
1

Routing of mobile agents in a single channel
Wireless Sensor Network

Manik Raina, Subhas Kumar Ghosh, Ranjeet Kumar Patro
Honeywell Technology Solutions Laboratory

151/1 Doraisanipalya, Bannergatta Road
Bangalore, India - 560068

Email: {manik.raina, subhas.kumar, ranjeet.patro}@honeywell.com

Abstract— This paper proposes fault tolerant algorithms for
routing mobile agents through a homogenous single channel
Wireless Sensor Network. The routing algorithms have a property
that every sensor in the Wireless sensor network is covered by
the itinerant mobile agents. The various algorithms exploit local
knowledge alone to make all decisions and do not need any
global properties of the Wireless Sensor Network. We present
a case for why these algorithms are required. This is followed
by theoretical analysis of the problem in the randomly deployed
Wireless Sensor Network where we prove the correctness of our
algorithms and justify our intuitive insights by mathematical
proofs. This is followed by a comparative simulation where our
algorithms are simulated and compared on various parameters
like energy expenditure, robustness, network lifetime and latency.

I. I NTRODUCTION

A D hoc Wireless Sensor Networks (WSN) are gaining
prominence in areas of sensing, detection and tracking.

Applications of this technology range from monitoring and
control in military, ecological, enviromental and domestic sys-
tems. WSNs are also used in automating buildings, universities
factories etc. The composition and deployment scenarios of
this technology are varied. Each node in this network consists
of sensors which communicate with one another via a wireless
channel.

The Wireless Sensor Network is also often quoted as one of
the most constrained computational enviroment where sensor
memory, power and computational capabilities are all limited.
This enhances the appeal of this technology as it makes
sensing devices low end in cost terms. This lowering in cost
makes the sensors prone to failure and energy depletion, a fact
often resolved by resorting to dense deployment of sensors.
This fact must be kept in mind during algorithm development
for WSNs.

In many usage scenarios sensors are randomly deployed,
sometimes scattered by aeroplanes in hostile terrain and hence
no assumptions can be made about the topology of the
network, which the sensors in the WSN have formed post de-
ployment. Algorithms which route data and code through such
a network must provably work over any arbitrary deployment.
The sensors are also prone to transient changes.

We present algorithms for grid and random Wireless Sensor
Networks which count the number of nodes in a network at
a given time. This problem is simple to formulate and can

provide useful information about the network’s state. We use
agents, which can move around the network hopping from
sensor to sensor. The agents carry their own data and state.

We consider the random deployment of sensors over a
region and provide a theoretical basis for the algorithms we
propose over the random graphs, performing mathematical
analysis of the those algorithms and their basis.

The Itinerary of our algorithms is decided online and is not
predecided.

A. Why a mobile agent based approach?

Mobile agents carry code which enables them to take dy-
namic decisions which may not be possible in other solutions.
For example, as shall be shortly stated, we give examples
of network wide reprogramming, network calibration and
parameterization as some of the problems which shall be
solved with our solution. For example, in reprogramming
the sensor network, the mobile agents can reduce the time
needed for reprogramming and the bandwidth used (leading
to savings in network lifetime) by carrying extra information
which helps it decide which nodes need to be reprogrammed.
Some nodes can be skipped for reprogramming as a result.
Now consider calibration, some calibration schemes require
complex techniques which may involve more than one sensor
at a time in the calibration process. Thid may need logic (code)
to be carried around to the nodes to determine which sensors
need to be involved in the calibration.

Qi et al [8] discuss the mobile agent paradigm in wireless
sensors and some issues.

B. Some applications of our solution

There are several problems which can be easily solved using
our algorithms directly, especially problems which needevery
sensor to be reached and some data gathered from each. For
example
• Propogation of model parameters to every sensor node.

Elnahrawy and Nath [2] describes a Bayesian approach
for cleaning and querying noisy sensors where noisy
observations at each sensor are turned into probabilis-
tic uncertainity models of the readings by acleaning
modulewhich needs a noise model and prior knowledge.
Algorithms in our paper can be utilized to update prior
knowledge at each sensor node when the prior knowledge

2

models are dynamic. This updation model consists of
updating sensor nodes about the parameters of the prior
knowledge which have changed. For example, changes
in parameters of the prior knowledge like meanµ and
standard deviationσ can be sent to every sensor.

• Global calibration of communication and sensing param-
eters. Certain sensor parameters depend on the ambient
enviroment and physical parameters pertaining to out-
door propogation models of RF are critical for radio
communication and sensing which are determined by
experimentation and need to be propogated to every
sensor in the network. As an example, the average large
scale path loss for an arbitary T-R seperation can be
expressed as

PL(Db) = PL(d0) + 10nlog
d

d0

The path loss exponent varies for different eviroments as
shown [3] below

Environment Path loss exponent,n
Free space 2

Urban area cellular radio 2.7 to 3.5
Shadowed urban cellular radio 3 to 5

In building line-of-sight 1.6 to 1.8
Obstructed in building 4 to 6
Obstructed in factories 2 to 3

