
Secure Data Aggregation using
Commitment Schemes and Quasi

Commutative Functions
Manik Raina, Subhas Ghosh, Ranjeet Patro, G. Viswanath, Chadrashekhar T

Honeywell Technology Solutions Laboratory
151/1, Doraisanipalya, Bannerghatta Road,

Bangalore, India, 560076
Email:manik.raina@honeywell.com subhas.kumar@honeywell.com

Abstract— A scheme is proposed for secure data
aggregation in wireless sensor networks. Commitment
schemes and a class of functions called quasi commu-
tative functions are used to achieve provably secure
data aggregation. Efficient schemes to verify the data
aggregation are provided.

I. KEYWORDS

Wireless Sensor Networks, Secure Data Aggre-
gation, Commitment Schemes, Quasi-commutative
Functions.

II. INTRODUCTION

Consider a mesh wireless sensor network in which
there are several nodes. This network is event driven,
where potentially each node in the network collects
data measurement of the enviromental phenomenon.
Certain nodes, in addition to collecting data act as
aggregators. The data aggregation can be visualized
to be happening over an aggregation tree. Different
events could lead to different aggregation trees. It is
assumed that the aggregation tree is already formed
(and known to the nodes in the network) i.e our task
is to securely aggregate the data, given an aggrega-
tion tree. It is assumed that the aggregation begins
by a query spreading in the network, followed by
the actual aggregation. A scheme is proposed for
secure data aggregation in which each party (node
of the wireless sensor network) commits to data and
some properties the query function (for example the
checksum) and then the query function is evaluated.
It is assumed that a function f(.) is to be computed
on the data {d1, d2, d3, ...dn}, the data input of
parties {p1, p2, ...pn} respectively. It is assumed that
this function f(d1, d2, d3, ...dn) shows the following

property

f(d1, d2, d3, ...dn) = f(d1, f(d2, d3, d4), d5, ..., dn)

Intuitively, that means that the function of n argu-
ments can be computed by calculating it’s value over
a few inputs at a time and then putting the results
together which is how many aggregation functions
(like MIN, MAX, MEDIAN etc) work. In addition
to tampering with the results of the data aggregation,
we consider another attack where some intermediate
dishonest party tampers with the query when it is
percolating the sensor network. This is one of the
novelties of this paper as many related works assume
that the query itself reaches all nodes without being
modified. We propose an efficient scheme where
parties make non-repudiable commitments to their
data values and some properties of the query func-
tion. By making commitments to the data, parties
which cheat on the results of the aggregation can
be efficiently detected. By making commitments on
the query properties, parties cannot later blame a
tampered query for incorrect computation of ag-
gregation results by that party. The commitment
scheme used in this paper can be used later to verify
correctness of computation performed by the parties
efficiently. The correctness of the computation at
each party can be verified by checking it’s data
inputs from it’s children in the aggregation tree and
recomputing the partial function and checking the
resultant value against the commitments made. For
checking a few nodes against their commitment,
this scheme requires little verification overhead.
The overhead for a full verification over the whole
aggregation tree is discussed in future sections.

This paper is organized as follows. Section(III) in-
troduces notations and cryptographic primitives used
throughout this paper. Section(IV) discusses previ-
ous works in this are of research. Section(V) defines
the problem. Section(VII) discusses the initial setup
required while Section(VI) discusses the security
goals and adversary’s attack model. Section(VIII)
discusses the protocol proposed in this paper. The
security analysis of the proposed protocol is shown
in section(IX). The paper is concluded in section(X)
and some limitations of the proposed approach are
discussed.

III. PRELIMINARIES

DEFINITION 1 A function h : X×Y → X is quasi-
commutative [BdM94] if ∀x ∈ X and y1, y2 ∈ Y
h(h(x, y1), y2) = h(h(x, y2), y1)

DEFINITION 2 A commitment scheme
[Blu83][Gol04] is a two-phase two-party protocol
in which the party designated as a sender can
commit itself during the COMMIT phase to a value
σ ∈ {0, 1} so that the following requirements are
met

• Secrecy: At the end of the COMMIT phase, the
party designated as the receiver does not gain
any information of the sender’s value σ.

• Unambiguity: It is not possible for the sender
to repudiate his choice σ during the REVEAL
phase

For a choice σ ∈ {0, 1}, the sender sends a string
x ∈ C(σ) to the receiver such that C(0) ∩ C(1) =
{Φ} and strings in C(0) and C(1) are computation-
ally indistinguishable for the receiver.

