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Abstract— In this paper, we examine binary hypothesis testing
and parameter estimation problem in a sensor network. We
address the problem of detection and also the estimation of
the underlying parameter at the fusion center by optimally
combining the test statistics sent by different sensors. We make
no assumptions on the noise statistics at the sensor nodes except
that their first and second order statistics are known. We show
that the proposed method is optimal as an estimator as well as
a detector.

I. I NTRODUCTION

In recent years, signal processing techniques for sensor
networks has been gaining immense attention of the research
community. Sensors being tiny, low cost devices find appli-
cations in many areas like surveillance, industrial monitoring,
environmental monitoring etc.

The critical challenges in the operation of a sensor net-
work lie in the efficient exchange of information, optimal
collaboration among the nodes to infer and gather information
about the physical world. As we know, these challenges
can be accomplished by efficient statistical signal processing
algorithms which are broadly classified intodetectionandesti-
mation. Researchers have been diligently pursuing these areas
to come out with efficient algorithms for sensor networks.
There is a significant collection of literature in these fields.
Distributed detection has drawn the attention of researchers
toward it. Survey papers [2], [1] provide excellent references
to the earlier work in this field. A comprehensive review
of the theories for decentralized detection is given in [2].
It is also shown that, under the assumption of conditional
independence of the sensors’ observations, local decisions
made by the sensors obey likelihood ratio test. If there is no
assumption of conditional independence among sensor’s obser-
vations, then the problem of finding optimal decision strategy
is NP-complete. Decentralized detection problems under cost
constraints are also addressed in several works [3] etc. The
problem of estimation has also been studied by several people
[4]. Paper [4] addresses the problem of optimal estimation
of unknown parameter at the fusion center from the noisy
estimates obtained by the sensors. The problem is addressed
under the communication and bandwidth constraints.

We analyze the problem of both detection and estimation
at the fusion center using the noisy data obtained from the
different sensors. The novelty of our approach lies in the fact
that both the detection and estimation performed simultane-
ously and optimally. We also make no assumption on the

noise statistics of the sensors except that the fusion center is
cognizant of just first and second moments of them. These kind
of problems commonly find their application in heterogeneous
sensor network or the places where there is a need to not only
detect the event but also to estimate the parameter associated
with the event. Typical examples of such scenario could be
temperature monitoring, where it is required to keep regularly
the track of its value and to rise an alarm when it hits certain
threshold. This requires both estimation of the parameter and
also the detection of an event say, temperature shoot-up.

The rest of the paper is organized as follows. In Section II,
we state the system model and the assumptions made. In
Section III, we discuss about the binary hypothesis testing
problem with the fusion center performing yhe optimal detec-
tion using sensor observations corrupted by noise. Section IV
deals with the optimal estimation of the parameter using sensor
observation which turns out to be test statistic itself. Finally,
we conclude the paper in section VI.

II. T HE MODEL

We consider a parallel configuration of sensors sampling
an event with a fusion center to detect a binary phenomenon.
We assume that the sensors do not communicate with each
other and they communicate only with the fusion center.
We are concerned about the binary hypothesis testing of the
phenomenon and estimation of the underlying signal at the
fusion center based on the sensor observations. The hypotheses
H0 and H1 haveP0 and P1 respectively as their priors. Let
there beK sensors andXk, k = 1, . . . , K be theN ×1 noisy
observation vector available at each sensor.

Assuming the state of an event to be stationary in the
observation period, we have for the sensork,

Xk = Z + vk, (1)

where vk is the additive noise vector atkth sensor. We
assume that noise at each sensor is generic identically distrib-
uted, uncorrelated in time with zero mean and varianceσ2

vk. It
is assumed that fusion center has the knowledge of the second
moment of sensor noise. At each epoch, sensori gathersN
noisy samples/observations of the phenomenon and generates
its estimate as

X̂k =
1
N

N−1∑
n=0

Xk(n).



The estimateX̂k of the sensors are unbiased. Therefore, for
large N , we can approximate the estimate to be Gaussian
distributed asX̂k

d→ N (Z,
σ2

vk

N ), Z being the signal level
corresponding to the underlying hypothesis. Each sensor trans-
mits its own estimate to the fusion center. Based on this
information, fusion center obtains an optimal estimate of the
parameter and also arrives at the global decision in favor of
the occurred phenomenon (H0 or H1).

III. D ETECTION WITH NOISY OBSERVATIONS

In this section we will see how the sensor information is
used by the fusion center as the test statistic for hypothesis
testing. Fusion center views the data sent by each sensorX̂k

as a observation of the parameter corrupted by the estimation
noise and the noise at the fusion center. At the fusion center
we have

Y = X̂ + v0 (2)

whereY = [Y1, . . . , YK ] is the observation vector received
by the fusion center,̂X = [X̂1, . . . , X̂K ] is the estimates
transmitted by sensors.v0 is the noise at the fusion center
assumed to be AWGN with varianceσ2

0 .IK . From (1) and (2),
assuming conditional independence, the distribution ofY
given Z is

f(Y|Z) =
1

(2π)
K
2 .