TABLE I

PATH LOSS EXPONENTS FOR DIFFERENT ENVIROMENTS

Since sensor software at the time of manufacture may
not be certain about the deployment, the parametern
can be reparameterized at each sensor for enhancing the
accuracy of the signal model.
For acoustic sensors there is a similar drift in the veoloc-
ity of sound due to temperature and humidity variations.
The drift can be represented ascair = 331.5+0.6θ where
θ is the temperature in celsius. For acoustic sensors, any
drift in the speed of sound will cause serious errors in
measurements.
Similarly, the PCS extended Hata model [3] (an outdoor
RF propogation model) also needs to be parameterized
depending on where the deployment occurs. The model
is

L50 = 46.3 + 33.9log fc − 13.82log hte − a(hre)+
(44.9− 6.55log hte)log d + CM

The parameterCM is 0Db for medium sized cities and
suburban areas and3Db for metropolitan areas. Again,
this parameter needs to be communicated to each sensor
depending on the eventual deployment since the deploy-
ment scenario may not be known at manufacture when
the software is burned into the sensors.

• Software redeployment: The mobile agents help nodes
identify if they are running faulty or obsolete software
and prompt them to update their versions from a base
station or another sensor node in the WSN. Reijers
and Langendoen [4] describe a scheme for distributing
software updates wirelessly in an ad hoc sensor network.

However, their paper does not discuss a scheme or a
protocol which ensures that these updates actually reach
every sensor in the network. Our algorithms can be used
to distribute the updates across the sensor network.

• Certain aggregation scenarios where the solution we
describe can be used to collect information and store it
for use, perhaps by the base station or even other sensors.
A view of this kind of a routing algorithm as atraversing
querycan be proposed.

II. RELATED WORKS

Marwaha et al [7] describe a hybrid algorithm which
reduces route discovery and end-to-end latency in mobile
ad-hoc networks. Though the first algorithm in this paper
appears similar to our first algorithm, their algorithms appear
to be a product of intuition rather than based on concrete
mathematical proofs. Their paper considers algorithms for
route updations while our algorithms are for visiting all nodes
for the purpose of parameterization, calibration, software rede-
ployment etc. Further, agents in their work act independently
which causes many of them to repeat what others are doing. In
our scenario, we ensure our ”labelling” schemes in multiple
agent schemes works such that each sensor is visited by at
most one agent with the primary aim of reducing latency.
Further, our paper goes on to describe an algorithm which
uses both agents and queries. Each of our claims are backed
up with mathematical proofs to indicate that our claims hold
true regardless of the deployment and the precise conditions
under which deviations from optimal conditions may happen.

Wu et al [6] describe a genetic algorithm based approach
to solving the mobile agent routing problem after proving
the optimal routing of agents in a WSN to be NP complete.
Their approach, however presupposes a hierarchical model of
the Wireless sensor network consisting of powerful process-
ing elements which perform the computationally heavy task
of determining the routes and computationally constrained
sensors which sense the enviroment. This is different from
our homogenous view of the sensor network where the same
computationally constrained sensors make decisions about
the routing and sense the enviroment as well. Further, their
paper assumes that system wide information is present for
calculating routes while we route using local information
alone.

III. PROBLEM FORMULATION

A. Assumptions

• We assume that each sensor contains anode identifier
which could perhaps be predistributed. Thenode iden-
tifier for the n’th sensor can be represented asIDn.
There must exist a bijectionf such thatf : IDn →
Zn(G) + 1, where Zn(G) + 1 is the set of integers
{1, 2, 3, ..., n(G) + 1}. It is assumed that each vertex
knows thenode identifiersof it’s first hop neighbors.

• Further, the edge setE(G) which represents the com-
munication links in the Wireless Sensor NetworkG
forms according to the spatial constraint∀u, v ∈
V (G)

(
euv ∈ E(G) ≡

∥∥∥→ru − →
rv

∥∥∥ ≤ r
)

where

3

–
→
ru and

→
rv are the location vectors for the verticesu

andv
– r is the transmission radius and is assumed to be the

same for all vertices
– ‖.‖ is the euclidian norm.

B. Graph

A graph G(V, E) is defined as a collection of vertices
and edges between the vertices. This graph shall be used
to represent sensors and communication links between them.
Each sensor shall be represented by a uniqueu ∈ V (G).
euv ∈ E(G) iff a communication link exists betweenu andv.

C. Agent

An agentAi is defined as an entity consisting of
{
Di

t, S
i
t

}
whereDi

t is the data andSi
t is the state at timet. CodeC

is defined asC :
{
Di

t, S
i
t

} → {
Di

t+1, S
i
t+1

}
.The agent does

not carry code, which resides on every sensoru ∈ V (G).
Each agentAi forms anassociation〈Ai, u〉 with vertex u ∈
V (G) if the agent resides atu. For example, an association
〈Ai, u〉 implies that agentAi resides at vertexu. We define
jump(Ai, x, y) : 〈Ai, x〉 → 〈Ai, y〉, for somex, y ∈ V (G).