IV. PREVIOUS WORKS

Perrig [PSP03] propose a probabilistic scheme for
secure data aggregation based on random sampling
where a subset of the aggregated data returns to the
base station to be verified. This verification is correct
within certain bounds of probability. They construct
methods for random sampling and interactive proofs
for enabling a user to verify a query’s accuracy. In
their scheme, a query can be verified to a satisfac-
torily close approximation of the true value even in
the presence of cheating a cheating aggregator and
some corrupt nodes.

On the other hand, only a constant length commit-
ment is needed to reach the party which originates
the query (rather than any data) in our paper. Fur-
ther, our approach considers a previously unknown
attack, where the intermediate adversary corrupts the

query as it travels along the network. Verification
in our scheme involves verifying computation at a
particular node and the commitments of the data of
it’s immediate children in the aggregation tree.

V. PROBLEM STATEMENT

Given a mesh sensor network, the base station or
another sensor in the network may issue a query to
securely aggregate data. The query travels along a
aggregation tree whose construction and properties
are beyond the scope of this work. Some malicious
nodes may tamper the query as it travels through the
network. All the leaf nodes in the aggregation tree
pass data to their parents and the non-leaf nodes act
as aggregators of the data in addition to producing
data of their own. The aggregators compute the
function f(.) on the received data. The resultant
value becomes the value of the non-leaf node and the
process repeats up the aggregation tree. The function
f(.) must be securely computed with respect to the
attacks mentioned in the next section. Further, after
the aggregation is performed and the result sent to
the originator of the query, the originator must be
able to verify the results of aggregation at a party
in a small number of steps.

VI. ATTACK MODEL AND SECURITY GOALS

We concentrate on attacks where an adversary
who has taken over a node in the network arbitrarily
deviates from the computation of the aggregation
function by changing the values of the function
computation or by tampering with the query which
is propogated. In both cases, our protocol ensures
verifiability and non-repudiation, i.e though a party
may cheat, it’s dishonesty can be detected by a
subsequent efficient verification.

VII. INITIAL SETUP

We assume that each party shares a secret cryp-
tographic key with it’s parent and children in the
aggregation tree. Thus, all communication is cryp-
tographically secure. Further, we assume that each
party is aware of a rigid integer N and integer
X which are used for operations by the quasi-
commutative functions as described later. Each party
must have a pair of random primes s and t for
constructing a number n = st for computing the
Rabin function.

VIII. PROPOSED PROTOCOL

A. Elements of the commitment scheme

Our commitment scheme uses the modular expo-
nentiation function([BdM94]) en(x, y) = xy mod n
which is assumed to be a candidate one-way func-
tion and considered non-invertible in polynomial
time except in an exponentially vanishing number
of cases.

A safe prime p can be written as p = 2p
′
+ 1

where p
′

is an odd prime. An integer n is called
rigid if it can be written as n = pq where p and q
are safe primes and |p| = |q|. Root finding is hard
for such an integer n and we assume that every node
has such an integer present during initial setup.

Suppose {p1, p2, p3, ...pk} are the k parties who
share a common parent in the aggregation tree. If
the respective parties want to commit data values
{d1, d2, ...dk}, then each party sends the above
values to the parent. The parent calculates vp =
Xdp

�
1≤i≤k dimod n, where dp is the data of the

parent node. X is a predetermined value known to
all parties before the protocol begins and n is a rigid
integer. vp above could be evaluated as

(((Xdi mod n)d2 mod n) . . .dk mod n)dpmod n

Since this function preserves the length, the root
of the aggregation tree is left with an integer Y ∈
Zn. Further, each party pj maintains a partial hash
zj = XY/dj mod n. Verification at a particular party
requires verifying that the following property holds
Y = z

dj

j mod n.

B. Protocol

Our protocol is divided into three phases after
the query has trickled down the aggregation tree,
namely the commit, reveal and verify phases.

During the commit phase, each party commits it’s
data value and hence cannot repudiate later. Further,
each party also commits to some property of the
received query Ui (for example, the checksum of the
specification of the function f(.) to be computed on
the data). The data of each party is not revealed, as
the commitment is made using a hard to invert (but
polynomially computable) function like quadratic
residue. Hence, if party pi wants to commit data
di, the commitment is made on Ci = d2

i mod Ni,
where Ni = siti where si and ti are primes chosen
by each party. We run the algorithm shown below at
every party during this phase.

