
Signal Separation using Time Frequency
Representation

Viswanath Ganapathy, Ranjeet K. Patro, Chandrasekhara Thejaswi, Manik Raina, Subhas K. Ghosh
Honeywell Technology Solutions Laboratory
151/1, Doraisanipalya, Bannerghatta Road,

Bangalore, India, 560076
Email:viswanath.ganapathy@honeywell.com

I. A BSTRACT

Signals which can be modeled as linear combination of
polynomial phase signals appear in several applications in-
cluding active noise cancellation, communication using chirp
modulation, radar etc. In this paper we discuss an approach
using optimal time frequency representation and hough trans-
form to separate linear combination polynomial phase signals.
Further we also show the performance of our approach using
simulation results and the importance of choosing optimal time
frequency representation for signal separation.

II. I NTRODUCTION

In this paper we discuss an approach for separating the
component signals from a linear combination of several signal.
We assume, the signal model as a linear combination of

polynomial phase signals, i.e.y(t) =
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In general obtainingak andbkj is a hard problem. Assuming
that ak, K and maximum degree of the polynomial phase
are known, we discuss an approach to obtain the coefficients
of the component polynomial phase signal. In this paper
we show the performance of our approach using simulation
results the importance of choosing optimal time frequency
representation for signal separation. Before we discuss our
approach we briefly discuss time frequency representation and
hough transform.
Time frequency representation (TFR): Time-frequency repre-
sentations of signals map a one-dimensional signal of time,
x(t), into a two dimensional function of time and frequency,
TX(t, f). They thus combine time-domain and frequency-
domain analysis to yield a potentially more revealing picture of
the temporal localization of signal’s spectral components. The
well known examples of TFRs include the short time Fourier
transform (STFT) [2] and Wigner-Ville distribution (WVD)[2].
WVD is a bilinear representation of a signal while STFT
is linear. Therefore WVD introduces cross terms for multi
component signals. These cross terms in WVD are removed
using smoothing kernels. The choice of smoothing kernel gives
rise to different TFRs. Some examples of smoothing kernels
include the Born Jordan kernel and cone kernel representation
(CKR). In this paper we use CKR for our simulation. The
CKR [7] constrains the temporal smoothing so that the spectral

peaks are enhanced. Thus, for a discrete sequencex(n),
assuming a symmetric windowρ(n) 6= 0,−L ≤ n ≤ L,N =
2L + 1 the discrete CKR can be expressed as
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where, k takes values from−L to L and m takes values
from n − ( |k|2 ) to n + ( |k|2 ). The cone kernel representation
has several interesting properties [6]. These include noise
robustness and location of cross terms on the auto terms.
Instantaneous Frequency (IF)[2]: The instantaneous frequency
of a signal is defined as the derivative of the phase of the
signal. The periodic first moment of a TFR can be used to
estimate the IF a signal. IF estimate based on the first moment
is the mean of the component frequencies at that instant.
Hough Transform[3]: The Hough transform(HT) is a standard
tool in image analysis that allows recognition of global pat-
terns in an image space by recognition of local patterns (ideally
a point) in a transformed parameter space. The basic idea of
this technique is to find curves that can be parameterized like
straight lines, polynomials, circles, bessel functions etc., in
a suitable parameter space. HT can also be used to detect
patterns in higher dimensions. Consider an example of identi-
fying sets of collinear points in an image. A set of image points
(x, y) which lie on a straight line can be defined by a relation,
f, such thatf((m, c), (x, y)) = y−mx− c = 0, where m and
c are slope and intercept respectively. The mapping from the
space of possible parameter values to the set of(x, y) points is
a one to many mapping. The HT of above equation can be seen
as a mutual constraint between the set of points and the set of
parameters. Therefore it can be interpreted as defining one to
many mapping from a point(x, y) to set of possible parameter
values or a point in transform space(m, c) to set of points in
signal space. In the case of a straight line, all the points lie
along a line will have the same value in the parameter space
and therefore will intersect at a point in the parameter space.
Determination of the point intersection is equivalent to picking
the maximum value attained in the(m, c) space.