D. Itinerary

An Itinerary Ui of agentAi is defined such that

∀x ∈ V (G) , x ∈ V (Ui) ≡ ∃y, z ∈ V (G) such that

jump(Ai, y, x) ∧ jump(Ai, x, z)
(1)

Further,

exy ∈ E(Ui) ≡ x, y ∈ V (Ui) ∧
(jump(Ai, x, y) ∨ jump(Ai, y, x))

(2)

Clearly it can be seen thatUi ⊂ G. The itinerary is the subset
of G the agentAi takes while performing it’s task.

E. Itinerary history

An Itinerary historyof agentAi is defined asHAi such that
HAi ⊆ V (G). HAi is contained inDi

t.

jump(Ai, x, y) →





for y /∈ HAi :
push(HAi , f(y))
g()
〈Ai, x〉 → 〈Ai, y〉
return f(y)

for y ∈ HAi :
return f(x)

wherepush() and pop() are LIFO stack operators.g() is
a function evaluated at each vertex the agentAi visits. This
function could do a multitude of tasks including gathering
data, setting some flags, triggering operations in every sensor
etc.

F. Neighbor setN(v)
The Neighbor set ofv is defined as follows

∀v, x ∈ V (G) (x ∈ N(v) ≡ exv ∈ E(G)) (3)

G. Local Knowledge

Local knowledgeis defined as the questions which can
be answered with the information in

(〈Ai, u〉 , Di
t, S

i
t , N(u)

)
,

whereu is the vertex at which the agentAi finds itself.

H. Purpose of the algorithms

Given a randomly deployed Wireless Sensor Network, rep-
resented by a fully conneted graphG(E, V), the problem we
wish to solve is to be able to visit every sensor in it.

IV. T HEORETICAL RESULTS

In this section we discuss the underlying graph theoretic
principles which have resulted in our algorithms.

A. Impossibility of determining existence of Hamiltonian cy-
cles using local knowledge alone

Determining if a Hamiltonian cycle exists in a graphG is a
well known NP complete problem [1]. In this section we show
the difficulty of determining if a Hamiltonian path exists in a
graph with local knowledge. We shall enumerate the various
necessary and sufficient conditions for that purpose.

1) Necessary conditions

a) Every vertex of a Hamiltonian graph has degree
≥ 2.

b) If G has a Hamiltonian cycle, for each nonempty
S ⊆ G, G− S has at the most|S| components.

To determine the first condition, we would have to check
each node which has degree less than two. For this we
would have to visit each vertexv or any node inN(v
which knows thatv has degree less than two. Hence,
information of every node is necessary to determine
if the necessary conditions are met. For the second
condition, the task of determining if a subset ofG forms
a component even though achievable in polynomial time,
this condition needs to be evaluated for every subset of
G and for a graphG, the subset count ofV (G) increases
as2|V (G)|.

2) Sufficient conditions

a) If G is a graph and|V (G)| > 3, G is hamiltonian
if δ(G) ≥ n(G)/2.

b) In a simple graphG, ∀u, v ∈ V (G), if d(u) +
d(v) ≥ n(G), G is Hamiltonian.

c) A simplen vertex graphG is Hamiltonianiff the
closure ofG is Hamiltonian.

d) Let the vertex degrees of a simple graphG bed1 ≤
d2 ≤ d3... ≤ dn. If i < n/2 implies di > i or
dn−i ≥ n− 1, G is Hamiltonian.

Clearly, the first, second and fourth conditions need the
degrees of all nodes ofG, which cannot be determined
unless the agent travels to every vertex. The third con-
dition needs information abouth the closure ofG which
needs global information. Hence, information is needed
from every vertex to prove if a Hamiltonian path exists.
Since the task of proving the existence of such a path
does not identify the order of the cyclic sequence of

4

edges∈ E(G) forms the hamiltonian path, a heuristic
based mechanism which visits every vertex to count it
is not such a bad idea as long as we can bound it’s
performance. We shall later present mechanisms which
loosen the need to visit every vertex by the agent for
counting.

B. A quick introduction to our goals

Considering the above, the algorithms we devise a set of
algorithms which use agents to visit every vertex in a graph.
The algorithms

• Must reach every node in the graphG.
• Must exploit local information available at that vertex.

Later we will analyse algorithms which depend on local
information beyond what is available at the vertex in
question, but still does not depend on any global pa-
rameters. Also, after initially concentrating on algorithms
which use a single agent, we will move onto algorithms
which use more than one agent and then to algorithms
which exploit more than just the first hop connectivity
information.

• Must succeed in doing so irrespective of the topology of
the graph.

C. Theoretical results and proofs when using a single agent

In this subsection, we shall present the proof of correctness
of the algorithm to visit all vertices using a single agent as
given in algorithm 1. This algorithm uses the neighbor list
(N(u)) of a vertex u to determine where to go next. The
agent utilizes a stack and agent state which it carries with it
as it moves from agent to agent. At any time, the agent is in
one of the states{recede, firstV isit}. The agent is in state
firstV isit when it visits a node for the first time and in state
recede otherwise.

To prove that the algorithm visits all vertices inG, we need
to prove that when agentA travels along it’s itineraryUA

(UA ⊂ G), it possess the following qualities

1) Each cycle inG is a path inUA.
2) ∀x ∈ V (G) =⇒ x ∈ UA.
3) Each vertex inUA executesg() exactly once.

The third condition is necessary in applications where the
operation is to be performed exactly once for every vertex.

