
Energy Efficient Broadcast in Distributed Ad-Hoc Wireless Networks

Subhas Kumar Ghosh
Honeywell Technology Solutions Lab.,

151/1, Doraisanipalya, Bannerghatta Road,
Bangalore, INDIA-560076

E-mail: Subhas.Kumar@honeywell.com

Abstract

In this work we present algorithms for Minimum En-
ergy Consumption Broadcast Subgraph (MECBS) prob-
lem. First, we focus on designing distributed algorithms
for MECBS. To our knowledge, this is the first work looking
into the aspects of designing a distributed approximation al-
gorithm for the MECBS. Our algorithm has approximation
ratio of 2Hn−1 with time complexity O (n · Λ (G)), where
Λ (G) denotes the diameter of the communication graph G.
Second, we present an improved approximation algorithm
for the MECBS problem with arbitrary asymmetric power
requirement having performance ratio 1.5 (ln (n − 1) + 1),
hence improving all known results for MECBS problem in
most general case. Our improvement in MECBS problem
also implies that there is a 1.5 ln (n − 1) + 2.5 – approx-
imation algorithm for strong connectivity with asymmetric
power requirements.

1 Introduction

In the context of ad-hoc wireless networks the problem
of constructing a minimum energy consumption broadcast
subgraph (MECBS) has received significant attention over
last few years [6, 14, 3, 5, 7, 10, 2, 4]. Broadcast is a funda-
mental protocol for building applications over ad-hoc wire-
less networks, which allows a source node s to transmit a
message to all other nodes in the network. In this work we
focus on designing algorithms for building energy efficient
broadcast subgraph of the network graph. Objective of the
algorithm is to assign transmission power to nodes in the
network such that a communication from a source s to all
other nodes in the network can occur using directed (pos-
sibly multi-hop) paths, while energy consumption in one
such message broadcast is minimized. Formally, we model
the network as a complete directed graph G = (V,E) with a

cost function c : E → Q+ associated with its edges (we will
say that cost is symmetric, if c (u, v) = c (v, u)). A node
s ∈ V is the source. A weight (transmission power) assign-
ment ω : V → Q+ to the nodes of G induces the directed
graph Gω as follows. It has the same set of nodes with G
and a (directed) edge (u, v) belongs to Gω if the weight
assigned to node u is at least the cost of the edge (u, v),
i.e., ω (u) ≥ c (u, v). The Minimum Energy Consumption
Broadcast Subgraph (MECBS) problem is following:

MECBS:

INPUT: G = (V,E) , c : E → Q+, s ∈ V

OUTPUT: A weight assignment ω to the nodes of
V so that for any node u ∈ V \ {s}, the induced
graph Gω has a directed path from s to u.

MEASURE: Total weight
∑

u∈V ω (u).

GOAL: Minimize total weight.

In following we start by noting few important known results
for MECBS problem.

Theorem 1.1. [8]: Unless NP ⊆ DTIME
(

nlog log n
)

,
MECBS problem is not approximable within (1 − ε) ln n
factor.

Theorem(1.1) was obtained by presenting an approxima-
tion factor preserving reduction of minimum SET-COVER

problem to MECBS problem.

Theorem 1.2. [2]: There exists a polynomial time 2Hn−1

factor approximation algorithm for MECBS problem with
symmetric cost function.

Theorem 1.3. [3]: There exists a polynomial time 2 +
2 ln (n − 1) factor approximation algorithm for MECBS

problem with asymmetric cost function.

Recently, in [4] authors presented a polynomial time
2+2 ln (n − 1)−2 ln 2 factor approximation algorithm for
MECBS problem with symmetric cost function.

In this paper we first present distributed approximation
algorithm for general MECBS problem with symmetric cost
function. To our knowledge, this is the first work look-
ing into the aspects of designing a distributed approxima-
tion algorithm for MECBS problem. While it is possible
to centrally compute the power assignment and then in-
form a node at which power level it should transmit, it is
quite impractical for several reasons. Central computing
station need to gather either location information of de-
ployed nodes, or edge cost for each pair of nodes to con-
struct the input instance, and by the time such informa-
tion is gathered, network topology may have changed. Any
distributed implementation also provides greater degree of
fault-tolerance. Importantly, distributed implementation in
this case provides certain flexibility. The algorithm we
present has two distinct phases. First phase of this algorithm
constructs a weakly connected graph and this construction
is independent of the input s, and hence the result of the
first phase can be reused – as long as the network topology
remains unchanged.

We also present an improved approximation algorithm
for the MECBS problem extending the algorithm of [3], and
using the ideas from [8]. This algorithm has performance
ratio 3

2 (ln (n − 1) + 1), hence improving all known results
for MECBS problem. In [3], the result of MECBS prob-
lem was used to obtain results for several other connectiv-
ity problems. Importantly, Strong connectivity: When in-
duced graph Gω is strongly connected. Our improvement in
MECBS problem also implies that there is a 1.5 ln (n − 1)+
2.5 – approximation algorithm for Strong connectivity with
asymmetric power requirements.