Commitment of data and query properties
during COMMIT phase
let v be a vertex in the aggregation tree T on
which the protocol runs
if v has no children in T then

Send the commitment Gv = Cv|Uv to the
parent of v in T

else
Gather commitments G1, G2, .., Gk from the
children of v in T
Compute R = XGp

�
1≤i≤k GimodN

Send R to the parent of v in T
end if

By the end of the protocol, the root of the aggre-
gation tree will have Y ∈ ZN . Each party needs to
compute zi = XY/Gi mod N .

During the reveal phase, each party pi reveals
the data di, Ni and Ui to it’s parent as shown in
algorithm shown below. Further, each party begins
computing the function f() on the data and transfers
the output to it’s parent. As this happens, another
commitment process begins with each party com-
mitting to it’s parent the output of the function at
that party. Another commitment tree is built up, this
time over the values of the function, as shown below.

Computation of function f(.) and it’s commit-
ment along with revealing parameters during
the REVEAL phase
let v be the a vertex in the aggregation tree T on
which the protocol runs
if v has no children in T then

Send dv , Nv and Uv to the parent of v in T
else

Send dv , Nv and Uv to the parent of v in T
Compute Ov = f(d1, d2, ..., dk), where di is
the data from the i’th child of v in T
Send Ov to the parent of v in T
if Children of v in T are non-leaf nodes then

Gather O1, O2, ..., Ok from the children
Compute R

′
= XOv

�
1≤i≤k OimodN

Send R
′

to the parent of v in T
end if

end if

By the end of this algorithm, the root of the aggre-
gation tree has computed the result of the function
and it has two commitment trees, one for the data
at each party at the beginning of the protocol (Y)
and the tree for the intermediate results of the
function computation (Y

′
). Each party computes

z
′
i = XY

′
/Oi mod N or z

′
i = XY

′
/di mod N

depending on whether it is a leaf node or not.

During the verify phase, the check on the cor-
rectness of computation is performed. To verify the
correctness of any intermediate computation at any
party pl, the inputs provided by the children of pl

must be ascertained for correctness and so should
be the inputs of pl itself. The first can be achieved
by querying the every child of pl in the aggregation
tree T , to determine it’s committed data (if it is a
leaf node) or the output of the function at that party
(if it’s a non leaf node) is valid as per commitment.
The following step would have to be executed for
every child of pl in T as shown in algorithm as
shown below.

Verifying commitments of children of party pl

for all pr ∈ children(pl) do
if pr is leaf then

Cr = d2
r mod Nr

check if z
Cr|Ur
r mod N = Y

else
check if (z

′
r)Or mod N = Y

′

end if
end for

After this step, the computation at pl itself is
checked, which includes checking the local input
and the computation itself as shown in algorithm
below.

Verifying commitments of party pl and it’s
computation
Cl = d2

l mod Nl

if pl is leaf node in T then
Check if z

Cl|Ul

l mod N = Y
else

Check if z
Ol|Ul

l mod N = Y
for all pr ∈ children(pl) do

if pr is leaf node in T then
valr = dr

else
valr = Or

end if
end for
check if Ol = f(val1, . . . , val|children(pl)|)
check if (z

′
l)

Ol mod N = Y
′

end if

The overhead of verification of this protocol
depends on the topology of the Wireless sensor
network. To verify the complete aggregation tree,
we would need queries between log m and m where
m is the number of sensors in the network.

IX. SECURITY ANALYSIS

The non-invertibility of the quasi-commutative
function used is assumed. On repeated application
of the modular exponentiation function N must be
chosen such that the possibility of finding collisions
is reduced. As described in section 8.1, N must
be a rigid integer following the properties that
N = pq, where p and q are two primes such that
p = 2q + 1 and |p| = |q|. If the factorization of
N is hidden, then it’s extremely improbable that
repeated application of the same function will result
in a reduction in the size of the domain or produce
random collisions. The computational hardness we
want to achieve is - given a partial accumulated
hash zi and data yi such that zyi

i mod N = z,
it is computationally infeasible for an adversary to
determine a z

′
i in polynomial time such that for a

forged y
′
i the following holds true

(z
′
i)

y
′
i mod N = z

Where all zi, yi etc ∈ ZN . Shamir [Sha81] shows
that for an appropriately chosen N , if finding the
root modulo N is hard, then the modular exponenti-
ation function forms a family of one-way functions.
As pointed out in [BdM94] it is noteworthy that even
though construction of rigid integers is harder than
constructing hard to factor integers, it is still quite
feasible. More importantly, we need to generate
a rigid integer N which can be done offline and
conveyed to every party securely before the protocol
begins.

