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Abstract

We present a randomized distributed approximation algorithm for maximum match-
ing. Given a graph G = (V, E) with vertex set V , our algorithm (with high proba-
bility) approximates maximum matching to within a factor arbitrarily close to 3/2
and has running time of O

(

log2 |V |
)

.
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1 Introduction

Given an undirected graph G = (V,E) with vertex set V and edge set E,
where |V | = n, a matching M is a subset of the edges such that no two edges
in M have common endpoints. The maximum matching problem is to find a
matching in G that maximizes cardinality of the matching.

Edmonds [1] in 1965 obtained the first polynomial time sequential algorithm
for the maximum weight matching problem. Since then matching played one of
the most important role in the development of tools and techniques for sequen-
tial algorithms and has been studied extensively. However, unlike sequential
algorithms for matching, until recently only a few efficient distributed algo-
rithms were known for computing maximal matching or approximate max-
imum weight matching. Israeli and Itai [2] presented first randomized dis-
tributed algorithm to compute maximal matching, with expected running
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time O (log n). There are deterministic distributed algorithms for comput-

ing the maximal matching [3] in O
(

log4 n
)

time. A deterministic distributed
algorithm having 1.5-approximation of unweighted maximum matching was
presented in [4], improving, and using techniques from [3], which has running

time O
(

log4 n
)

.

There are RNC2 algorithms for maximum matching [5], however maximum
matching is not known to be in NC. Recently, NC approximation algorithms
with an approximation factor (1 + ε) for weighted matching in CREW PRAM

model has been presented in [6], improving and using techniques of [7]. Finally

we note that in [8], Kuhn et al. proved a Ω(
√

log n/ log log n+log ∆/ log log ∆)

lower bound on the time complexity for (possibly randomized) distributed
algorithms achieving a constant factor approximation for maximum matching,
even with unbounded message size.

In this paper, we develop a randomized distributed approximation algorithm
for maximum matching which with high probability approximates maximum
matching to within a factor arbitrarily close to 1.5 and has running time of
O
(

log2 n
)

. This can be compared with deterministic algorithm of [4] having

same approximation ratio but running time O
(

log4 n
)

.

Rest of the paper is organized as follows. In Section-2 we present the model,
required definitions and known results which will be used in following sections.
In Section-3 we present distributed approximation algorithm for maximum
matching problem. Finally, in Section-4 we conclude the paper.

2 Preliminaries

2.1 Model

We consider the classical LOCAL distributed model of computation (cf. [9,
Chapter 2],[10]). In specific, we model the network as a connected undirected
graph G = (V,E) , |V | = n. Vertices V of the graph are processing units,
and edges are communication links. We assume that communication is syn-
chronous, i.e. each node follows a global clock. Thus round of the distributed
algorithm is determined by the global clock. In each round nodes can send and
receive message and local computation in nodes are atomic. Time complexity
of the algorithm is determined by the rounds as measured by the global clock
in worst case. In a round a node send messages to any subset of its neighbors.
We also assume that all messages sent in a round are received and processed
in the same round.
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2.2 Short Augmentation

We will use standard graph theoretic terminology. Let G = (V,E) be an
undirected graph with vertex set V and edge set E, where |V | = n. Given a
set of edges X ⊆ E (G), let G [X] denote the subgraph of G induced by X.
With dG (u) we will denote the degree of a vertex u ∈ V (G). A matching M is
a subset of the edges such that no two edges in M have common endpoints. A
vertex (resp. an edge) is M -saturated, if it is endpoint of an edge in M (resp. if
it intersects with and edge in M). We will denote a maximum matching by M ∗.
A matching M is a γ-approximation of maximum matching if γ · |M | ≥ |M ∗|.

Given a graph G and a matching M on G, a path or cycle is alternating if it
consists of edges taken from M and E \M alternately. An alternating path
or cycle P is said to be an augmentation if M ⊕ P is also a matching on G,
where A⊕B = (A \B)∪(B \ A). For a set of vertex-disjoint alternating paths
or cycles A we extend the notion of augmentation naturally and write it as
M ⊕ A. An augmentation with at most k non-M edges is a k-augmentation.
Length of an augmentation is the number of edges in it. For unweighted graph,

gain of an alternating path or cycle P is g (P )
∆
= |P \M |− |P ∩M |. In sequel

we state a useful result:

Theorem 2.1 ([4]) Let M be any matching on G.