Organization: Rest of the paper is organized as follows.
In section 2, we present and analyze our distributed algo-
rithm for MECBS problem. This algorithm is based on the
greedy algorithm of [2], and achieves approximation ratio
of 2Hn−1 with time complexity O (n · Λ (G)), where Λ (G)
denotes the diameter of the communication graph G. Then
in section 3 we present an improved approximation algo-
rithm for the MECBS problem extending the algorithm of
[3], and using the ideas from [8]. This algorithm has perfor-
mance ratio 3

2 (ln (n − 1) + 1), hence improving all known
results for MECBS problem. Finally we conclude the paper
in section 4.

2 Distributed algorithm

In this section we present our distributed approximation
algorithm for general MECBS problem where edge cost is
symmetric.

Model and notations: We assume the classical LOCAL
distributed model of computation (cf. [11, Chapter 2]). In

specific, we model the network as a connected graph G =
(V, E). Vertices V of the graph are nodes having limited
information (i.e. small part of the input is given to each
vertex). Edges of this graph is weighted as c : E → Q+,
and a distinguished vertex s ∈ V is known to every node in
networks.

We assume that communication is synchronous, i.e. each
node follows a global clock. Thus round of the distributed
algorithm is determined by the global clock. In each round
nodes can send and receive message of unlimited size and
local computation in nodes are atomic. Time complexity of
the algorithm is determined by the rounds as measured by
the global clock in worst case.

We shall denote the vertex set V by {1, . . . , n}, where n
is the number of nodes in the network. Following notations
of [2] for a vertex i let Ci = ∪j∈V {c (i, j)} denote the set
of all possible power levels allowing i to reach j directly
using edge (i, j). For a vertex i ∈ V and any transmission
power ω ∈ Ci, let Fω (i) = {j ∈ V |j 6= i ∧ ω ≥ c (i, j)}
be the set of reachable vertices j from i with transmission
power of vertex i set to ω (call them follower of vertex
i). If there exists a vertex j ∈ V such that i ∈ Fω (j),
for some ω ∈ Cj , then we set Lω (i) = {j|i ∈ Fω (j)}
(call j, a leader of vertex i). Let P be a partition of
the vertex set into disjoint family of vertex sets, then by
Pω (i) = {X ∈ P|X ∩ Fω (i) 6= ∅} we will denote the el-
ements of the partition that has at least one vertex reach-
able from vertex i with transmission power of vertex i set
to ω. Given a partition of the vertex set P , a vertex i and a
transmission power ω ∈ Ci we define the cost-effectiveness
ρω(i,P) of ω at i, w.r.t. P as

ρω (i,P)
∆
=

{

ω
|Pω(i)| when |Pω (i)| > 0

∞ otherwise

For a distributed algorithm, the view of a global partition
may be inconsistent, i.e. each vertex may have different lo-
cal view of partition in a round. Hence, in following P(i)
will denote the view of partition from a vertex i. Given a
transmission power assignment ω, for each vertex we asso-
ciate ω(i) as assigned power to vertex i. Let, Gω[X] denote
the subgraph of Gω induced by a set X ⊆ V w.r.t ω. Note
that Gω could be weakly connected, thus, let Π(s,Gω) de-
note the set of vertex i, connected to a vertex s through a
directed path from s to i using the edges of Gω .

2.1 Algorithm

The algorithm we present here is a distributed version
of the greedy assignment algorithm described in [2]. Our
distributed algorithm has two distinct phases. In the first
phase the algorithm constructs a weakly connected graph
Gω = Gω [V] spanning the vertex set V . In the second
phase of the algorithm power assignment ω is modified so

that at the end of this phase Π(s,Gω) = V . It is interest-
ing to note that if the network topology do not change, then
this two phases can be executed separately – as first phase
is insensitive to input s. Thus, for a static topology, nodes
can store the assignment ω after first phase, and to broad-
cast from a distinct node s second phase can be executed as
required. In sequel, we first describe these two phases of
the algorithm.

Forming weakly connected graph: In this phase, input
for every vertex is Ci. Message m from a vertex i to a
set of vertices S ⊆ V is denoted as i −→ S : 〈m〉. The
procedure for vertex i is described in Figure-1 in detail,
and what follows is a high level description. The proce-
dure has several states, and a vertex moves from one state
to another in a round, starting at Initialize state (which is ex-
ecuted one-time at start). In every round in Propose state, a
vertex sends proposal to components in P̄ corresponding to
its minimum cost-effectiveness ρ̄, which is computed with
respect to P (i), the local view of partition of vertices in
V as observed by vertex i. In this case we assume that a
node maintains a data structure where id of the leader is
stored for each component. Note that this is nodes local
view, however, it will be apparent that whenever a node up-
dates it view of partitions, it always receives the information
on components current leader explicitly. Thus in the pre-
sentation of the algorithm, we will not distinguish between
a component and its leader while sending a message, i.e.
when a node i sends a message to a component X ∈ Pi, its
sends the message to the leader of X , as stored in the local
view of node i, but we will denote this as i −→ X : 〈m〉. As
we have noted, global view of weakly connected component
may not be available to a vertex. To address this a vertex
maintains a leader l∗. When a vertex i receives a proposal,
and vertex i is part of a larger component, i forwards the
proposal to its leader l∗. Let R (j) = {〈j, ρ̄j , ω̄j〉}, be the
set of all proposals received from vertex j by a component.
We ensure that there is a single leader in each component,
and hence a leader can recompute the cost-effectiveness of
j as:

