Mechanisms of Macroevolution Pt. 5

The following deals with mechanisms of evolution above the species level.

Speciation -- Increasing Biological Diversity

Speciation is the process of a single species becoming two or more species. Many biologists think speciation is key to understanding evolution. Some would argue that certain evolutionary phenomena apply only at speciation and macroevolutionary change cannot occur without speciation. Other biologists think major evolutionary change can occur without speciation. Changes between lineages are only an extension of the changes within each lineage. In general, paleontologists fall into the former category and geneticists in the latter.

Modes of Speciation

Biologists recognize two types of speciation: allopatric and sympatric speciation. The two differ in geographical distribution of the populations in question. Allopatric speciation is thought to be the most common form of speciation. It occurs when a population is split into two (or more) geographically isolated subdivisions that organisms cannot bridge. Eventually, the two populations' gene pools change independently until they could not interbreed even if they were brought back together. In other words, they have speciated.

Sympatric speciation occurs when two subpopulations become reproductively isolated without first becoming geographically isolated. Insects that live on a single host plant provide a model for sympatric speciation. If a group of insects switched host plants they would not breed with other members of their species still living on their former host plant. The two subpopulations could diverge and speciate. Agricultural records show that a strain of the apple maggot fly Rhagolettis pomenella began infesting apples in the 1860's. Formerly it had only infested hawthorn fruit. Feder, Chilcote and Bush have shown that two races of Rhagolettis pomenella have become behaviorally isolated. Allele frequencies at six loci (aconitase 2, malic enzyme, mannose phosphate isomerase, aspartate amino-transferase, NADH-diaphorase-2, and beta-hydroxy acid dehydrogenase) are diverging. Significant amounts of linkage disequilibrium have been found at these loci, indicating that they may all be hitchhiking on some allele under selection. Some biologists call sympatric speciation microallopatric speciation to emphasize that the subpopulations are still physically separate at an ecological level.

Biologists know little about the genetic mechanisms of speciation. Some think a series of small changes in each subdivision gradually lead to speciation. The founder effect could set the stage for relatively rapid speciation, a genetic revolution in Ernst Mayr's terms. Alan Templeton hypothesized that a few key genes could change and confer reproductive isolation. He called this a genetic transilience. Lynn Margulis thinks most speciation events are caused by changes in internal symbionts. Populations of organisms are very complicated. It is likely that there are many ways speciation can occur. Thus, all of the above ideas may be correct, each in different circumstances. Darwin's book was titled "The Origin of Species" despite the fact that he did not really address this question; over one hundred and fifty years later, how species originate is still largely a mystery.

Observed Speciations

Speciation has been observed. In the plant genus Tragopogon, two new species have evolved within the past 50-60 years. They are T. mirus and T. miscellus. The new species were formed when one diploid species fertilized a different diploid species and produced a tetraploid offspring. This tetraploid offspring could not fertilize or be fertilized by either of its two parent species types. It is reproductively isolated, the definition of a species.

Extinction -- Decreasing Biological Diversity

Ordinary Extinction

Extinction is the ultimate fate of all species. The reasons for extinction are numerous. A species can be competitively excluded by a closely related species, the habitat a species lives in can disappear and/or the organisms that the species exploits could come up with an unbeatable defense.

Some species enjoy a long tenure on the planet while others are short- lived. Some biologists believe species are programmed to go extinct in a manner analogous to organisms being destined to die. The majority, however, believe that if the environment stays fairly constant, a well adapted species could continue to survive indefinitely.

Mass Extinction

Mass extinctions shape the overall pattern of macroevolution. If you view evolution as a branching tree, it's best to picture it as one that has been severely pruned a few times in its life. The history of life on this earth includes many episodes of mass extinction in which many groups of organisms were wiped off the face of the planet. Mass extinctions are followed by periods of radiation where new species evolve to fill the empty niches left behind. It is probable that surviving a mass extinction is largely a function of luck. Thus, contingency plays a large role in patterns of macroevolution.

The largest mass extinction came at the end of the Permian, about 250 million years ago. This coincides with the formation of Pangaea II, when all the world's continents were brought together by plate tectonics. A worldwide drop in sea level also occurred at this time.

The most well-known extinction occurred at the boundary between the Cretaceous and Tertiary Periods. This called the K/T Boundary and is dated at around 65 million years ago. This extinction eradicated the dinosaurs. The K/T event was probably caused by environmental disruption brought on by a large impact of an asteroid with the earth. Following this extinction the mammalian radiation occurred. Mammals coexisted for a long time with the dinosaurs but were confined mostly to nocturnal insectivore niches. With the eradication of the dinosaurs, mammals radiated to fill the vacant niches.

Currently, human alteration of the ecosphere is causing a global mass extinction.

Punctuated Equilibrium

The theory of punctuated equilibrium is an inference about the process of macroevolution from the pattern of species documented in the fossil record. In the fossil record, transition from one species to another is usually abrupt in most geographic locales -- no transitional forms are found. In short, it appears that species remain unchanged for long stretches of time and then are quickly replaced by new species. However, if wide ranges are searched, transitional forms that bridge the gap between the two species are sometimes found in small, localized areas. For example, in Jurassic brachiopods of the genus Kutchithyris, K. acutiplicata appears below another species, K. euryptycha. Both species were common and covered a wide geographical area. They differ enough that some have argued they should be in a different genera. In just one small locality an approximately 1.25m sedimentary layer with these fossils is found. In the narrow (10 cm) layer that separates the two species, both species are found along with transitional forms. In other localities there is a sharp transition.

Eldredge and Gould proposed that most major morphological change occurs (relatively) quickly in small peripheral population at the time of speciation. New forms will then invade the range of their ancestral species. Thus, at most locations that fossils are found, transition from one species to another will be abrupt. This abrupt change will reflect replacement by migration however, not evolution. In order to find the transitional fossils, the area of speciation must be found.

There has been considerable confusion about the theory. Some popular accounts give the impression that abrupt changes in the fossil record are due to blindingly fast evolution; this is not a part of the theory.

Punctuated equilibrium has been presented as a hierarchical theory of evolution. Proponents of punctuated equilibrium see speciation as analogous to mutation and the replacement of one species by another as analogous to natural selection. This is called species selection. Speciation adds new species to the species pool just as mutation adds new alleles to the gene pool. Species selection favors one species over another just as natural selection can favor one allele over another. Evolutionary trends within a group would be the result of selection among species, not natural selection acting within species. This is the most controversial part of the theory. Many biologists agree with the pattern of macroevolution these paleontologists posit, but believe species selection is not even theoretically likely to occur.

Critics would argue that species selection is not analogous to natural selection and therefore evolution is not hierarchical. Also, the number of species produced over time is far less than the amount of different alleles that enter gene pools over time. So, the amount of adaptive evolution produced by species selection (if it did occur) would have to be orders of magnitude less than adaptive evolution within populations by natural selection.

Tests of punctuated equilibrium have been equivocal. It has been known for a long time that rates of evolution vary over time, that is not controversial. However, phylogenetic studies conflict as to whether there is a clear association between speciation and morphological change. In addition, there are major polymorphisms within some species. For example, bluegill sunfish have two male morphs. One is a large, long-lived, mate-protecting male; the other is a smaller, shorter-lived male who sneaks matings from females guarded by large males. The existence of within species polymorphisms demonstrates that speciation is not a requirement for major morphological change