Before we can begin the proofs we need a few definitions.

DEFINITION IV.1. Let P be a uv path in G. P is
a set of vertices{u, x1, x2, x3..., v}. We definefP as
{f(u), f(x1), f(x2), f(x3)..., f(v)}.
DEFINITION IV.2. Let Pi and Pj be two (possibly non-
disjoint) uv paths in G defined as{u, x1, x2, x3..., v} and
{u, y1, y2, y3..., v}.

DIFF (Pi, Pj) =⇒





0 when∀i, f(xi) = f(yi)
f(xj)− f(yj) when
∃z|f(xz) 6= f(yz) and j is
the least element of {z}

Algorithm 1 Visiting vertices in G using a single agent

1: agentState = firstV isit {We follow a convention that
u always denotes the ID of the sensor on which the agent
resides at this point and v the ID of the sensor on which
the agent was residing before jumping to this sensor}

2: while stack 6= {Φ} do
3: if agentState == firstV isit then
4: g() {Application specific activity at sensor}
5: list = N(u) {visiting this vertex for the first time}
6: if {list− u} == {Φ} then
7: agentState = recede
8: jump(A, u, topOfStack(stack))
9: else

10: find w such that(f(w) ≤ f(x)∀x ∈ list)∧(w /∈
stack)

11: if w ∈ stack ∧ f(u) > f(w) then
12: add(w, u)in exception list
13: repeat previous step of finding w
14: end if
15: if no such w exists then
16: agentState = recede
17: jump(A, u, topOfStack(stack))
18: end if
19: agentState = recede
20: jump(A, u, w)
21: end if
22: else
23: pop(stack) {We have been to this vertex before}
24: list = N(u)
25: find w such that f(v) ≤ f(w) ≤ f(x)(∀x ∈

list) ∧ w /∈ stack ∧ w /∈ exceptionList
26: if w ∈ stack ∧ f(u) > f(w) then
27: add(w, u)in exception list
28: repeat previous step of finding w
29: end if
30: if no such w exists then
31: jump(A, u, topOfStack(stack))
32: end if
33: jump(A, u, w)
34: end if
35: end while

THEOREM IV.3. (Cycle decomposition)Every cycle inG is a
path in UA.

Proof. Consider the agentA which attempts to visit the
vertices in G. Let the procedure begins atu ∈ V (G). i.e
@x ∈ V (G) such thatjump(A, x, u).

u

u1

u2 u3 u4 v

At vertex v, the Itinerary history ofA shall containHA =
{f(u), f(u1), f(u2)..., f(v)}. The agent has traversed the path
P (uu1u2u3u4v). ∀x ∈ P =⇒ x ∈ UA. Let P

′
=

5

{uv1v2v3v4v} be anotheruv path in G. We will prove that
only one ofP or P

′
exists inUA using contradiction.

For a path P to exist in UA, ∀p ∈
{all uv paths in G} , DIFF (P, p) ≤ 0. The path P
(uu1u2u3u4v)will exist in U iff ∀uv paths Pi in G,
DIFF (P, Pi) ≤ 0. AssumeP

′
also∈ UA.

u

u1

v1

u2

v2

u3

v3

u4

v4

v

Without loss of generality let us assume thatf(u1) ≤ f(v1).
Since

f(u1) ≤ f(v1) =⇒ jump(A, u, u1) (4)

and

jump(A, u, u1) =⇒ push(HA, f(u1))∧{〈A, u〉 → 〈A, u1〉}
(5)

Hence based on (5), it can be concluded thatA will
be at U1 and HA = {f(u), f(u1)}. Further, from (5) it
can be inferred that along pathP , jump(A, ui, ui+1) and
henceHA at v is {f(u), f(u1), f(u2), .., f(v).}. At v1, HA

would be {u, u1, u2, u3, u4, v, v4, v3, v2, v1}. At v, N(v) =
{f(u), f(v2)} and ajump to u is forbidden by the algorithm.
Since∀x ∈ N(v), x ∈ HA, P

′
/∈ UA.

THEOREM IV.4. (Vertex equivalence)V (G) and V (UA) are
identical.

Proof. Assume the agentA begins the procedure at a vertex
u ∈ G, (i.e @r ∈ V (G) such thatjump(A, r, u)) u ∈ UA.
SinceG is connected,∃ a uv path inG. There exists a many-
to-one mappingµ : {all uv paths in G} → P , whereP is
the onlyuv path inUA. SinceG is connected,∀u, v ∈ V (G),
there is at least oneuv path in G but there is a uniqueuv
path µ(all uv paths in G) in UA. Since this argument can
be extended∀u, v ∈ V (G),

∀x ∈ V (G) =⇒ x ∈ UA. (6)

THEOREM IV.5. (Uniqueness of enumeration)At each vertex
in UA, agentA executesg() exactly once.

Proof. Sincejump(A, u, v) =⇒ g() if and only if f(v) /∈
HA the agentA executesg() at a vertex when it is visiting
a vertex for the first time only. Subsequent visits to the same
vertex do not executeg().

We propose and prove a bound on the number of times a
vertexv is present in the agentAi’s itinerary UAi .