ρ′j
∆
=

ω̄j
(

ω̄j

ρ̄j
− |R (j)| + 1

)

If ρ′j 6= ρj , then vertex j has inconsistent view of the global
partition, and node j is informed about this. In Consistency

state a node updates its view on partition, re-computes ρ̄,
and re-proposes in the next round. If all received proposals
are consistent then a node selects proposal from j with min-
imum ρj and sends back accept. When a vertex i observes
that all its proposals in a round has been accepted, it sends
sends ‘Greet’ message to components merged by this new
power assignment of i. Updating partition and managing
local view od partition is closely related. A node updates

its view based on the information on merged components
it receives as a part of the message. Local view is updated
when

1. A vertex sends ‘Greet’ message.

2. Receives ‘Greet’ message.

3. Upon receiving ‘Inconsistent’ message.

4. On receiving ‘Leader’ message.

Group management requires that in a merged component
every vertex has the same leader as l∗. When a vertex has
more than one incoming edges, it selects the vertex with
minimum id as its leader. Any change in leader is informed
to all vertices in a component. Finally, Terminate state is
executed by a vertex when it observes that a single compo-
nent is formed and the graph is weakly connected.

Forming directed spanning tree: The objective of this
phase is to adjust transmission powers so that given a dis-
tinct vertex s ∈ V the transmission graph Gω contains a
directed tree rooted at s and every vertex is reachable from
s using a directed path. Since the edge cost is assumed to
be symmetric and output of the first phase is a weakly con-
nected graph – this requires at most doubling the existing
edges induced by ω. The algorithm at each vertex repeat-
edly checks if there is a vertex j ∈ Lω (i) |j ∈ Π(s,Gω).
Surely if this is satisfied then vertex can halt. Alternatively,
it checks if ∃j ∈ Fω (i) |j ∈ Π(s,Gω), while if this is sat-
isfied then assigning ω (i) as power of vertex j doubles the
edge and vertex i ∈ Π(s,Gω) is satisfied. The algorithm
has been given in Figure-1.

2.2 Analysis of the algorithm

In this section we first show the correctness of the al-
gorithm. This amounts to showing that at the end of sec-
ond phase the induced graph Gω with power assignment
∀i ∈ V, ω (i) contains a directed spanning tree rooted at s.
We will prove this first by establishing few invariant prop-
erties of the algorithm. Let P(k)

i denote the partition of ver-
tices at the end of k-th round as observed by vertex i, also
let P(k) denote the partition of vertices at the end of k-th
round as observed globally. By ω

(k)
1 and ω

(k)
2 we will de-

note the partial power assignment at the end of k-th round
in first and second phase of the algorithm respectively. Also
let P(k)

ω
(k)
1 (i),i

(i) =
{

X ∈ P
(k)
i |X ∩ F

ω
(k)
1 (i)

(i) 6= ∅
}

, and

let P(k)

ω
(k)
1

denote the partition of vertices at the end of k-th

round as observed globally under partial power assignment
at the end of k-th round in first phase.

Initialize:
P (i) := {{1} , {2} , . . . , {n}}.
ω (i) := 0.
Fω (i) = Lω (i) := ∅.
l∗ = i.
Propose:
ρ̄ := minω∈Ci

{ρω (i, P (i))}.

i −→ P̄ : 〈i, ρ̄, ω̄〉.
Receive:
ρ′

j := ω̄j/
(

ω̄j/ρ̄j − |R (j)| + 1
)

.

if ∃j|ρ′
j 6= ρj then

i −→ j : 〈i, ‘Inconsistent’, S (j)〉.
else

Select proposal from j with minimum ρj .
end if
Update P (i) using P̄ .
Greet/Regret:
if ∀j ∈ P̄, acki (j) = true then

ω (i) := ω̄.
i −→ j ∈ P̄ :

〈

i, P̄, ‘Greet’
〉

.
end if
if ∃j|ackj (i) = true ∧ j ∈ Lω (i) then

i −→ P̄ : 〈i, ‘Regret’〉.
end if
Terminate:
if |P (i)| = 1 then

Halt.

end if

(a) Phase-I

procedure TREE (ω (i) , s, Lω (i) , Fω (i)) . Let the value of variable flag
denote the answer to predicate v ∈ Π (s, Gω), which is set to true for vertex s and to false for all
i ∈ V \ {s} before this phase starts.

if ∃j ∈ Lω (i) |j ∈ Π (s, Gω) then
flag := true.

else if ∃j ∈ Fω (i) |j ∈ Π (s, Gω) then
i −→ j : 〈ω (i) , ‘Adjust-power’〉.
flag := true.

end if

Adjust:
Let ω̄ = max {ω (j) | 〈ω (j) , ‘Adjust-power’〉}
ω (i) := ω̄.

end procedure

(b) Phase-II

Figure 1. Distributed algorithm for MECBS

Lemma 2.1. Let P(k) denote the partition of vertices at the
end of k-th round as observed globally, and X ∈ P (k). For
any i, j ∈ V , such that i ∈ X and j ∈ V , any proposal
j −→ i : 〈j, ρ̄j , ω̄j〉 reaches a distinct leader vertex l

(k)
X ∈

X .

