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Abstract— In wireless sensor networks, minimizing power
consumption and at the same time maintaining desired properties
in the network topology is of prime importance. In this work, we
present a distributed algorithm for assigning minimum possible
power to all the nodes in the wireless sensor network, such that
the network is K-connected. In this algorithm, a node collects
the location and maximum power information from all the nodes
in its vicinity, and then it adjusts the powers of the nodes in its
vicinity in such a way that it can reach all the nodes in the
vicinity through K optimal vertex-disjoint paths. We prove that,
if each node maintains K optimal vertex-disjoint paths to all
the nodes in its vicinity then the resulting topology is globally
K-connected, provided the topology obtained when all nodes
transmit with their maximum power Gmax is K-connected. This
topology control algorithm has been extended to mobile scenario
and the proof of connectivity in the mobile scenario has been
presented. Simulation results show that significant power saving
can be achieved by using this algorithm.

I. I NTRODUCTION

A Wireless Sensor Network (WSN) is composed of a large
number of sensor nodes deployed arbitrarily in a two (or
three) dimensional region. A limited-power battery fulfills the
power requirement of a node. When this battery is completely
discharged the node is no longer capable of transmitting or
receiving any signal. So power is a valuable resource for sensor
nodes. It is desirable that the nodes transmit with minimum
possible power, so that the lifetime of the WSN is prolonged.

The main goal of the topology control is to assign power to
all the nodes in the network, so that a few desired properties
are maintained globally. One-Connectivity or simply Connec-
tivity has been widely considered to be the required property
that should be maintained in the WSN [10], [11], [12], [7].
Attempts have been made to assign minimum power to all the
nodes in the network to ensure the global connectivity of the
network. As low cost sensor nodes powered by limited-power
battery build the sensor network, there is a high probability
of a node failure. If between any two nodes there is only one
path, then the absence of any one node in that path implies
that there is no other way of communication between that pair
of nodes. So, it is desired that there be more than one vertex-
disjoint path between any pair of nodes, i.e., the more general
problem ofK-Connectivity be attended.

Minimum power assignment problem can be of two types:
Homogeneous power assignment and heterogeneous power
assignment. In homogeneous power assignment all nodes
in the network are assigned the same power to maintain

the connectivity (orK- connectivity) of the network. In
heterogeneous power assignment problem, nodes present in
the network are assigned minimum possible power so that
the desired connectivity is maintained. Heterogeneous power
assignment algorithms offer more energy-efficient network
than the homogeneous power assignment algorithms. In this
paper, we consider heterogeneous power assignment algorithm
in wireless ad hoc networks.

A topology control algorithm should be fully distributed
and asynchronous, and rely on local information only. Another
important consideration of the topology control algorithm is
the symmetry of the communication graph. As every node
maintains some desired link to other nodes in the network, it
is natural that resultant topology is not symmetric. Technical
feasibility of implementation of wireless unidirectional link
was supported by Pearlman et. al. [14], Bao and Garcia-Luna-
Aceves [1], Kim et. al. [6], Prakash [15], and Ramasubra-
manian et. al. [16]. But, Marina and Das [13] showed that
according to the performance, symmetric network topology is
superior to the asymmetric one. However, the capability of
forming a topology that consists of only bidirectional links
is important for link level acknowledgments and packet trans-
missions/retransmissions over the unreliable wireless medium.
Bidirectional links are also important for floor acquisition
mechanisms such as RTS/CTS in IEEE 802.11. So it is desir-
able that the topology is composed only of the bi-directional
links.

Another important aspect of the topology of the sensor
network is the average node degree. The node degree is defined
as the number of nodes within the transmission radius of a
node. Average node degree is an good indication of the level
of MAC interference, and better spatial reuse. The smaller the
degree of a node, the less number of nodes its transmission
may interfere with.

This paper has been organized as follows. In section II we
recall the works that have been carried out in this field. In
section III we describe the system model and the assumptions
that we have considered to design the distributed algorithm,
and formally define the problem. In section IV we present
the proposed distributed algorithm and prove the connectivity
result for the static sensor network. In section V we describe
how the distributed algorithm can be easily extended to handle
mobile scenarios and present the connectivity results in mobile
scenarios. In section VI we present the simulation results to



show the performance of the proposed algorithm and compare
it to the existing best algorithm for this problem. In section VII
we finally conclude the paper.