THEOREM IV.6. (The Counting cut vertex theorem)Let any
vertexv of graphG be a cut vertex such thatG− {v} hask
components. The the agent shall traverse vertexv at exactly
k times.

Proof. Let vertex v forms is a cut vertex (articulation)
of G. By definition, G − {v} is disconnected. LetS =
{C1, C2, ...Ck} be the components ofG − {v}. If v ∈ UAi

,
then by definition∃x, y ∈ V (G) such thatjump(Ai, x, v) ∧
jump(Ai, v, y).

If we have to determine the smallestY ⊂ G such that
Y = {v1, v2, v3, ...vn} and ∀z ∈ Y =⇒ z ∈ UAi

subject
to the condition that∀j ∈ [1, k], ∃vr ∈ Y such thatvr ∈ Cj ,
then |Y | ≥ k.

We shall prove this theorem by Contradiction.
Assume|Y | < k. Then it is not possible to have a bijective

mappingΨ : Y → S since that would require|Y | = |S|.
Hence|Y | ≥ |S|.

Now considerY
′

= {u1, u2, ...uk} such thatY
′ ⊂ V (G)

and |Y ′ | = k. If ∀j ∈ [1, k], uj ∈ Cj and ∀i ∈ [1, k −
1], jump(Ai, uj , uj+1) ∧ jump(Ai, uk, u1). This represents
the smallestY which satisfy all conditions.

It is now clear that vertexv is visited by agentA at least
k times. Suppose agentA is in componentCj . We define
NCj (v) as

x ∈ NCj (v) =⇒ x ∈ N(v) ∧ x ∈ Cj

Or, NCj (v) constitutes the first hop neighbors ofv which
belong toCj . AssumingA is at somex ∈ NCj (v), since
f(v) ∈ HA, by reasoning similar to the one presented in
theorem IV.3,A can only return tov from one element in
NCj (v), which proves that vertexv can be reached exactlyk
times.

D. Using more than a single agent

In this section we consider the theoretical motivation to
pursue the problem at hand with more than one agent. A single
agent based algorithm, though is proven to work correctly,
does have some shortcomings which can be enumerated as
follows.

Shortcomings of a single agent based algorithm

1) Prone to sensor failure
2) Long latency times

In this section we consider the analysis of those shortcom-
ings and prove that using more than one agents ameliorates
the situation. This paper contains simulation to bolster these
very theoretical findings. We shall analyze each of the issues
in more detail below.

We now consider the problem of sensor failure and it’s
impact on the results. A single agentA reaches vertices∈ G
by traversingUA ⊂ G. The agentA returning with the results
along a pathP would be unsuccesful if any vertex∈ P were
to fail.

We now propose a method using multiple agents
{A1, A2, A3, ...} and prove an improvement in each of the ar-
eas enumerated above where a single agent algorithm performs
poorly. We illustriate the theoretical analysis assuming the
special case that the agents are counting the number of vertices
in G though this analysis can be genralized to any problem
involving reaching every vertex easily. To ensure integrity of
counting, we must ensure that∀i, j ∈ [1, n], CAi∩CAi = {φ}
if i 6= j where CAi is the set of vertices which agentAi

6

counts. The protocol we propose will ensure that. This is
ensured by a sensor labelling scheme which ensures only
one agent labels every sensor. Based on a system parameter
λ ∈ Z+, an agentA traverses a random pathPl in G.
Pl = {w0, w1, ..., wn−1} is a path chosen randomly such
that it must have at leastλ unique vertices and is called
the labelling path. The setLλ = {l0, l1,, lλ−1} is defined
as the label set.A assigns labels as followsχ : Pl → Lλ

such thatχ(wr) = lr mod λ. Upon reachingwn−1 ∈ Pl, A
replicates itself inton agents which traverse backwards along
Pl counting the vertices incident upon eachx ∈ Pl using
the algorithm similar to the one used by a single agent. This
scheme partitions the graphG. The label stored at each vertex
can be represented as{li, ti, f(u)}.

Let us now turn our attention to the improvement this
scheme offers when vertices fail. Since the labelling partitions
G, each vertexx ∈ Pl has some neighborsNi(x) such that
∀y ∈ Ni(x) =⇒ y /∈ Pl. This is called the subtreeincident
upon x such that|Ni(x)| ≥ 0. Let pi be the probability of
vertex failure when an agentAi traverses the subtree incident
at wi. pi depends on how many nodes are inNi(x) and the
time Ai spends inNi(x) but we are not interested in those
questions. Our objective is to show that with an increase in
λ, the expectation of the count increases. Supposeλ = 1 and
we use one label, which is identical to a single agent based
count. In that case, the expectation of the count is

C1
av = n(G)

∏

i∈[0,n−1]

(1− pi)

CA1 = V (G)

For λ = 2, two agentsA1 andA2 countG.