(1) If M admits no k-augmentation, then |M | ≥ k/(k + 1) |M ∗|.
(2) On the other hand, let M be any maximal matching, and let A be a col-

lection of maximal vertex disjoint k-augmentations of positive gain aug-
menting M . Further, let M ′ = M⊕A. Then there are no k-augmentations
augmenting M ′ in G.

2-augmentations will play important role in our algorithm. We note that 2-
augmentation of length 3, for which no end is M -saturated by matching M ,
are only type of 2-augmentation useful for maximum matching, as augmenting
them increases cardinality of matching.

3 Approximation Algorithm for Maximum Matching

Our algorithm is based on the techniques presented by Czygrinow, Hanckowiak
and Szymanska [4]. Algorithm presented in [4] is a deterministic distributed
algorithm having 1.5-approximation of maximum matching and has running
time O

(

log4 n
)

. In their algorithm the dominating factor of O
(

log3 n
)

is

contributed by distributed construction of a structure called (α,K)–spanner
(defined below). In this section we present a randomized distributed algorithm
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for constructing an (α,K)–spanner in O (log n) rounds, thus making the over-

all running time of this (randomized) algorithm O
(

log2 n
)

. First, we briefly

present the algorithm of Czygrinow et al. [4], and then describe the changes,
namely construction of (α,K)–spanner in detail.

First step of the algorithm is to compute a maximal matching in O (log n)
rounds, for which we will use the randomized algorithm of [2]. Let, M be
the maximal matching returned by this algorithm. Next we will consider aug-
menting this matching with set of vertex disjoint 2–augmentations P of length
three, for which no end is M–saturated. Following [4], we will call such augmen-
tation (M, 3)–path. By Theorem-2.1, if we obtain P ∗, a maximal independent
set of (M, 3)–paths, and compute M ′ = M ⊕ P ∗, then |M ′| ≥ 2

3
|M∗|, and

M ′ is the desired matching. This will be achieved in O (log n) iterations. In
each iteration we will compute a constant factor approximation of any P ∗, a
maximal independent set of (M, 3)–paths, using O (log n) rounds.

Let, P3 (M) denote the set of all (M, 3)–paths in G, with respect to a match-
ing M . Observe that |P3 (M)| is O (n4). For a set of edges X ⊆ E (G), let
touch (X) denote the set of edges in E (G) that share at least one common
vertex with some edge in X. Now consider if in each iteration i if we com-
pute a set of vertex disjoint set of (M, 3)–paths Pi such that |touch (E (Pi))| ≥
γ ·|P3 (M)|, for some constant γ > 0, remove touch (E (Pi))∪E (Pi) to obtain a
new graph Gi as input for the next iteration, then after 4 logc n (with c = 1/γ)
iterations there will be no (M, 3)–paths left in G. So we output P = ∪iPi as
maximal independent set of (M, 3)–paths and compute M ′ = M ⊕ P .

In following, for γ > 0, a set P of vertex disjoint (M, 3)–paths will be called γ–
substantial in G if |touch (E (P ))| ≥ γ ·|P3 (M)|. Let H = (L,R,E) be a bipar-
tite multigraph. For i = 0, 1, . . . , log n, Di–block of H is a sub-multigraph of H
induced by the edges incident to vertices Li = {u ∈ L : Di/2 < dH (u) ≤ Di}
for Di = 2i, and is denoted by Hi = (Li,N (Li) , Ei). Observe that for
i = 0, 1, . . . , log n, Li is a partition of vertices in L, while vertices inN (Li) ⊆ R
can be in more than one Di–block of H. Given a D–block B = (L,N (L) , E)

for some D, for a subgraph S ⊆ B(L,N (L) , E), we use the notation l (S)
∆
=

V (S) ∩ L and r (S)
∆
= V (S) ∩N (L). We need following definition:

Definition 3.1 Let B = (L,N (L) , E) be a D–block for some D. An (α,K)–
spanner of B is a subgraph S ⊆ B such that

(1) |l (S)| ≥ α · |L|, and
(2) ∀u ∈ l (S) , dS (u) ∈ [1, 4], and
(3) ∀v ∈ r (S) , dS (v) < K

D
· dB (v) + 1.

Following proposition clarifies how an efficient construction of an (α,K)–
spanner of a D–block B will be useful in designing efficient UWM3/2.
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Proposition 3.1 Let c > 0 be a constant, and a multigraph B = (L,R,E)
be a D–block for some D such that |E (B)| ≤ nc and n = |L| + |R|. Given a
distributed algorithm to construct an (α,K)–spanner of B in O (t (n)) many
rounds, for K = K (c), and 0 < α ≤ 1/2, there is a distributed procedure
which in O (t (n) · log n) many rounds produces a matching M such that |M | ≥
2
3
|M∗|.