II. BACKGROUND

The problem of maintainingK-connectivity in the net-
work assigning approximately minimum possible power to
all the nodes has been attended in a few previous works.
Bahramgiri et. al. [2] used the cone-based topology control
(CBTC) algorithm [10] to getK-connectivity in the global
network. As the CBTC algorithm this algorithm also deals
with homogeneous network which may not be the case in
all practical purposes [9], [18]. A hybrid topology control
framework, Cluster-based Topology Control (CLTC) algorithm
for gettingK-connected network has been proposed by Shen
et. al. [20]. Their algorithm is not a fully distributed one.
Chen and Son [4] present a fault-tolerant topology control
by adding necessary redundant nodes to the network’s simple
communication backbone with a distributed algorithm. But it
may not always possible to add redundant nodes to the existing
sensor network. Li and Hou [8] presented the fault-tolerant
topology control algorithm in which all nodes compute the
spanning subgraph locally, where an edge is added to the local
spanning subgraph if the two endpoints of the edge are notK-
connected, and it has been proved that the global network is
K-connected. Their algorithm considers heterogeneous power
assignment, and the final topology contains only bi-directional
links. The algorithm in [8] out-performs the algorithm pre-
sented by Bahramgiri et. al. [2].

Li et. al. [10] showed how cone-based algorithm can be
adapted in network reconfiguration and mobile scenario. It
is shown that if the topology ever achieves stability and the
reconfiguration algorithm is executed, then network connec-
tivity is maintained. Bahramgiri et. al. [2] adapted the same
reconfiguration algorithm to preserveK-connectivity in case
of network reconfiguration and mobile scenario. In [18], it is
argued that mobility resilient topology control protocol should
require little maintenance in the presence of mobility. In [18],
Topology control protocols are classified into two types: P1
and P2. Protocol P1 builds the topology in the distributed
manner and sets the nodes transmission power accordingly.
In protocol P2 every node tries to maintain some number
of neighbors in its vicinity according to some criteria. The
algorithm presented by Li and Hou [8] is an example of
protocol P1, whereas the algorithm presented by Bahramgiri
et. al. [2] is an example of protocol P2. The reconfiguration
procedure for protocol P1 is more complicated than that for
protocol P2. Maintaining the MST in mobile scenario demands
the algorithm to run frequently, as the absence of one edge
from the topology graph may make the topology disconnected.
On the other hand maintaining a number of neighbors at a
particular cone as done in [2] is easier than protocol P1.
Though the algorithm presented by Li and Hou [8] is very
efficient for static network, but it is not advantageous in mobile
scenario.

In this work, we have proposed a novel distributed algorithm
for topology control in static sensor networks, that can be
easily extended to mobile scenario. We have compared our
work to that of Bahramgiri et. al. [2] and our algorithm
outperforms the algorithm presented in [2] both in terms of
average assigned power to the nodes, and average degree of
the nodes.

III. SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we describe our system model. In this model,
each sensor node is equipped with an omnidirectional antenna.
The transmitting power for a sensor node can be adjusted to
a desired value. In ideal case, if a node transmits with power
r2 then all nodes in the sphere of radiusr, with the node at
center, can receive the transmission. However depending upon
different kind of noise present in the transmission medium,
the transmission power required for a node to reach up to a
distancer is proportional torα, where2 <= α <= 5, α is
calledpower attenuation exponent[5].