C2
av = |CA1 |

∏

i|imod2=0

(1− pi) + |CA2 |
∏

i|imod2=1

(1− pi)

CA1 ∪ CA2 = V (G)

For the general case

Cλ
av =

∑

(0≤k≤λ−1)

|CAk+1 |
∏

(i | i mod λ = k)

(1− pi) (7)

⋃

(1≤k≤λ)

CAk
= V (G)

For a equally partitioned graph,∀i ∈ [0, λ − 1], pi = p. In
this case,

Cλ
av =

∑

(0≤k≤λ−1)

|CAk+1 |
∏

(i | i mod λ = k)

(1− p)

=⇒ Cλ
av = (1− p)

λ
n

∑

(0≤k≤λ−1)

|CAk+1 |

=⇒ Cλ
av = (1− p)

λ
n n(G)

Clearly, sincep ≤ 1, Cλ
av becomes smaller asλn → 1.

Cλ
min = (1− p)n(G)

Since it is not possible to equally partition the graph us-
ing our algorithms and graph partitioning is a known NP
hard problem, we need to analyze the same assertion for

unequally partitioned graphs. For such graphs,∃i, j ∈ [0, λ−
1], pi 6= pj . let pmin = min{p1, p2, p3, ..., pn} and pmax =
max{p1, p2, p3, ..., pn}. Then from (7) the following can be
inferred

n(G)
∏

0≤i≤n

(1− pmax) ≤ Cλ
av ≤ n(G)

∏

0≤i≤n

(1− pmin)

or

n(G)(1− pmax)
λ
n ≤ Cλ

av ≤ n(G)(1− pmin)
λ
n (8)

SincePmax << 1, (1− pmax)
λ
n ≈ 1− pmax(λ

n) and hence

n(G)(1− pmax
λ

n
) ≤ Cλ

av ≤ n(G)(1− pmin
λ

n
)

Clearly, as λ increases, both the lower and upper bound
increase, increasing the value ofCλ

av. It can be shown that

Cλ
av ≥ Cm(1− pmin)(1− pmin − δ)

n
λ−1

+(1− pmin − δ)
n
λ

∑

k 6=m

Ck

where δ = pmax − pmin. Here too, we seeCλ
av becoming

larger asλ → n. To verify this result, this scenario is a strong
case for simulation.

Now we turn our attention to latency. We assume that the
latencyΛ (time taken) for an agentAi to count the vertices
in G is proportional to the number of vertices counted byAi,
CAi . For λ = 1, Λ ≈ ∑

(0≤k≤n−1) Ck. For the general case,
Λ = max{CA1 , CA2 , CA3 , ..., CAλ

}. CAi =
∑

k|kmodλ=i Ck.
Clearly,

∑
k|kmodλ=i Ck <

∑
(0≤k≤n−1) Ck for λ > 1. With

this justification, we now present an algorithm which counts
the vertices usingλ agents.

We present an algorithm 2 which reaches every sensor at
and use more than one agents. This algorithm reaches every
sensor and performs the sensor specific processing which is
application specific. However, there is a slight modification
in the semantics of thejump call. In addition to modifying
the association〈Ai, x〉 → 〈Ai, y〉 it performs an additional
operation of labelling the current vertex. This whole operation
must be atomic. An agent can jump to a nodeu such that
u ∈ Pl iff the agent state isrecede.

E. Queries and agents

A query q is defined as a question/response mechanism
initiated by the sender of the querySq to obtain a certain
informationqi from the recipient of the queryRq.

Sq
q−→ Rq

Sq
qi←− Rq

Further,q ∈ Q, whereQ is a predefined master set of possible
queries, known to bothSq andRq. The responseqi is returned
to Sq (possibly using none, one or more intermediaries) byRq

in a format the former understands.
When traversing through a WSN, the agent contains code

and data, a natural question to ask if the agent needs to visit
every sensor. More importantly, given a nodeu, is it necessary
for the agent to visit all nodes in the vicinity ofu ? We propose
a mechanism of queries of depthd which trigger the per sensor

7

Algorithm 2 Visiting vertices in G usingλ agents
Require: u ← ID of the current vertex

1: choosePl ∈ V (G) such that |Pl| ≥ λ
2: for all x ∈ Pl do
3: labelcurrent node ← label
4: label ← (label + 1)modλ
5: jump(A, u, x) {The Agent A will find itself at the

vertex corresponding to the last entry inPl}
6: replicate() {replicate agent A into λ agents

{A1, ..., Aλ}, from this point on, each agent shall
execute seperately. Further, each agent shall have a
variable called ”label” which describes the label it is
associated with. From this point onwards, each agent
executes on it’s own.}

7: end for
8: ∀A ∈ {Ai}, agentStateA = firstV isit
9: while stackAi 6= {Φ} do

10: {each agent will possess it’s own stack, all agents
execute this procedure independently of one another}

11: if agentState == firstV isit then
12: g() {Application specific activity at sensor}
13: list = Ni(u) {determine the subtree incident at u}
14: if {list− u} == {Φ} then
15: agentStateAi = recede
16: jump(Ai, u, topOfStack(stackAi))
17: else
18: find w such that(f(w) ≤ f(x)∀x ∈ list)∧(w /∈

stack)
19: if w ∈ stack ∧ f(u) > f(w) then
20: add(w, u)in exception list
21: repeat previous step of finding w
22: end if
23: if no such w exists then
24: agentStateAi = recede
25: jump(A, u, topOfStack(stackAi))
26: end if
27: agentStateAi = recede
28: jump(Ai, u, w)
29: end if
30: else
31: pop(stackAi) {We have been to this vertex before}
32: list = Ni(u)
33: find w such that f(v) ≤ f(w) ≤ f(x)(∀x ∈

list) ∧ w /∈ stackAi ∧ w /∈ exceptionList
34: if w ∈ stackAi ∧ f(u) > f(w) then
35: add(w, u)in exception list
36: repeat previous step of finding w
37: end if
38: if no such w exists then
39: jump(Ai, u, topOfStack(stackAi))
40: end if
41: jump(Ai, u, w)
42: end if
43: end while