In specific taking c = 4, proof of this proposition follows from [4, Theorem 3],
hence in following we describe efficient randomized construction of an (α,K)–
spanner of a multigraph B = (L,R,E) that is a D–block for some D such
that |E (B)| ≤ nc and n = |L|+ |R| in O (log n) rounds.

Let B = (L,R,E) be a D–block defined by the set of left-hand vertices

L
∆
= {u : D/2 < dB (u) ≤ D} .

Procedure Spanner works as follows (see Algorithm-1(a)). Given B, a 2 - de-
composition of B into a collection of disjoint paths and cycles can be com-
puted as follows. In parallel, every vertex u ∈ V (B) splits itself into vertices
{u1, . . . , um}, each having degree two (by pairing any two incident edges) and
one vertex having degree one if dB (u) is odd. vertices {u1, . . . , um} will be
called siblings of parent u. Obtained graph (a 2–decomposition of B) has
|E| edges, and this decomposition can be computed in constant number of
rounds. Let, C1, . . . , Cp be connected paths and cycles that are formed. Sub-
sequently, a procedure Matching (see Algorithm-1(b)) with parameter r is
invoked for every paths and cycles, where every vertex (as a representative
of its sibling) in parallel participates in computing a matching Ji of compo-
nent Ci. Procedure Matching is same as one given in [11]. Denoting B0 = B
and L0 = l (B0), the procedure generates a sequence of blocks B0, B1, . . . , Bk,
such that Lk ⊆ Lk−1 ⊆ . . . ⊆ L0, where block Bj+1 is obtained from block
Bj by removing all matched edges J = ∪iJi obtained in jth iteration, and
all vertices for which all incident edges belongs to J . In following we analyze
the procedure Spanner and show that after kth round block Bk is the desired
spanner. For a vertex v ∈ V (Bj), let dj (v) denote the degree of vertex v in
subgraph Bj.

Lemma 3.1 For all iterations j = 0, . . . , k − 1 of procedure Spanner, for all
v ∈ Bj+1

1

2
(dj (v)− 1) ≤ E [dj+1 (v)] ≤

(

3

4

)r

dj (v)

Proof: Let, {v1, . . . , vm} be siblings of vertex v in 2 – decomposition of
Bj. We have dj (v) =

∑m
i=1 dj (vi), and similarly dj+1 (v) =

∑m
i=1 dj+1 (vi).

Then, by linearity of expectation: E [dj+1 (v)] =
∑m

i=1 E [dj+1 (vi)]. Now, for
a sibling vi, at most one edge incident to it is dropped, and probability that

an edge is selected after r round is at least
(

1−
(

3
4

)r)

: A vertex v in 2–
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procedure Spanner (B, r)
B0 ← B, L0 ← l

(

B0
)

.
for j ← 0 to k = O (log D) do

J ← ∅.
∀u ∈ V (B), in parallel, split by pairing-up edges to obtain a 2-

decomposition of Bj .
Ji ← Matching (Ci, r). . Let Ci be a path or a cycle in

2-decomposition
Mark all edges in J =

⋃

i
Ji

Mark v to be removed from Lj to obtain Lj+1 if all edges incident
on v is marked.

Remove J from E
(

Bj
)

to obtain Bj+1.
end for

end procedure

(a) (α, K)–Spanner

procedure Matching (C, r)
M ← ∅, i← 0.
while i < r do

Choose uniformly at random one incident edge e = (u, v) ∈ C. . In
every sibling node u

request over e.
if received from v then

M ←M ∪ {e}.
Remove touch (e).
return.

end if

end while

Let M be the matching returned.

end procedure

(b) Matching (C, r)

Fig. 1. Distributed algorithm to to construct a (α, K)–spanner

decomposition has at most 2 incident edges. Thus, during the execution of
procedure Matching each vertex selects a incident edge with probability at
least 1/2. While vertices choose independently, an edge is chosen with proba-
bility at least 1/4. Hence, an edge is selected in matching after r iterations is at

least
∑r

i=1 (3/4)i 1/4 = (1− (3/4)r). Hence we have, E [dj+1 (v)] ≤
(

3
4

)r
dj (v).