In our system model, we assume that every nodei knows
its location (xi, yi). Pmax

i is the maximum power available
at nodei at a given instant of time. The nodes present in
the network may have different maximum powers.Pij is the
power needed to reach from nodei to nodej. If the Euclidian
distance between nodei and nodej is rij , thenPij = rα

ij . It
is assumed that the transmission medium is symmetric, in that
case,Pij = Pji. If for two nodesi andj, Pmax

i >= Pij and
Pmax

j >= Pij then we consider that there is an edge between
nodei and nodej, and we denote the edge by{i, j}. For any
i, j, if Pmax

i 6= Pmax
j andPmax

i >= Pij > Pmax
j , then there

will be an arc fromi to j, but no arc fromj to i. So there will
be an asymmetric link betweeni to j, which is, say, denoted by
the directed link

−→
Lij . When that is the case, we consider that

no edge is present between nodei and nodej. In this way,
the topology when all nodes transmit with their maximum
transmission power is an undirected graph composed of only
bi-directional edges. We call this graph themaximum topology.
Let it be denoted byGmax = (V,E), whereV is the set of
nodes in the network andE denotes the set of all edges when
all nodes are transmitting with their maximum power. The
objective of the distributed topology control algorithm is to get
minimum power topologyG∗k which is stronglyK-connected,
providedGmax is stronglyK-connected.

Hajighayi et. al. [5] introduced the notion of power cost
and normal cost of a topology graph. For an undirected graph
G = (V, E) with edge costpij , the power cost ofG is defined
as

P (G) =
∑

iεV, j|(i,j)εE
max pij (1)

For a graphG = (V,E) with edge costspij , the normal cost
of G is defined as

C(G) =
∑

(i,j)εE

pij (2)

Taking these two as the functions to be optimized, two differ-
ent optimization problems have been defined. These problems



are called Undirected Minimum PowerK-vertex connected
Subgraph (K-UPVCS) problem, and Undirected Minimum
CostK-Vertex Connected Subgraph (K-UCVCS) problem.

Though we are dealing with heterogeneous networks we
can use any of these two functions to optimize the power.
In [21] Wieselthier et. al. introduced the concept ofWireless
Multicast Advantage(WMA) and applied the energy saving
potential of WMA to the minimum energy broadcast and
multicast problems. Srinivas et. al. [19] showed that with
WMA, the energy cost function becomes a function of a node-
based metric, where it is enough to consider the power cost
of the topology as the optimization function. In this paper, we
consider theK-UPVCS problem. We define our problem as
follows:

Assign minimum possible power to all the nodes (not
necessarily equal) so that if all nodes transmit with their
assigned power then the network will be globallyK node-
connected. Mathematically,

Objective : Minimize
∑

iεV Pi, where Pi is the assigned
power to nodei.

Subject to The graphG∗k beingK-connected.

IV. D ISTRIBUTED TOPOLOGY CONTROL ALGORITHM

The algorithm presented here is a distributed algorithm
that every node runs depending on its locally accumulated
data. When all nodes finish running the algorithm, they
are assigned with approximately minimum power and the
resulting network topology becomes globallyK connected.
The algorithm runs in three phases. At any generic nodei
the algorithm is as follows:

Phase 1: Information collection and Finding the vicinity
topology
Node i broadcasts aHello message using its maximum
transmission powerPmax

i . The set of nodes that receive the
Hello message and nodei itself is referred to as thevicinity
nodesof node i, denoted asVi. Hello message includes the
id of the transmitting node, its location and maximum power.
The format of theHello message from nodei is as follows:

< Hello, i, (xi, yi), Pmax
i >

Upon receiving such aHello message, each nodej in Vi replies
to nodei with anReplymessage, with its location(xj , yj) and
Pmax

j . The format of theReplymessage from nodej to node
i is as follows:

< Reply, j, i, (xj , yj), Pmax
j >

If any nodej in Vi has maximum power less than the power
required to send a message to nodei, i.e., Pji > Pmax

j ,
then,j must find a multi-hop path to reachi. In this case, its
neighboring nodes help it by forwarding theReplymessage.

After sending theHello message a node waits for a
predefined amount of time to get the reply messages. When
that time is over nodei computes its vicinity topology

Fig. 1. Illustrating the suboptimal power assignment obtained by the
algorithm in [12] for K=1.

according to the gathered information. After getting theReply
messages from all the nodes in its vicinity, nodei knows
the location and maximum power of all the nodes in its
vicinity. Having the knowledge of the locations and maximum
transmission powers for itself and all its vicinity nodes, node
i can derive the existence of the vicinity edges, and thus
the vicinity graph. For any two nodesj, k ∈ Vi, {j, k} is
defined as one ofi’s vicinity edges, ifPmax

j >= Pjk and
alsoPmax

k >= Pjk. Consequently, nodei constructs its local
vicinity topology that includes all its vicinity nodes, itself and
the discovered vicinity edges. If nodei’s vicinity topology
is denoted asGi and the collection of its vicinity edges is
denoted asEi, then we obtain a weighted, undirected graph
Gi = (Vi, Ei), where the weight of each edge,w(i, j), is
the power required to reachj from i on the edge{i, j},
equivalent toPij .