Algorithm 3 jump semantics forλ agents

jump (Ai, u, v)
if v /∈ HAi

then
atomic: χ(u) = χ(Ai) {Assign the node the label of the
visiting agent}
if atomic operation success then

push(HAi , f(v))
g()
〈Ai, u〉 → 〈Ai, v〉

end if
else
〈Ai, u〉 → 〈Ai, v〉

end if

activities which the agent would have performed by queries
themselves. Agents will visit selective nodes only. If some
nodes need the code, the reply/response mechanism of the
queries can take care of that.

Having said that, we propose a mechanism of using queries
in our problem. More specifically we propose a method to
determine the local topologySv around a sensor to aid the
vertex visiting process, whereSv ⊂ G.

First, we define thedepth (d) of a queryq. If d = 1, The
query reaches allx ∈ V (G) such that

x ∈ N(Sq)

Such a set of vertices is calledN1(Sq). All such nodes
individually reply to the query. Ifd = 2, the query reaches
all x ∈ V (G) such that

x ∈ N1(Sq) ∨ ∃y ∈ V (G) | y ∈ N1(Sq) ∧ x ∈ N1(y)

Such a set of vertices is calledN2(Sq). Similarly for d = 3,
the query reaches allx ∈ V (G) such that

x ∈ N1(Sq) ∨ x ∈ N2(Sq) ∨
∃y ∈ V (G) | y ∈ N2(Sq) ∧ x ∈ N1(y)

We use queries when the cost of queries is low compared to
the cost of agents being used. We gain some local topological
which eliminates the need for the agent to visit every vertex. A
hybrid scheme using queries and agents will work when using
queries minimizes the total cost associated. We will derive
some bounds for cost of queries in later sections. Once local
topological knowledgeS is built, agents need not visit vertices
x such thatN(x) ⊂ S. Let Sq be the originator of the queries,
let q ∈ Q be the query request, the total transmission cost
of queries is proportional to the size of information in the
queries. Ifdmax is the maximum degree of any vertex in a
neighborhoodS, the total cost of transmission of queries is
bounded as

Costtx ≤
∑

0≤k≤d−1

(q + ku)dk−1
max

where q is the cost of transmitting the query andu is the
additional cost of a node identifier. The reception cost of the
queries is bounded as

Costrx ≤ q
′
(
dd+1

max − (d + 1)dd
max + 1

(dmax − 1)2
)

8

Whereq
′

is the cost associated with reply of the query. The
cost saved due to queries is(Di

t + Si
t)S

′
whereS

′ ⊂ S is
the set of vertices such that∀x ∈ S

′
, N1(x) ⊂ S. Hence, for

queries to be cost effective

∑

0≤k≤d−1

(q + ku)dk−1
max + q

′
(
dd+1

max − (d + 1)dd
max + 1

(dmax − 1)2
)

≤ (Di
t + Si

t)S
′

From this expression we can draw some conclusions about
when queries are useful. Queries turn expensive in regions
where the degree of vertices is high. The query depth must
be sufficiently small as the reception cost of cost increases
exponentially with query depthd. However, if query depth is
not sufficient, we may not gain enough insight into the local
topology and the information may not be useful. The tradeoff
needs to be studied by simulation. A small value ofq andq

′

will lead to more cost effective queries. Further, queries are
useful in large deployments where the itinerary history of the
agent is large. All these assertions need to be validated by
simulation.

It is worthy of note that in the scenario of queries, the
function g() is evaluated at each node either by the visiting
agentA or by the query. The receipt of the query executes the
function.

We present algorithm 4 for reaching every sensor using
queries and agent movement.

Algorithm 4 Algorithm to visit vertices inG using agentA
and queries
Require: u ← ID of the current vertex

while 1 do
if agentState == firstV isit then

Su ← Query(u, d) {Build local topological informa-
tion using queries of depthd from vertexu}
Ru = V (G)− Su

if Ru == Φ then
agentState = recede
jump(A, u, topOfStack(stack))

end if
determine w ∈ Ru such thatf(w) ≤ f(x)∀x ∈ Ru

jump(A, u, w)
else

pop(stack) {agent state is recede}
find w ∈ Ru such that f(v) ≤ f(w) ≤ f(x)∀x ∈
Ru

if @w then
jump(A, u, topOfStack(stack)

end if
agentState = firstV isit
jump(A, u, w)

end if
end while

V. SIMULATION AND RESULTS

We simulated our algorithms in Matlab. A Wireless Sensor
Network was randomly deployed and our algorithms were run

on the simulated network. All the algorithms were verified
for correctness, which was the bare minimum expectation,
that they indeed reach every sensor. Further, we were looking
for proof that our theoretical results were verified in the
simulation.

