows
from fact that |B(u,r)| > m/2 for every vertex u and some r € O (logm). This, in turn follows from G’s
expansion properties. Namely, we show that |B(u,r +1)| > (1 4 ¢€) |B(u, )| for some fixed € > 0 as long as
|B(u,r)| < m/2. We have by Lemma-3.6 that |E (S,5)|/|S| < d- (|S|/m+ A) for every set S. Therefore,
|E(5,8)]/15] = d-((1=X)—[S|/m). But S has at least |E (S, S)|/d neighbors outside of itself, so the
claim follows with e = 1/2 — \.
Now to compute connectivity parameter, we note following;:

Pr, , [u and v has path of length k£ < O (logm)] > O (1)

Similarly, for resiliency:



Lemma 3.8. Let G- H be a ((en/l)l ,2llog (en/1), )\) graph, then corresponding KPS is
((1=46/[(1 = X)llogn]),0d)-resiliency optimal for all § > 0.

Proof. 1t is sufficient for us to to estimate the probability that dm is a cut on the product graph G - H, i.e.:

v = Pr,,[u,v has path when ¢ fraction of nodes are compromised ]
> 1—Pr[ém is a minimum cut |
_ g om
md (1 — X)

Finally, we combine Lemma-3.5, 3.7 and 3.8 to obtain the following theorem:

Theorem 3.2. There exists a KPS with

n size key-pool, m = O (nl) size network, 1 > O (1) size key ring,
k=0 (logn) with e =0 (1),

vy=(1-=46/[(1=X)llogn]) with § fraction compromised nodes.

4 Concluding Remarks

In this work we have introduced a realistic model to analyze the efficiency, connectivity and security prop-
erties of any key pre-distribution mechanism for DSN. Under this model local vs. global secure connectivity
properties has been analyzed using novel linear algebraic methods, and optimality trade-off has been ex-
pressed in terms of the expansion properties of the underlying graph. This is, to the best of our knowledge
first such asymptotic analysis considering joint optimality and trade-off between storage, connectivity, and
resiliency at the same time. Our results are existential, and suggests that the product graph G - H shall have
good expansion properties to achieve optimal parameters. While a graph can be connected with a bottleneck
set S which is small and G \ S has one large connected component and many small components. This will
not be good for constructing a secure sensor networks. As compromising S will be sufficient to ensure a
non-functioning network. It is desired that the product graph G - H shall be a expander graph(c.f. [2], A
graph G = (V, E) is e-edge-expanding if for every partition of the vertex set V into X and X = V \ X,
where X contains at most a half of the vertices, the number of cross edges e (X , X ) are greater than € |X|)
. Challenge for DSN is following. One need to design a KPS such that when H is a randomly generated
network, embedding G on H shall ensure a e-edge-expanding graph G - H for some € > 0, and € is bounded
away from zero as m, the order of graph grows. Finally, we note that a complementary thought was explored
in [20], where authors have shown that some topologies arising naturally in the context of (secure) wireless
networking are low-degree, expander graphs. Another interesting recent result strengthens our thought is
[8]. In [8], authors have presented a deterministic key distribution scheme based on Expander Graphs. Their
paper shows how to map the parameters (e.g., degree, expansion, and diameter) of a Ramanujan Expander
Graph to the desired properties of a key distribution scheme for a physical network topology. In other words
their work is complementary to this work in exhibiting an explicit example of designing deterministic-KPS
using Expander graphs.

We conclude this section with comparison of parameters derived in this work with some of the existing
works. It must be noted that there are significant tradeoffs between the parameters we have discussed. Also
it must be noted that each of these works improve on one or more parameters while loosing on the other.
What we derive in this work is the optimal value that is jointly achievable for parameters. We refer reader
to an excellent survey on key distribution mechanisms by Camtepe and Yener [7]. Following table (Table-2)
lists design parameters derived in this work along with (a) exhaustive pair-wise key distribution scheme,
(b) basic probabilistic scheme of [13], (¢) random pair-wise scheme of [10], and (d) symmetric BIBD based
deterministic scheme of [6].
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Table 2: Comparison of Design Parameters

Solution Ref. n m l k € vy )

Exhaustive Pair-wise | Folklore - n | 2(n—1) d O O(1) any

Probabilistic [13] n - 2l d | sl oy |-

Random Pair-wise [10] n - 2np d D 0 (1) any

symmetric BIBD 6] n“+n+1|n*| n+1 d O(1) 1/n -

- this work n n! 0(1) logn o) 1- % 4]
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