Proof. For k = 0 this is true. Consider any k > 0. Ob-
serve that all proposal for i and from Fω (i) is forwarded
to l∗ 6= i. On the other hand, if l∗ 6= i, then l∗ is se-
lected from a vertex in Lω (i) 6= ∅. Hence, if compo-
nent X is formed as directed tree with a single root, then
all proposals to vertices in component X reaches this root.
On the other hand, if there is a vertex i∗ ∈ X such that
|Lω (i∗)| > 1, then i∗ selects the vertex with smallest id in
Lω (i) as leader. This change is communicated recursively
to the set {Lω (i) ∪ Fω (i) |i ∈ Lω (i∗) ∪ Fω (i∗)}. Surely,
this set is same as X .

Second important invariant property of the algorithm
is monotonically non-decreasing power assignment to any
vertex.

Lemma 2.2. For any vertex i ∈ V and for any integers
k, l,m, q such that k < l and m < q, ω

(k)
1 ≤ ω

(l)
1 ≤

ω
(m)
2 ≤ ω

(q)
2 .

Proof. Initially, ∀i ∈ V, ω (i) = ω
(0)
1 (i) = 0. Let ω (i) be

set to ω
(k)
1 (i) at the kth round. For any h > k and ω′ ∈ Ci

such that ω′ ≤ ω
(k)
1 (i), we have

• Fω′ (i) ⊂ F
ω

(k)
1 (i)

(i).

• P
(h)
ω′ (i) = ∅ and hence ρω

(

i,P(h) (i)
)

= ∞, and

• If P(h)
ω′,i (i) 6= ∅ then i receives ‘Inconsistent’ message

from the leaders of all X ∈ P
(h)
ω′,i (i) and eventually

makes the view P
(h)
ω′,i (i) consistent with global view.

This is guaranteed by lemma 2.1, as all vertices in X
forwards message to same leader vertex.

This implies for any admissible power assignment in round
l such that k < l we have ω

(k)
1 ≤ ω

(l)
1 .

In the second phase of the algorithm, let us assume that
ω (i) = ω

(0)
2 (i) = ω

(r)
1 (i), where r is the number of rounds

in first phase of the algorithm. For any m ≥ 1, ω (i) remains
unchanged if i = s or Lω (i) has a vertex j such that j ∈
Π(s,Gω). On the other hand if ∃j ∈ Lω (i) such that j /∈
Π(s,Gω), and i is already reachable by s, i.e. flag = true
for i, then ω (i) is changed to ω (j). In this case it must be
there exists an edge (j, i) ∈ Gω , but no (i, j) edge, and it
must be ω (j) > ω

(m)
2 (i).

Final invariant property of the algorithm is that induced
graph is a colection of weakly connected components:

Lemma 2.3. For each set X ∈ P (k), G
ω

(k)
1

[X] is weakly
connected.

Proof. For k = 0 this is true. Consider any k > 0.
By lemma 2.2, for all i ∈ V, ω

(k)
1 (i) is monotonically

non-decreasing. In the kth round, power for each ver-
tex i, ω

(k)
1 (i) is chosen such a way that for each X ∈

P
(h)

ω
(k)
1 (i),i

(i), X has at least one vertex j ∈ F
ω

(k)
1 (i)

(i).

This choice is valid if and only if view of i for all X ∈

P
(k)

ω
(k)
1 (i),i

(i) is consistent, i.e. each X is also present in

global view X ∈ P
(k)

ω
(k)
1

, as otherwise i receives inconsis-

tent message. While if this choice is valid and is most cost
effective for all the sets in P

(k)

ω
(k)
1 (i),i

(i) then ω
(k)
1 (i) is as-

signed to i. Thus, in the view of i G
ω

(k)
1 (i)

[X] is weakly
connected, and since all these sets X are also present in the
global view G

ω
(k)
1

[X] is also weakly connected.

Using these invariant properties we can prove that at the
end of second phase the induced graph Gω contains a di-
rected spanning tree rooted at s, with power assignment
∀i ∈ V, ω (i).

Theorem 2.1 (Correctness). The output ω of the two phase
algorithm induces a graph Gω such that in Gω every vertex
i ∈ V \ {s} is reachable from s by a directed path.

Proof. Let us start by assuming that in first phase all ver-
tices eventually reaches the terminate condition and halts,
and in second phase for all i ∈ V , value of the variable
flag is eventually set to true.