Phase 2: Construction of the minimum-power vicinity
topology
Node i finds out K vertex disjoint paths to all the nodes
in Vi according to some optimality criteria. The optimality
criteria should be such that the power assigned to the nodes
is minimized. In [12] the path cost, i.e., the sum of the
weights of the edges on the path has been considered to be
the optimality criteria to choose a path between two nodes,
and shortest path algorithm was used to find out the best path
in between two paths. But in [17] it was shown that only
considering the path cost may produce sub-optimal result, and
in support the following example was presented. Consider a
situation in which there are three nodes forming a triangle
as shown in the Fig. 1. By running shortest path algorithm
the nodesi, j and k will be assigned power 5, 5, 4, where
in fact each node could have chosen 3, 4, 4 units of power
respectively to maintain the reachability between each other.

In order to alleviate the effects like above, the following
three metrics have been considered to choose optimal vertex
disjoint paths from a node to the other nodes in its vicinity.

• The total cost of the path ( C )



• Maximum edge cost in the path ( X )
• Number of hops ( N )
In [17] a function has been defined incorporating all these

three parameters as follows:

F = Cc.Xx.Nn (3)

A rigorous experiment has been carried out to find out
the values of the exponents c, x and n in this function. In
that work, the topology with asymmetric link was considered,
and Equ (2) has been used as the function to be optimized.
Here we have carried out similar kind of experiment for the
optimization function given by Equ (1) and the topology with
only symmetric links. We have found out that considering only
the maximum edge cost in the path is giving the best result in
terms of power assignment to the nodes. As power assigned
to a node is equal to the maximum weight outgoing edge, it is
logical to consider the maximum edge weight when we choose
a path between two nodes.

To get the optimal path by using the maximum edge cost
of the path, we have modified the dijkstra’s algorithm [3] and
we call it Get Optimal Path. This algorithm finds out the path
with minimum value of maximum edge weight from source
nodes to destination nodej. Every node v in nodes’s vicinity
topology Gs maintains an attribute X which holds the value
of the maximum edge weight on the path froms to itself,
and the path has minimum value of maximum edge weight
among all the paths from s to v. Initially all the vertices
are assigned infinity cost through X. The predecessors set
of v is set to NIL through p. The X value of source node
s is assigned zero. The structure Q contains all the vertices
of Gs. The functionExtract Min removes the vertex with
minimum X value from Q. The usual relaxation procedure
used in Dijkstra’s algorithm, i.e.,d[v] ← d[u] + w(u, v) (for
nodes u and v, u is chosen by theExtract Min and v is the
adjacent node of u; in Dijkstra’s algorithm d[v] is the shortest-
path estimate of node v) is replaced bymax(X[u], w(u, v));
in so doing we obtain the path in which the maximum edge
cost is minimum. TheGet Optimal Pathalgorithm is formally
presented in Algorithm IV.1.

Theorem 1:Algorithm Get Optimal Path run on a graph
with sources and destinationd returns the path with minimum
value of maximum edge weight if exists, and returns NULL
if no path exists betweens andd.

Proof: We have to show that whend is obtained by
the Extract Min function, then the path obtained froms to
d is the path with minimum value of maximum edge weight
among all the paths froms to d. Let us show it by the method
of contradiction. Let us consider that when theExtract Min
function returns the noded, the path returned by the algorithm
is not the path with minimum value of the maximum edge
weight. So, there is a better path in terms of the minimum
value of maximum edge weight than the path returned by the
algorithm. Let y is the vertex on the better path, which is
not in the setS and directly connected to one of the node in
the setS. As y is on the path whose maximum edge weight
is less than the maximum edge weight of the returned path