While we simulated our algorithms over various deploy-
ment scenarios with varying number of sensors, we present
one particular deployment here. We randomly deployed 100
sensors over a 196 square meter region. The communication
radius of the sensors was 2 meters. Our first simulation
scenario considers sensor failure. We fail sensors at random
in increasing numbers. We begin with 1 sensor failure and
increase the sensors which fail, we observe that as we increase
the number of agents, a greater amount of the sensor network
is covered.
The curves do follow a trend similar to what was predicted

1 2 3 4 5 6 7
10

20

30

40

50

60

70

80

90

100

Single sensor failure
2 sensor failure
3 sensor failure
4 sensor failure
5 sensor failure

Fig. 1. Sensor failure and number of agents

in the theoretical analysis. The Y axis represents the number
of sensors reached and the X axis represents the number of
agents used. Next we consider the question of latency, which
is the measure of time taken for the agents to cover the sensor
network. Assuming a network which is equally and fairly
partitioned by the agents (though this may rarely happen in
practice), the latency withλ agents should follow aCλ like
distribution. Our simulation results show a similar curve to
what is theoretically predicted. This can be seen in Fig 2.
Now consider the case of agents and queries, we simulate the
process of reaching every sensor under three conditions when
the ratio of cost of query to a sensor vs the cost of sending
an agent is 1

1000 , 1
500 and 1

100 . The results of the simulation
can be seen in Fig 3. The queries grow as an exponent of
the degree of the region of the graph and the agent cost is
directly proportional to the size of the agent. If queries are not
performed to sufficient depth, the agents will be dispatched
to too many nodes and hence the full power of the queries
will not be exploited. If queries are performed beyond this
threshold, the total cost begins to increase since the query
cost is exponential and is not sufficient to offset the agent

9

1 2 3 4 5 6 7
40

60

80

100

120

140

160

180

200

Fig. 2. Latency and number of agents used

cost, no matter how small the query information is. Here too,

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5
x 10

5

query/agent cost = 1/1000
query/agent cost = 1/100
query/agent cost = 1/500

Fig. 3. Agents and queries used together

initially the cost of sending the agent dominates over the cost
of queries. hence, the agent costs need to be minimized.

VI. FUTURE WORK

There is scope for future work in the works presented in
this paper. They can be summarized as

• What is the optimal number of agents needed for reaching
maximum number of sensors

• What is the optimal query depth for algorithm using
queries and agents. The query depth is critical to re-
duction in power consumption. A clever choice of query
depth can increase network lifetime drastically.

• Study of more failure mechanisms other than what have
been considered in the paper.

• Theoretical work on the relationship between the query
depthd and the query to agent cost ratio.

VII. C ONCLUSION

The need for efficient mechanisms which permit certain
logic to reach every sensor to aid calibration, software rede-
ployment etc has motivated us to present the three algorithms
along with the theoretical analysis and simulation results, all
of which are very encouraging.

We presented a single agent based scheme which was simple
yet could be improved by using more agents. While we use
theory and simulation to boost our assertions, we present yet
another mechanism using queries and agents, creating a very
energy efficient mechanism to achieve the same goal. The
success of this hybrid approach depends very strongly on
the query depthd. More future work would concentrate on
the relationship of the parameterd and the parameters of the
sensor deployment and agent cost to query cost ratio etc.

ACKNOWLEDGMENT

The authors would like to thank the Ubiquitous computing
group in Honeywell Technology solutions lab in Bangalore for
valuable feedback in improving the paper.

REFERENCES

[1] R. M. Karp, Reducibility among combinatorial problems, In R. Miller
and J. Thatcher, editors, Complexity of Computer Computations, pages
85-103. Plenum Press, 1972

[2] Eiman Elnahrawy and Badri Nath,Cleaning and Querying Noisy Sensors,
Proceedings of the 2nd ACM international conference on Wireless sensor
networks and applications, 2003.

[3] Theodore S. Rappaport,Wireless Communications, Principles and prac-
tice, Pearson Education Inc.

[4] Niels Reijers, Koen Langendoen,Efficient Code Distribution in Wireless
Sensor Networks, Proceedings of the 2nd ACM international conference
on Wireless sensor networks and applications, 2003.

[5] Wayne Jansen, Tom Karygiannis,NIST Special Publication 800-19 Mo-
bile Agent Security.

[6] Qishi Wu, Nageswara S.V. Rao, Jacob Barhen, S. Sitharama Iyengar,
Vijay K. Vaishnavi, Hairong Qi, Krishnendu Chakrabarty,On Computing
Mobile Agent Routes for Data Fusion in Distributed Sensor Networks,
IEEE transactions on Knowledge and data engineering, volume 16, No
6, 2004.

[7] Shivananjay Marwaha Chen Khong Tham, Dipti Srinivasan,Mobile
Agents based Routing Protocol for Mobile Ad Hoc Networks.

[8] Hairong Qi, Yingyue Xu, Xiaoling Wang, Student Member,Mobile-
agent-based Collaborative Signal and Information Processing in Sensor
Networks.