When first phase terminates, it is guaranteed that net-
work has a weakly connected component spanning all ver-
tices as induced by ω, this is a direct consequence of termi-
nating condition |P(i)| = 1, and global condition proved in
lemma 2.3.

In the second phase, when all vertices reaches terminate
condition, Gω has directed path from s to all i ∈ V \ {s}.
This can be observed by following. By lemma 2.2, we have
Π(s,Gω) always expanding and initially Π(s,Gω) 6= ∅,
namely s ∈ Π(s,Gω). Finally, if there exists an i such that
i /∈ Π(s,Gω), then it must not be in terminate condition.

In following, we prove that in first phase all vertices
eventually reaches the terminate condition and halts, hence
completing the proof. By lemma-2.2, again power assign-
ment of every vertex is monotonically non-decreasing in
this phase. Also by lemma 2.1, if the local view of a vertex i

has |P(k)

ω
(k)
1 (i),i

(i)| > 1 for k > 0 and ω
(k)
1 (i), while globally

|P
(k)

ω
(k)
1

| = 1, then all proposals made by by vertex i, reaches

a single leader, and i receives ‘Inconsistent’ message from
the leader, making its view eventually consistent.

Let OPT be the cost of an optimal solution ω∗, for a
given instance x = 〈G, c, s〉 of MECBS problem. We will
show following:

Theorem 2.2 (Performance Guarantee). Distributed algo-
rithm produces a solution ω such that

∑

u∈V ω (u) ≤ 2 ·
Hn−1 · OPT.

Proof. In every round r ≥ 0 of the first phase of the al-
gorithm, we have a set of vertex and corresponding power
assignment pairs that is selected.

Let, Q(r) = {〈i1, ω
(r)
1 (i1)〉, . . . , 〈ip, ω

(r)
1 (ip)〉} be the

set of such pairs at the end of round r, that is selected by the
algorithm. Our first observation is that the sets F

ω
(r)
1 (ij)

(ij)

corresponding to each ij are disjoint. This is by construc-
tion, as each component in F

ω
(r)
1 (ij)

(ij) selects ij as min-
imum cost effective proposal sender (breaking ties arbitrar-
ily), and ij sends ‘Greet’ message iff all proposed compo-
nents send acknowledge message. Next we observe that
each ij corresponding to sequence of pairs in Q(r) is not in

F
ω

(r)
1 (j)

(j) for any j ∈ V in round r. This is again a con-
sequence of the construction, as otherwise ij sends ‘Regret’
message.

With these two observations we can claim that all com-
ponents ∪p

j=1P
(r)

ω
(r)
1 (ij),ij

(ij) that are merged in round r,

are disjoint from one another. Also, the cost of each
Xij ,t ∈ P

(r)

ω
(r)
1 (ij),ij

(ij) can be written as cost(Xij ,t) =

ρ
ω

(r)
1 (ij)

(ij ,P
(r)

ω
(r)
1 (ij),ij

(ij)). Hence, we can write the cost

incurred in round r as sum of the costs of these disjoint
sets. Now, observer that the components that are merged
in round r and r + 1 for r ≥ 0 are also disjoint from one
another. Thus, for sequence Q =

⋃k

r=0 Q
(r) and corre-

sponding components that are merged we have a family of
sets

TQ =
k

⋃

r=0

p
⋃

j=1

P
(r)

ω
(r)
1 (ij),ij

(ij)

,

over which we can compute the cost of the algorithm. Num-
ber these sets in the order in which they are merged by the
algorithm, and breaking ties for the sets that are merged in
the same round arbitrarily. Next we show that for kth set
Xk ∈ TQ, we have cost (Xk) ≤ OPT/ (n − k). First, note
that |TQ| ≤ n − 1, as in every round at least one vertex
merges at least two components with its assigned power.
Let us assume that Xk ∈ P(r) (j), corresponding to ver-
tex j in round r, having cost ρ

ω
(r)
1 (j)

(

j,P(r) (j)
)

. For any
such k, the remaining components of the partition can be
merged into single component by a sequence of optimal as-
signments of cost at most OPT. Thus there must be an as-
signment of cost effectiveness at most OPT/ (n − k). In
the round Xk was merged, there must be at least n − k
components remaining and we have that:

cost (Xk) = ρ
ω

(r)
1 (j)

(

j,P(r) (j)
)

≤
OPT

n − |TQ(n−k) |
≤

OPT

n − k

It follows that:

cost (ω1) = cost (TQ) ≤
n−1
∑

k=1

cost (Xk)

≤
n−1
∑

k=1

OPT

n − k
≤ OPT · Hn−1

In the second phase of the algorithm, if a vertex re-
ceives ‘Adjust-power’ request from S ⊆ V , then it selects
max {ω (j) |j ∈ S} as its new power. Once ω (i) is set
to this ω (j) the for all j′ ∈ S, j′ ∈ Π(s,Gω) is satis-
fied. Hence, each ω (i) is chosen at most once for assign-
ing it to some other vertex i, this is maximum when num-
ber of such vertex j is at most |V | /2, and it follows that
cost (ω2) ≤ 2 · cost (ω1) ≤ 2 · OPT · Hn−1.