∏K
k=1 σ2

k

e
−

∑K

k=1

(Yk−Z)2

2σ2
k (3)

where σ2
k = σ2

vk

N + σ2
0 . According to standard Neyman-

Pearson(NP) criteria, the optimal testing rule that can maxi-
mize the probability of a detection constraining on false alarm
is the likelihood ratio test (LRT) which says forPF = α

Decide H1 if

T (Y) =
f(Y|H1)
f(Y|H0)

> γ (4)

whereγ is chosen such that the false alarm

PF =
∫

y:T (y)>γ

f(y|H0) dy = α

Fusion center computes the likelihood ratio which is given
by

T (Y) =
f(Y|H1)
f(Y|H0)

=
e
−

∑K

k=1

(Yk−θ1)2

2σ2
k

e
−

∑K

k=1

(Yk−θ0)2

2σ2
k

Taking logarithm and upon simplification, we have,

ln (T (Y)) = (θ1 − θ0)
K∑

k=1

1
σ2

k

(
Yk − θ0 + θ1

2

)

Now, the fusion center’s strategy is to decide in favor ofH1

if, ln (T (Y)) > γ. That is decide in favor ofH1, if

T ′(Y) =

∑K
k=1

1
σ2

k

Yk

∑K
k=1

1
σ2

k

> γ′,

where γ′ = ln γ
(θ1−θ0)

+ θ0+θ1
2(θ1−θ0)

. Let us interpret the test
statistic test statisticT ′(Y) which is a weighted sum of the
observations. It says that the observations which correspond to
a more noisy and hence unreliable, must be given less weight.

To determine the detection performance we note that the
that the test statisticT ′(Y) is Gaussian under each hypothesis.
Also,

E[T ′(Y)|Z] =

∑K
k=1

1
σ2

k

EYk

∑K
k=1

1
σ2

k

=

∑K
k=1

1
σ2

k

EX̂k

∑K
k=1

1
σ2

k

= Z

and

var[T ′(Y)|Z] = var




∑K
k=1

1
σ2

k

Yk

∑K
k=1

1
σ2

k




=

∑K
k=1

(
1

σ2
k

)2

varX̂k

(∑K
k=1

1
σ2

k

)2

=

(
K∑

k=1

1
σ2

k

)−1

we have then [?],

PF = Q

(
γ′ − E[T ′(Y)|θ0]

var[T ′(Y)|θ0]

)
= Q

(
(γ′ − θ0)

K∑

k=1

1
σ2

k

)
,

and

PD = Q

(
γ′ − E[T ′(Y)|θ1]

var[T ′(Y)|θ1]

)
= Q

(
(γ′ − θ1)

K∑

k=1

1
σ2

k

)
.

IV. ESTIMATION WITH NOISY OBSERVATIONS

Given the noisy observations from the sensors, fusion center
is confronted with the problem of estimation of the event
parameter. That is givenY1, . . . , YK , the objective of the
fusion center is to estimateZ. Given its little knowledge about
the parameter and the statistics of the sensor observations, the
common approach for fusion center is to resort for the best
linear unbiased estimator (BLUE) [?]. That is, estimate ofZ

Ẑ =
K∑

k=1

αkYk,

whereαk, k = 1, . . . , K are chosen such thatEẐ = Z and
the variance is minimized.

It can be shown that in our case thatαk =
1

σ2
k∑K

k=1
1

σ2
k

. Thus,

the optimal linear estimate we have is

Ẑ =

∑K
k=1

1
σ2

k

Yk

∑K
k=1

1
σ2

k



which is again the test statisticT ′(Y). The estimation error
is given by the variance of the statistic which isError(Ẑ) =(∑K

k=1
1

σ2
k

)−1

.
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Fig. 1. Estimation of the Temperature Trend

V. SIMULATION RESULTS

In this section we describe the simulation of our ap-
proach. We considered a typical temperature profile. Three
sensors with different noise statistics observe the temper-
ature trend which estimate the temperature finally report
it to the fusion center. The system model was as follows
v(1) ∼ Uniform(−.5, +.5), v(2) ∼ N (0, .1), v(3) ∼
Uniform(−.7, +.7). The number of observations per slot
N = 10. The on board processing signal level corresponding
to the temperature in the system is0 − 0.1V . Fig 1 shows
the plot of actual and estimated temperature data. We can see
that the even when the SNR (SNR was around 1-3dB) is low,
the estimators capture the overall variation in the temperature
trend and it shows that weighting indeed makes the estimator
robust.

VI. CONCLUSIONS

In this paper, we discussed the problem of optimal estima-
tion from the senosr data where each sensors are subjected
to unidentical noise process. We also showed that the same
estimate is a robust statistic for the detection.
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