THEOREM 1
Any party pi once having committed to data di,
cannot substitute it with erroneous data d

′
i during

the computation of the function f() without being
detected during the VERIFY phase.
PROOF: As shown in [BdM94], given the modular
exponentiation function eN (X, y) = Xymod N
where N is a rigid integer, it is computationally
infeasible to determine a number X

′
given y

′ ∈ ZN ,
such that eN (X, y) = eN (X

′
, y

′
) in polynomial

time. This means that, given a partial commitment
z and data committed by a party Ci, it is computa-
tionally infeasible (in polynomial time) to determine
C

′
i and z

′
such that zCi mod N = (z

′
)Ci

′
mod N .

Hence, once committed to a data value, a cheater
cannot repudiate it.

To repudiate it’s data commitment, the
malicious node would have to invert the Rabin
function by determining an integer C

′
i such that

(C
′
i)

2mod N = C2
i mod N , which is at least as

hard as inverting a one way function.

THEOREM 2
Any party pi once having committed to a certain
query property Ui, cannot repudiate it.
PROOF: Each party commits to some property
(Ui) strongly associated with the integrity of
the received query, for example the hash of the
recived function f to compute over the data.
Since a commitment to the query property is
made using Ui during the COMMIT phase, to
repudiate it would entail determining U

′
i and z

′
i

such that (z
′
i)

Ci|U ′
i mod N = z

Ci|Ui

i mod N . Doing
so is at least as hard as inverting the modular
exponentiation function and hence infeasible in
polynomial time.

THEOREM 3
Any party pi once having committed to a partial func-
tion computation at that party Oi, cannot substitute
it with erroneous data O

′
i during the computation of

the function f() without being detected during the
VERIFY phase.
PROOF: As shown in [BdM94], given the modular
exponentiation function eN (X, y) = Xy mod N
where N is a rigid integer, it is computationally
infeasible to determine a number X

′
given y

′ ∈ ZN ,
such that eN(X, y) = eN (X, y

′
) in polynomial

time. Hence, given a partial commitment z
and committed output Oi, it is computationally
infeasible in polynomial time to determine O

′
i and

z
′

such that zOi mod N = (z
′
)Oi

′
mod N .

Let m be the number of sensors in the network.
We need m queries to verify the entire aggregation.
However, if we suspect a few sensors of cheating,
the partial computation at just that sensor could
be verified by inspecting the commitments at that
sensor and it’s children sensors in the aggregation
tree.

X. CONCLUSION

We have presented an algorithm for secure data
aggregation in wireless sensor networks, discussed
it’s security properties and proved secrecy of this
mechanism. [PSP03] proposes a data aggregation
algorithm which gives an ε approximation by taking
a fraction of the data. Their verification mecha-
nism is based on the PCP based (ε, δ) verification
mechanism which is probabilistic. Our verification

gives certain results (declares a sensor as cheating or
not). Further, we can inspect individual (of a fixed
set of) sensors which are suspected of cheating. A
drawback of our algorithm is that it can be applied to
functions which can be partially computed as shown
in section(II) and could form the basis for future
work.

REFERENCES

[BdM94] Josh Benaloh and Michael de Mare. One-way accumu-
lators: a decentralized alternative to digital signatures.
In EUROCRYPT ’93: Workshop on the theory and
application of cryptographic techniques on Advances
in cryptology, pages 274–285. Springer-Verlag New
York, Inc., 1994.

[Blu83] Manuel Blum. Coin flipping by telephone a protocol
for solving impossible problems. SIGACT News,
15(1):23–27, 1983.

[Gol04] Oded Goldreich. Foundations of Cryptography: Vol-
ume 2, Basic Applications. Cambridge University
Press, 2004.

[PSP03] Bartosz Przydatek, Dawn Song, and Adrian Perrig.
Sia: secure information aggregation in sensor net-
works. In SenSys ’03: Proceedings of the 1st inter-
national conference on Embedded networked sensor
systems, pages 255–265. ACM Press, 2003.

[Sha81] Adi Shamir. On the generation of cryptographically
strong pseudorandom sequences. ICALP, 1981.