Theorem 2.3 (Time Complexity). Time complexity of the
two phase distributed algorithm is O (n · Λ (G)), where
Λ (G) denotes the diameter of graph G.

Proof. As in the proof of theorem 2.2, let Q be the se-
quence of pairs of vertex and power assignment, and TQ be
the corresponding family of sets. The basic idea to obtain
the bound on time complexity will be to view the execu-
tion of the algorithm (first phase) as a tree (see figure-2).
The tree is formed as follows. In round r for each vertex ij
that merges components in F

ω
(r)
1 (ij)

(ij), ij is considered
as root, and Xij ,t ∈ F

ω
(r)
1 (ij)

(ij) as leaves. This forms
a tree because all components that are merges in a round
are disjoint from the other, and denoted as level r nodes
of the tree. It can be seen that the time complexity in the

i

F
ω

(0)
1 (i)

(i)

j

F
ω

(1)
1 (j)

(j)

k

F
ω

(2)
1 (k)

(k)

Round 0

Round 1

Round 2

Figure 2. Execution tree

first phase is proportional to the depth of this tree. Now at
each level 1 ≤ r ≤ d of the tree, at most Λ (G) rounds
are spend in the step Manage − Group to communicate the
current leader in the merged group. Finally, the worst case
depth of the tree is bounded by |TQ| ≤ n − 1. hence time
complexity of the first phase of the distributed algorithm is
O (n · Λ (G)). Since this dominates that time complexity of
the second phase, the bound on the algorithm follows.

3 Improved approximation algorithm

In this section we present an improved approximation
algorithm for the MECBS problem, which has performance
ratio 3

2 (ln (n − 1) + 1). The algorithm is by extending the
greedy algorithm of [3], and using the ideas from [8]. In
every iteration i of the algorithm a set of strongly con-
nected components are included in the larger arborescence
(possibly one which has s ∈ V as root). The induced di-
rected graph (seen as a set of directed edges and the ver-
tex set V) in iteration i is denoted as Hi. Strongly con-
nected components of Hi, that are not reachable from s,
and have no incoming edge are called unhit components of
Hi. The algorithm stops when there are no unhit component
in Hi for some i. While, if there is an unhit component,
the algorithm determines a power assignment to construct a
structure (seen as a set of edges induced by the power as-
signment) called a spider of minimum cost effectiveness.

Where, cost effectiveness of a spider is defined as ratio of
number of unhit components it merges into one larger ar-
borescence divided by its cost. It can be seen that when
Hi for some i has no more unhit components, then it im-
plies that there is a directed path from s to every vertex
v ∈ V \ {s}.

Algorithm of [3] allows spiders that hits one unhit com-
ponent, restricting every step of the algorithm to larger spi-
ders (the theme is same as the modification suggested in [8]
as compared to [9]), provides an algorithm with better ap-
proximation factor.

Definition 3.1. A spider S is an arborescence defined over
vertex set X ⊆ V with one vertex h ∈ X called head, and
a set of directed paths (called legs), to set of vertices called
feet of the spider. Cost of a spider cost (S) is the weight of
head ω (h) = max {c (h, u) : u ∈ X} plus the sum of the
cost of remaining edges of S (see figure 3(a)).

Recall, a strongly connected components of Hi, that are
not reachable from s, and have no incoming edge are called
unhit components of Hi. We will pick a vertex in a unhit
components and call it a representative.

Definition 3.2. A l+ spider is one that hits at least l unhit
components among its feet, i.e. it has at least l representa-
tives among its feet (see figure 3(c)). We will denote a l+
spider by Sl+

A 2+-spider is one having at least two representative
among its feet(see figure 3(b)). In [3], it was shown that an
optimal solution T ∗ of and MECBS instance, can be decom-
posed into a vertex disjoint 2+-spider. We will show that a
decomposition of an optimal solution T ∗ of and MECBS

instance with l+ spider with l ≥ 3 is also possible.

Definition 3.3. The shrink factor δ (S) of a spider S with
head h is the number of representatives among its feet if h
is reachable from the root s, or if h is not reachable from
any of its feet, or the number of representatives among its
feet minus one, otherwise.

What follows is the greedy algorithm:
1: procedure GREEDY − SPIDER (G, c, s)
2: H = ∅
3: while H has one unhit component do
4: (∗) Find a spider S3+ which minimizes the ratio

cost (S3+) /δ (S3+) with respect to H .
5: H ← H ∪ S3+

6: end while
7: end procedure

Algorithm GREEDY − SPIDER, chooses a spider Sl+ :
l ≥ 3 in every step that has minimum ratio of cost to the
number of unhit components that it hits. We will show
how to implement step 4 (marked as (∗)) of the algorithm
GREEDY − SPIDER in lemma 3.3, but before that we first

Head

Feet

Unhit component

(a) A spider. (b) A 2+-spider. (c) A 3+-spider.