Algorithm Get Optimal Path(Gs, s, d)

forall vertexw ε Vs do
X[w] = ∞
p[w] = NIL

end

X[s] = 0
Q = V [G]
S = NULL

u = ExtractMin(Q)

while ( u 6= d || Q 6= NULL) do
S = S

⋃
u

forall vertexvεAdj[u] do
if (X[v] = ∞) then

X[v] = w(u, v)
else

if (X[u] < w(u, v)) then
X[v] = w(u, v)

else
X[v] = X[u]
p[v] = u

end
end

end
u = ExtractMin(Q)

end
if ( u = d) then

Return (Path(s, d))
else

ReturnNULL.
end

Algorithm IV.1 : Algorithm for finding optimal path be-
tween nodei and nodej

from s to d, so X[y] < X[d]. But as y is not in the set
S, and d has been returned by theExtract Min function, so
X[d] < X[y]. Thus, the two inequalities are in fact equalities,
giving X[y] = X[d]. It implies that our assumption that the
returned path is not the best path in terms of minimum value
of maximum edge weight is wrong. So, we can conclude that
the algorithmGet Optimal Path run on a graph with source
s and destinationd returns the path with minimum value of
maximum edge weight.

By using the vicinity graph, a node finds out the best
path from it to a node in the vicinity. For any nodej in
the vicinity, nodei first use theGet Optimal Path algorithm
to select the path whose maximum edge cost is minimum
among all the paths and store the path in an appropriate
data-structure. Then that path is destroyed and next best
path is considered. In this way,K vertex disjoint paths are
obtained between the nodei and its neighboring node.

Phase 3:Transmission Power Assignment
In this phase, nodei needs to calculate the transmission
power needed for itself and all nodes inVi, to ensure that all



its minimum-power paths exist in the final minimum power
network topology. Specifically, for nodei itself and each node
in set Vi, the transmission power is assigned as the power
required to reach the furthest one-hop downstream nodes in
node i’s minimum-power vicinity graphGim. Node i first
assigns its own power, and then sends the minimum power
required for other vicinity nodes with an explicitAssigned
Power(AP) message. The format of the AP message from
nodei to nodej is as follows:

< assignedpower, j, i, power requiredji >

While assigning power to the nodes in the vicinity, a node
should take care of the unidirectional links. It may be possible
that in the minimum-power vicinity graphGim of node i,
directional link

−→
Lij is present, but link

−→
Lji is not. But, when

node i assigns power to the nodes in its vicinity, it has to
assign power toj such that link

−→
Lji also exists. As maximum

topology is an undirected graph, it is guaranteed that if
−→
Lij

exists, then power can be assigned to nodej such that
−→
Lji

would also exist. In this way nodei maintains all the links
in its vicinity to be bi-directional. Upon receiving the AP
message, a vicinity nodej compares the power requirement
from i with its current power setting. Ifi requires a stronger
transmission power at nodej, node j increases its power
accordingly. Otherwise, it discards the AP message. Note that
its existing setting is assigned by itself or any other nodes that
have executed the algorithm earlier than nodei and propagated
the AP message.

Now we shall present two theorems to prove the desired
connectivity of the network. Theorem 1 shows that if the
maximum topologyGmax is connected then our algorithm
for K = 1 gives a connected minimal topologyG∗ (say).
We prove this theorem in the same line as done in [12] to
prove the connectivity result. By using Theorem 2, Theorem
3 shows that for anyK, if all nodes run the above algorithm
individually, the resulting topologyG∗k (say) will also be
K-Connected, providedGmax is K-Connected.

Theorem 2:The Algorithm K-
connectedMinimal Topology gives the optimal connected
topology G∗ for k = 1, provided the graph obtained when
all nodes transmit with their maximum powerGmax is
Connected.

Proof: Let us consider two generic nodesu andv in the
network. There may be two cases: (a) nodev is in the vicinity
of nodeu and (b) nodev is not in the vicinity of nodeu.
Case (a):When nodeu constructs its minimum-power vicinity
graphGum, it finds out the optimal path from itself to all the
nodes inVu. As nodev is in the vicinity of nodeu, obviously
there exists a path from nodeu to nodev.
Case (b): As the maximum topologyGmax is connected, so
there exists a path from nodeu to nodev. Let us consider
such a path where in between nodeu and nodev, nodey1,
y2, . . ., yn are present. So, obviouslyy1εVu, y2εVy1 and so
on. According to the logic of case(a), inG∗, u is connected
to y1, y1 is connected toy2 ,. . . , yn is connected tov. So

u and v are connected inG∗. The above logic proves that if
Gmax is connected thenG∗ is also connected.