III. O UR APPROACH

Our signal separation approach is based on choosing an
optimal time frequency representation for the given signal
and applying hough transform on the chosen optimal time
frequency representation. The Wigner-Ville representation is
known to be optimal time frequency representation for single
component linear signals. For multi-component signals the
reduced interference distribution using Born-Jordan kernel is
optimal. In general for single component polynomial phase
signal higher order distributions like polynomial Wigner-Ville
distribution [1] or the L-Wigner distribution [5] is optimal. But
for polynomial Wigner-Ville representation cross terms will
introduce difficulty for higher order polynomial phase signal.
The realization of polynomial Wigner-Ville representation for
multi component signals is discussed in [4]. Therefore L-
Wigner representation computed with a knowledge of signal
separation in the time frequency domain will lead to an optimal
TFR for polynomial phase signals (here we ensure that there
are no cross terms). Moreover the dimension of the parameter
space to which Hough transform maps the time frequency
representation is also decided based on the greatest degree
of the polynomial phase signal. In this paper, we show the
performance of our approach using simulation results and the
importance of choosing optimal time frequency representation
for signal separation.

Fig. 1. CKR and associated hough transform of a four component signal.
The top row right and top left windows show the CKR of four component
signal at 5 dB and 15 dB SNR. The bottom right and left windows show the
associated hough transform.

IV. SIMULATION AND DISCUSSION

We consider four component signal composed of sinusoids
and cubic chirps. The CKR is computed and the hough
transform of CKR is obtained. The CKR and hough transform
of CKR is obtained for various SNRs ranging from 0dB

TABLE I

MEAN(M) AND VARIANCE(V) IN THE IF ESTIMATES OF FOUR

COMPONENT SIGNAL USINGHOUGH TRANSFORM AND CKR

SNR(dB) First Second Third Fourth
0 3.4765(m),

0.014(v)
7.3828(m),
0.014(v)

*(m), *(v) *(m), *(v)

3 3.48(m),
0.014(v)

7.42(m),
0.014(v)

*(m), *(v) *(m), *(v)

6 3.5156(m),
0(v)

7.42(m),
0(v)

13.164(m),
0.093(v)

20.43(m),
1.5(v)

7 3.5156(m),
0(v)

7.42(m),
0(v)

13.12(m),
0.07(v)

20.15(m),
0.19(v)

Note: The true value of IF are3Hz, 7Hz, 13Hz and 20Hz at 0.015s.
Further, ∗ denotes those components that were not detected by Hough

transform.

to 10 dB. The hough transform of the CKR is computed
by integrating in the TF domain along all possible paths in
the TF domain. Here we use peaks in the hough transform
domain as the initial estimates of the signal track and then
look for peaks around the local region represented by these
hough transform parameters in the TF domain. The hough
transform of the four component signals is shown in figure
1. There are four peaks corresponding to the four signal
tracks in the hough transform domain. These peaks give an
initial estimate of the IF law of each component. The hough
transform performance deteriorates around6dB SNR, below
which it fails to detect the cubic chirps. The sinusoids in the
TFR domain is detected up to3dB. Here it is important to
note that the CKR is an optimal TFR for sinusoids alone.
Therefore it is expected to perform better for sinusoids for the
following reason. We detect the distinct signal components by
identifying peaks in the Hough transform domain. If the signal
tracks are represented by a delta function the number points
in a particular bin (representing the parameter of the signal)
increases when compared to the other bins in the parameter
space. Therefore SNR seen in the hough transform domain
is high for optimal TFRs. The detected peaks are used to
represent the regions in the CKR domain and an IF estimate is
made based on the local peaks. The resulting error in estimate
i.e., both the mean and variance, is given for all the four signal
components in Table I.

V. CONCLUSION AND FUTURE WORK

In this paper we shown that the performance of separa-
tion multi-component using time frequency representation and
highlighted the importance of using optimal TFR for the given
signal. Further we have also given insights on the perfor-
mance analysis. As a part of further work we are obtaining
theoretical performance bounds for parameters estimated using
TFR and hough transform. We are also working on comparing
the performance of polynomial Wigner-Ville representation
and L-Wigner representation for signal separation of multi
component signals.
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