Figure 3. Spider gtaphs

show that a good l+ spider for l ≥ 3 exists by lower bound-
ing the OPT.

Lemma 3.1. Let Hi be the induced directed graph (seen as
a set of directed edges and the vertex set V) in iteration i
with u (Hi) number of unhit components obtained from Hi,
there exists a spider Sl+ : l ≥ 3 such that:

cost (S)

δ (S)
≤

3 · OPT

2 · u (Hi)

Proof. Let T ∗ be the optimal solution of cost OPT. Thus
T ∗ is an optimum arborescence from root s reaching every
vertex in V \ {s} using a directed path. Let Hi be the in-
duced directed graph (seen as a set of directed edges and
the vertex set V) in iteration i with u (Hi) number of unhit
components obtained from Hi. Let R be the set of represen-
tatives from unhit components (i.e. one vertex from each,
and |R| = u (Hi)). The depth of a node is the distance
from root s using shortest directed path. Choose a vertex v
in T ∗ of maximum depth (by postorder traversal) such that
sub-arborescence rooted at v has at least three representa-
tives from unhit components. Since no proper decendents
of v has three representatives from unhit components it de-
fines a S3+ spider. Remove v and its decendents from T ∗

and repeat. Let v be the last such vertex removed from T ∗

along with its its decendents, after which there are at most
two representatives from unhit components remained. Let
v′ be the vertex (possibly s) which has path to v and both
of these remaining vertices. Then we form the last spider
connecting v and remaining vertices to v′.

Let {Si}
q

i=1 be the set of S3+ spiders thus obtained in
sequence. We have

∑q

i=1 cost(Si) ≤ OPT. With r(Si)
denoting number of representatives in Si, we also have
∑q

i=1 r (Si) = u (Hi). Now observe that

2/3 · r (Si) ≤ r (Si) − 1 ≤ δ (Si) , for all 1 ≤ i ≤ q − 1.

This holds as r (Si) ≥ 3, it follows that r (Si) − 1 ≥
2/3 · r (Si). On the other hand, by the definition of δ (Si),
we have δ (Si) ≥ r (Si) − 1. Thus, 3/2 ·

∑q

i=1 δ (Si) ≥
∑q

i=1 r (Si) = u (Hi). Hence, for the S3+ spider Sj with

highest ratio satisfies

cost (Sj)

3/2 · δ (Sj)
≤

OPT

u (Hi)

In following we show that algorithm gives an improved
approximation algorithm for the MECBS problem, which
has performance ratio 3

2 (ln (n − 1) + 1). We use following
lemma from [3]:

Lemma 3.2 ([3]). For a spider S, and induced directed
graph H , u (H ∪ S) ≤ u (H) − δ (S), where u (H) is the
number of unhit components obtained from H , and δ (S) is
the shrink factor of spider S.

Theorem 3.1. Algorithm GREEDY − SPIDER is a
1.5(ln (n − 1) + 1)–approximation for MECBS problem
with arbitrary asymmetric power requirement.

Proof. Let, φi = u (Hi) be the number of unhit compo-
nents of Hi (thus φ0 is n − 1 for instance), and let Si be
the spider selected in this iteration in step (∗) such that
cost (Si) = wi, and δ (S) = δi. Using lemma 3.1, we
have wi/δi ≤ (3 · OPT) / (2 · φi). Using lemma 3.2, we
have that φi+1 ≤ φi − δi, for all 0 ≤ i ≤ m, where m is
the number of iterations algorithm runs. It follows that

φi+1 ≤ φi − δi ≤ φi

(

1 −
2 · wi

3 · OPT

)

(1)

using recurrence relation of equation 1 we get,

φm−1 ≤ φ0

m−2
∏

i=0

(

1 −
2 · wi

3 · OPT

)

(2)

Using ln (1 + x) ≤ x, and taking natural logarithm on both
sides of equation 2, we have,

ln

(

φ0

φm−1

)

≥

2 ·
m−2
∑

i=0

wi

3 · OPT

Now observe that φ0 = n − 1 and φm−1 ≥ 1, hence
m−2
∑

i=0

wi ≤ 1.5 · OPT · ln (n − 1). We also have wm−1 ≤

1.5 · OPT by lemma 3.1. Noting that cost of the solution

produced by the algorithm is
m−1
∑

i=0

wi we have
m−1
∑

i=0

wi ≤

1.5 · OPT · (ln (n − 1) + 1).

Finally we present how to implement step (∗) of the al-
gorithm GREEDY − SPIDER in lemma 3.3. Due to limita-
tion of space we present a sketch of the procedure here.

Lemma 3.3. There exists a polynomial time procedure to
compute a Sl+, l ≥ 3 of minimum ratio.