Theorem 3:If there areK optimal vertex-disjoint paths
from each node to all the nodes in its vicinity, then between
any two nodes in the global network there existsK vertex
disjoint paths i.e., the resulting topologyG∗k is globally
K-Connected, provided the graph obtained when all nodes
transmit with their maximum powerGmax is K-Connected.

Proof: We shall prove the theorem by the method of
proof by contradiction. Let us suppose thatG∗k is not K-
connected. So there exists at least one set ofK − 1 nodes,
by removing which we can get a graph that is not connected.
Let’s denote this graph byG′′. Let G′ be the graph obtained by
removing the same set ofK−1 nodes fromGmax, which were
removed in formingG′′ from G∗k. As Gmax is K-connected,
so G′ is connected. LetG∗ be the graph obtained by running
the proposed algorithm withK = 1 on the remaining set
of nodes, i.e., the set obtained after removingK − 1 nodes.
According to Theorem 2,G∗ is connected because the graph
G′ is connected.

As G∗ is connected andG′′ is not connected, at least one
edge ofG∗ will not be present inG′′ (Note thatG∗k andG∗

are constructed in the same manner). Let us suppose that the
edge{u, v} is one of such edges inG∗, which is not present
in G′′. The presence of the edge{u, v} in G∗ implies that
{u,v} is the optimum path fromu to v. So if K − 1 vertices
were not removed from the graphG∗k, then the edge{u, v}
would be at least theK-th optimal path fromu to v in G∗k.
So the edge{u, v} is one of theK vertex disjoint optimal
paths fromu to v in G∗k. By removing the set ofK−1 nodes
from G∗k we can destroy at mostK − 1 vertex disjoint paths.
But the direct edge{u, v} will still be present, since it is one
of the K optimal vertex disjoint paths fromu to v and also
removal of a set ofK − 1 nodes can not destroy the{u, v}.
(Note thatu andv are nodes selected from remaining set, so
they would not have been removed.)

So the edge{u, v} will be present inG′′. So our assumption
that the edge{u, v} is not present inG′′ is incorrect. This
implies that all edges present inG∗ are also present inG′′.
So G′′ is connected. ThusG∗k is K-Connected.

So the network is globallyK-Connected.

V. DEALING WITH MOBILITY

In wireless Ad hoc network the structure of the network
changes time to time. A node may be added to the network, a
node may die due to the lack of the power or, due to mobility
a node may change its position. To deal with these situations
we present the following algorithm by using the Neighbor
Discovery Protocol presented in [10]. We call this algorithmK-
connected Mobile Resilient Topology Control(K-MRTC). In
this protocol, three basic events have been defined:joinu(v),
leaveu(v) and changeu(v). In the joinu(v) event, nodev
which was not in the vicinity of nodeu previously appears
in the vicinity of nodeu. In the leaveu(v) event, nodev
which was previously a neighbor of nodeu, disappears from
the vicinity of nodeu. We only consider the join and the



leave events, for in case of a change event, after changing
the position when a node comes to the stable state, it is
equivalent to some leave events followed by some join events.
We assume that when a node is mobile the network may not
be K-connected temporarily, but when the network comes to
a stable condition, networkK-connectivity is preserved.

Our algorithm works as follows. Any nodei, which is in
the stable condition, broadcasts aBeaconmessage with its
maximum power periodically. ThisBeaconmessage is for
all the nodesj, where i is in the vicinity of nodej, iεVj .
As we are considering heterogeneous network, it may be
possible thati is not able to reach all nodesj for which
iεVj , even though nodei use the maximum power to transmit
the Beaconmessage. In this case, its neighboring nodes help
it by forwarding theBeaconmessage. If a node does not
receive theBeaconmessage from one of its neighbor within
a time intervalT , then it assumes that the node is no more its
neighbor.