The lower bound, on the other hand follows by considering dj (v) to be odd,
and assuming that each of its sibling is matched. 2

Lemma 3.2 Let ∆j (resp. δj) denote the maximum (resp. minimum) degree
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of any vertex in l (Bj). For all iterations j = 0, . . . , k−1 of procedure Spanner

E [|Lj+1|] ≥ |Lj|

(

1−
δj

∆j

)

Proof: In the procedure Spanner, we drop those vertices from Bj in step j, for
which all incident edges are marked. Let Xv denote the random variable tak-
ing values in {0, 1} such that Xv = 1 iff v ∈ l (Bj) has dj+1 (v) ≥ 1, and Xv =
0 otherwise. Then, E [|Lj+1|] =

∑

v∈l(Bj) E [Xv] = |Lj|Pr [dj+1 (v) ≥ 1] =
|Lj| (1−Pr [dj+1 (v) < 1]). Now, observe that dj+1 (v) is a nonnegative ran-
dom variable, and possible values that dj+1 (v) can get are integers. First we
show following. Let T be the largest integer that is smaller than E [dj+1 (v)],
and let Pr [dj+1 (v) ≥ E [dj+1 (v)]] = α then:

E [dj+1 (v)]

=
∑

x≥E[dj+1(v)]

x ·Pr [dj+1 (v) = x] +
∑

x<E[dj+1(v)]

x ·Pr [dj+1 (v) = x]

≤ dj (v) ·Pr [dj+1 (v) ≥ E [dj+1 (v)]] + T ·Pr [dj+1 (v) < E [dj+1 (v)]]

≤αdj (v) + (1− α).T

From the definition of T , we have T = dE [dj+1 (v)]− 1e ≤ E [dj+1 (v)] −
1/4, as E [dj+1 (v)] ≤ 3/4 · dj (v). With these two inequalities we obtain that
Pr [dj+1 (v) ≥ E [dj+1 (v)]] = α ≥ 1/ (dj (v) + 1). Using the bound on α, we
obtain following upper bound on Pr [dj+1 (v) < 1].

Pr [dj+1 (v) < 1] = 1−Pr [dj+1 (v) ≥ 1] ≤ 1− α ≤
δj

∆j + 1

Since δj ≤ dj (v) ≤ ∆j. Thus, we have

E [|Lj+1|] ≥ |Lj|

(

1−
δj

∆j

)

2

Finally, we present the analysis of the procedure Spanner.

Theorem 3.1 Let c > 0 be a constant, and let B = (L,R,E) be a D–block for
some D such that |E (B)| ≤ nc and n = |L|+|R|. Given B, the distributed pro-
cedure Spanner constructs an (α,K)–spanner of B in O (log n) many rounds,
such that K = K (c) = (4/3)c+1, and α = 1/4.

Proof: Let us fix k > 0 and observe that D/2 < d0 (v) ≤ D. By induction
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over Lemma-3.1 we have:

(

1

2

)k+1

D ≤ E [dk (v)] ≤
(

3

4

)rk

D

Choosing k =
⌈

log4/3 D
⌉

− c, r = 1 and with c = 4, we have:

(

1

2

)k+1

D > 0 and,
(

3

4

)rk

D < 2c−2 = 4

In other words, vertices from Lk, will have degree in [1, 4]. This establishes
condition 2 of spanner, for condition 3, with the choice of parameters observe
that from the upper bound on degree of any vertex, we have K (c) = (4/3)c+1.
Finally, using lemma-3.2, we show condition 1 for spanner. We have for all
iterations j of procedure Spanner

E [|Lj+1|] ≥ |Lj|

(

1−
δj

∆j

)

Applying this recursively we obtain:

E [|Lk|] ≥ |L0|
k−1
∏

j=1

(

1−
δj

∆j

)

Since

δj

∆j

=

(

1
2

)j+1
D

(

3
4

)j
D

=
1

2
·
(

2

3

)j

with above inequalities, we have,

E [|Lk|] ≥ |L0|
k−1
∏

j=1

(

1−
1

2

(

2

3

)j
)

≥
1

4
|L0|

2

Using Theorem-3.1, with Proposition-3.1, we have following high-level result.

Theorem 3.2 There is a distributed randomized procedure which produces a
matching M such that |M | ≥ 2

3
|M∗| w.h.p, and has O

(

log2 n
)

deterministic
round complexity.

4 Concluding remarks

Obtaining a distributed approximation algorithm (possibly randomized) with
O (log n) time complexity having (1 + ε)–approximation factor is a natural
open problem. Finally, obtaining a O (log n) time deterministic distributed
algorithm for maximal matching in the same model remains elusive.
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