Proof. Let R be the set of representatives from unhit com-
ponents of H . For all possible head h, and all possible
ω ∈ Ch we will do following. Let Fω (h) be children of
h with ω as chosen power. For each representative ri com-
pute shortest path Pi, starting at j ∈ Fω (h) and ending
at ri (some j for which Pi is shortest). Arrange this paths
in nondecreasing order. Let R1 be the set of representa-
tives that can reach h, and R2 which can not, otherwise
set R1 = R,R2 = ∅. For a choice of l ≥ 3, and split
j1+j2 = l, use the algorithm for finding a minimum weight
3+ branch-spider with input (R1, h, j1), and (R2, h, j2) as
presented in [8], using h–ri path Pi obtained earlier in the
calculation of the weight of spider to obtain Sl+. These two
spider can be merged at h to get another S3+ if required. We
will try all possible l, which is bounded by |R|, and possible
integers j1 +j2 = l to obtain best spider with a given power
value, iterating over all possible choice of h. The minimal-
ity in ratio follows by argument similar to one presented in
[8, lemma 3.2].

Using techniques of [3, Theorem 2], we have following
result:

Theorem 3.2. There is a 1.5 ln (n − 1) + 2.5 – approxi-
mation algorithm for Strong connectivity with asymmetric
power requirements.

4 Concluding remarks

In this work we have presented a 2Hn−1 factor dis-
tributed approximation algorithm for MECBS problem [6]
with symmetric edge cost. Time complexity of the two
phase distributed algorithm is O (n · Λ (G)), where Λ (G)
denotes the diameter of the communication graph G. To our
knowledge, there is no previously known distributed algo-
rithm for this problem. In order to obtain a distributed algo-
rithm, we consider the approximation algorithms presented
in [2], which is very similar in its spirit to that of well known
greedy approximation algorithm for SET-COVER problem
(cf. [13, Chapter 2, Algorithm 2.2]).

We believe that time complexity of this algorithm can
be reduced, possibly using some efficient distributed data-
structures. We would like to explore the possibility if sparse
spanners ([12, 1]) specifically constructed for MECBS

problem provide logarithmic approximation factor, as that
could be a new avenue to design faster distributed approxi-
mation algorithm for this problem.

References

[1] B. Awerbuch. Complexity of network synchronization. J.
ACM, 32(4):804–823, 1985.

[2] V. Bilò and G. Melideo. An improved approximation algo-
rithm for the minimum energy consumption broadcast sub-
graph. In M. Danelutto, M. Vanneschi, and D. Laforenza,
editors, Euro-Par, volume 3149 of Lecture Notes in Com-
puter Science, pages 949–956. Springer, 2004.

[3] G. Calinescu, S. Kapoor, A. Olshevsky, and A. Zelikovsky.
Network lifetime and power assignment in ad hoc wireless
networks. In G. D. Battista and U. Zwick, editors, ESA,
volume 2832 of Lecture Notes in Computer Science, pages
114–126. Springer, 2003.

[4] I. Caragiannis, M. Flammini, and L. Moscardelli. An expo-
nential improvement on the mst heuristic for minimum en-
ergy broadcasting in ad hoc wireless networks. In 34th In-
ternational Colloquium on Automata, Languages and Pro-
gramming (ICALP), Lecture Notes in Computer Science.
Springer-Verlag, 2007.

[5] I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos. A
logarithmic approximation algorithm for the minimum en-
ergy consumption broadcast subgraph problem. Inf. Process.
Lett., 86(3):149–154, 2003.

[6] A. E. F. Clementi, P. Crescenzi, P. Penna, G. Rossi, and
P. Vocca. On the complexity of computing minimum energy
consumption broadcast subgraphs. In STACS ’01: Proceed-
ings of the 18th Annual Symposium on Theoretical Aspects
of Computer Science, pages 121–131, London, UK, 2001.
Springer-Verlag.

[7] M. Flammini, A. Navarra, R. Klasing, and S. Pérennes.
Improved approximation results for the minimum energy
broadcasting problem. In DIALM-POMC ’04: Proceed-
ings of the 2004 joint workshop on Foundations of mobile
computing, pages 85–91, New York, NY, USA, 2004. ACM
Press.

[8] S. Guha and S. Khuller. Improved methods for approximat-
ing node weighted steiner trees and connected dominating
sets. Inf. Comput., 150(1):57–74, 1999.

[9] P. Klein and R. Ravi. A nearly best-possible approximation
algorithm for node-weighted steiner trees. J. Algorithms,
19(1):104–115, 1995.

[10] D. Li, X. Jia, and H. Liu. Energy efficient broadcast routing
in static ad hoc wireless networks. IEEE Transactions on
Mobile Computing, 3(2):144–151, 2004.

[11] D. Peleg. Distributed computing: a locality-sensitive ap-
proach. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2000.

[12] D. Peleg and A. A. Schäffer. Graph spanners. Journal of
Graph Theory, 13(1):99–116, 1989.

[13] V. V. Vazirani. Approximation algorithms. Springer-Verlag
New York, Inc., New York, NY, USA, 2001.

[14] P.-J. Wan, G. Calinescu, X.-Y. Li, and O. Frieder. Minimum-
energy broadcasting in static ad hoc wireless networks.
Wireless Networks, 8(6):607–617, 2002.