To handle join event:
When a nodei is added to the network for the first time, or

the node becomes stable after mobile condition, it broadcasts
the Hello message with maximum transmitting powerPmax

i ,
and build its vicinity graphGi in the same way it is done
in the first phase of the algorithm in the static case. All the
nodes sendHello message periodically. The nodes which were
already in the vicinity of a node don’t reply to thisHello
message. The new node replies the Hello messages withReply
messages. When a node gets reply from a new node, it finds
out K-optimal vertex disjoint paths to the new node, keeping
the paths to other nodes in its vicinity intact. Note that it is
done only to reduce the computational complexity. In this way,
we are sacrificing the paths from a node to other nodes in its
vicinity, which pass through the new node and more optimal
than the existing paths.

To handle leave event:
A nodei maintains the list ofk paths from it to all the nodes

in Vi. If it finds that a node is no more its neighbor, it finds out
the nodes for which this node contributed to form one of the
vertex disjoint paths. Due to the lack of presence of this node
only one of theK vertex disjoint paths for some neighboring
nodes has been destroyed. For those nodes it compensates that
path by finding out a new optimal vertex-disjoint path.

The connectivity results in the mobile scenario have been
proved in Theorem 4, 5 and 6. To prove the results we have
assumed that after the join or leave event when the nodes
come to the stable condition, the resulting topology will be
K-connected provided the graphGmax is K-connected. Note
thatGmax is the graph obtained if all the nodes transmit with
their maximum power when the network comes to the stable
condition after the change in the network.

Theorem 4:If a newly added node maintainsK optimal
vertex-disjoint paths to all the nodes in its vicinity, and all
the other nodes maintains all the paths they were previously
maintaining, andK vertex-disjoint paths to the newly added
node (if the node is in vicinity), then there existK vertex
disjoint paths between any two nodes in the resultant network.

Proof: We prove this theorem in the same line as we did
in theorem 3. Let us suppose thatG∗ka is notK-connected. So
there exists at least one set ofK−1 nodes, by removing which
we can get a graph that is not connected. Let’s denote this
graph byG′′. Let G′ be the graph obtained by removing the
same set ofK−1 nodes fromGmax, which were removed in
formingG′′ from G∗ka. As Gmax is K-connected, so obviously
G′ is connected. LetG∗a be the graph obtained by running the
algorithmK-connectedMinimumTopologywith K = 1 on the
remaining set of nodes, i.e., the set obtained after removing
K − 1 nodes. According to Theorem 1,G∗a is connected
because the graphG′ is connected.

As G∗a is connected andG′′ is not connected, at least one
edge ofG∗a will not be present inG′′ (Note thatG∗ka andG∗a
are constructed in the same manner). Let us suppose that the
edge{u, v} is one of such edges inG∗a, which is not present
in G′′. The presence of edge{u, v} in G∗a implies that{u, v}
is the optimum path fromu to v. If we consider the vicinity
of any nodej in whose vicinity, a nodek has been newly
added we see that we have not considered the paths fromj to
all other nodes exceptk in its vicinity, passing through node
k. In this way we may miss one of theK optimal vertex-
disjoint path fromj to any other node. But the edge{u, v}
is not obviously one of such paths, as those paths will have
more than one edge (minimum path fromj to i throughk is
j−k−i). So if K−1 vertices were not removed from the graph
G∗ka, then the edge{u, v} would be at least theK-th optimal
path fromu to v in G∗a. So the edge{u, v} is one of theK
vertex disjoint optimal paths fromu to v in G∗ka. By removing
the set ofK−1 nodes fromG∗ka we can destroy at mostK−1
vertex disjoint paths. But the edge{u, v} will still be present,
since it is one of theK optimal vertex disjoint paths fromu
to v and also removal of a set ofK−1 nodes can not destroy
the edge{u, v}. (Note thatu and v are nodes selected from
remaining set, so it would not have been removed.)

So the edge{u, v} will be present inG′′. So our assumption
that {u, v} is not present inG′′ is not correct. This implies
that all edges present inG∗a are also present inG′′. SoG′′ is
connected. ThusG∗ka is K-connected.

So the network is globallyK-connected.
Theorem 5:If a node disappears from the vicinity of an-

other node, then the algorithmK-MRTC ensures theK-
connectivity of the resultant topology.

Proof: When a node finds that a node is no more in its
vicinity, it finds out at most one path to some neighbors to
which it had one path through the leaving node. Now, if we
consider that the node has been died due to the lack of power,
then in the new graph all the nodes maintainK-optimal vertex
disjoint paths to all the nodes in its vicinity. So according to
Theorem 3, the topology is globallyK connected.

Theorem 6:If a node changes its position, then the algo-
rithm K-MRTC ensures theK- connectivity of the resultant
topology.

Proof: Theorem 4 ensures that the addition of one node
in the vicinity of a node does not affect the connectivity.
Theorem 5 states that a node finds out the link in its vicinity



to make up the loss of links by a leaving node from its vicinity
and thus maintain the connectivity. In the stable condition
after the changing of position of a node, the incident can
be considered as a combined effect of this two, and when
the node come to a static condition these two cases can be
executed separately.

VI. PERFORMANCEEVALUATION

To evaluate the performance of our topology control algo-
rithm we perform extensive simulation. In the simulation, we
consider only the static set of nodes. Random networks have
been generated in a fixed grid size of400× 400. Number of
nodes has been varied from 100 to 200, the power attenuation
exponent has been taken as 2, and in every case the nodes
have been randomly assigned power in the range of 22500
and 40000 units. Forα = 2, these maximum energy range
corresponds to the maximum radius range of 150 to 200 unit.
The average radius and the average node degree forK = 2
andK = 3 are shown in Fig. 2 and Fig. 3 respectively. Each
data point on the graph is the average of 10 simulation runs.
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Fig. 2. Average Radius forK = 2 andK = 3

Fig. 3. Average Degree forK = 2 andK = 3

The graphs for average radius shows that the average power
assigned to each node in the sensor network decreases with
the increase in number of nodes in the same area. This means

that increase in node density helps decrease the assigned power
to the nodes. It is in congruence with the fact that more the
number of nodes in the vicinity, more possibilities there are
to get paths with smaller edge weight to reach another node.
Regarding average degree, the nature of the graphs are a bit
random, but the trends of average degrees of a node is to
decrease with the increase in the number of nodes in the same
area.

We compare the performance of our algorithm (we call it
path-based algorithm) to that of the Bahramgiri’s algorithm
(cone-based algorithm [2]) as it is the only work that presents
the algorithm for topology control in mobile scenario. We
compare the performance of two algorithms in static scenario
as it is also indicative of performance comparison in mobile
scenario. In the simulation, Bahramgiri et. al. considered 200
nodes with maximum power 260 placed randomly in a grid of
400 × 400 . To compare our work with them we considered
the same parameters and the result of comparison is presented
in Table I. The results for the cone-based algorithm have been
taken from [2]. For path-based algorithm, every data is the
average of 10 simulation runs. Average degrees have been
rounded to the nearest integer.

Connectivity Algorithm Average Average
Degree Radius

2 Cone-based 15 158.388
2 Path-based 9 54.589
3 Cone-based 22 184.025
3 Path-based 13 71.330

TABLE I

COMPARISON BETWEENCONE-BASED ALGORITHM AND PATH-BASED

ALGORITHM FOR 2 AND 3 CONNECTIVITY

From Table I it is evident that path based algorithm outper-
forms cone based algorithm in terms of both average degree
and average radius.

VII. CONCLUSION

In this work, the complete focus is on developing a dis-
tributed algorithm for gettingK-connectivity in the sensor
network along with minimizing the power assigned to each
node. Every node runs the algorithm based only on the
locally accumulated data, and it has been proved that upon
convergence, the network becomes globally K-connected. The
algorithm does not require a change in the primary deployment
of the sensor network. Also this algorithm can be applied in
the mobile scenario efficiently, as very little maintenance is
required in mobile scenario. We have presented the proof of
correctness ofK-connectivity in the mobile scenario.

As future work, we would like to simulate our algorithm in
mobile scenario. Applying the same notion of our algorithm
in 3-dimensional sensor network is another possible extension
of this work.
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