Mapping Theorems and the Implicit Function Theorem

- $h(x) = \langle f(x), z \rangle = z^T f(x)$, then $dh(x) = z^T df(x)$.

Matrix and Linear Map

- Let A be any $m \times n$ matrix, and $|A| = \sqrt{\sum_{c=1}^{n} \sum_{r=1}^{m} |A_{rc}|^2}$
 - $\bullet \quad \forall x \in \mathbb{R}^n \ |Ax| \le |A||x|$

Proof.
$$\left| A \sum_{j=1}^{n} x_{j} e^{(j)} \right| = \left| \sum_{j=1}^{n} x_{j} A e^{(j)} \right| \le \sum_{j=1}^{n} x_{j} \left| A e^{(j)} \right|^{C.S.} \sqrt{\sum_{j=1}^{n} x_{j}^{2}} \sqrt{\sum_{j=1}^{n} \left| A e^{(j)} \right|^{2}} = \left| x \right| \left| A \right|.$$

• $\forall x \in \mathbb{R}^n \ Ax = 0 \iff A = 0 \text{ matrix.}$

Proof. " \Rightarrow " Choose $x = e^{(j)}$. Then, Ax is the jth column of A. Ax = 0 implies the jth column of A is zero.

- Let $||A|| = \min \{c : \forall x \in \mathbb{R}^n | Ax | \le c|x| \}$.
 - $\bullet \qquad |A_{ik}| \le ||A|| \le |A|.$
- Let A be any $n \times n$ matrix
 - $\det: \mathbb{R}^{n \times n} \to \mathbb{R}$ is continuous.
 - A^{-1} , if exists, is a continuous function of the entries of A.

Proof. Cramer's rule.

- Linear map: $L_A(x) = Ax : \mathbb{R}^n \to \mathbb{R}^m$, where A is an $m \times n$ matrix.
 - $n = \dim(\mathbb{R}^n) \ge \dim(\{Ax : x \in \mathbb{R}^n\})$
- L_A or $A_{m \times n}$ is **injective**
 - $\equiv \forall x \in \mathbb{R}^n, \ L_A(x_1) = L_A(x_2) \Longleftrightarrow x_1 = x_2.$
 - $\equiv \exists r > 0 \ \forall x \in \mathbb{R}^n \ r |x| \le |L(x)| . \Rightarrow (r|x| \le |Ax| \le |A||x|)$

Proof. "
$$\Leftarrow$$
" $Ax_1 = Ax_2 \Rightarrow A(x_1 - x_2) = 0$. So, $0 = |A(x_1 - x_2)| \ge r|x_1 - x_2|$. Thus, $|x_1 - x_2| = 0$. " \Leftarrow " Because $||x|| = |L(x)|$ is a norm on \mathbb{R}^n , it is equivalent to $|x|$.

 $\equiv L(x) = 0 \text{ iff } x = 0.$

Proof. "
$$\Rightarrow$$
" Because $A0 = 0$, so, $Ax = 0 = A0 \Rightarrow x = 0$. " \Leftarrow " $Ax_1 = Ax_2 \Rightarrow A(x_1 - x_2) = 0 \Rightarrow x_1 - x_2 = 0$.

- \equiv Ax = 0 has only the trivial solution.
- $\equiv \forall b \ Ax = b \ \text{has at most one solution.}$
- The *n* columns of *A* are linearly independents. $\Rightarrow n \leq m$ 1:1
- $\Rightarrow ||x|| = |L(x)| = |Ax| \text{ is a norm on } \mathbb{R}^n.$ $\text{Proof. 1) } |\cdot| \ge 0. \ x = 0 \Rightarrow Ax = 0. \text{ Because } L \text{ is injective, } Ax = 0 \Rightarrow x = 0.2)$ $|A(ax)| = |a||Ax|.3 \ |A(x+y)| \le |Ax| + |Ay|.$
- Def: L_A or $A_{m \times n}$ is <u>surjective</u> if $\forall y \in \mathbb{R}^m \ \exists x \in \mathbb{R}^n$ such that $L_A(x) = y$.
 - $\equiv \forall b \in \mathbb{R}^m$ the equation Ax = b always has at least one solution.
 - $\equiv \text{ The } n \text{ columns of } A \text{ span } \mathbb{R}^m \Rightarrow n \geq m. \quad \text{onto}$
- Def: L_A or $A_{n \times n}$ is **bijective** if it is both injective and surjective. (1:1 and onto).
 - \equiv A is invertible.
 - \equiv A is surjective \equiv A is injective.

Mean Value theorem

- Def: Let (a,b) denote the line segment joining a and b.
- MVT0: Mean Value theorem:

Let open $\Omega \subset \mathbb{R}^n$, $f: \Omega \to \mathbb{R}$ differentiable.

$$[a,b] \subset \Omega \Rightarrow \exists c \in (a,b) \text{ such that } f(b) - f(a) = df(c)(b-a) = \nabla f(c) \cdot (b-a).$$

• MVT1: Let open $\Omega \subset \mathbb{R}^n$, $f: \Omega \to \mathbb{R}^m$ differentiable.

$$[a,b] \subset \Omega \Rightarrow \exists c \in (a,b) \text{ such that } |f(b)-f(a)| \leq \left| df(c)(b-a) \right|.$$

Proof. Let y = f(b) - f(a), fixed. If y = 0, then done because $|df(c)(b-a)| \ge 0$. For

$$y \neq 0$$
, consider $h(x) = \left\langle f(x), \frac{y}{|y|} \right\rangle = \frac{1}{|y|} \sum_{k=1}^{m} f_k(x) y_k$. Then $dh(c) = \left[\frac{\partial h}{\partial x_1}(c) \cdots \frac{\partial h}{\partial x_n}(c) \right]$

with
$$\frac{\partial h}{\partial x_i}(x) = \frac{1}{|y|} \sum_{k=1}^m y_k \frac{\partial f_k}{\partial x_i}(x) = \frac{1}{|y|} \sum_{k=1}^m y_k \left[df(x) \right]_{kj}$$
. So,

$$dh(c)(b-a) = \sum_{i=1}^{n} \frac{\partial h}{\partial x_{i}}(c)(b-a)_{j} = \sum_{i=1}^{n} \frac{1}{|y|} \sum_{k=1}^{m} y_{k} [df(c)]_{kj}(b-a)_{j}$$

$$= \frac{1}{|y|} \langle df(c)(b-a), y \rangle \le \frac{1}{|y|} |df(c)(b-a)| |y| \text{ by C.S.}$$

• MVT2: Let open $\Omega \subset \mathbb{R}^n$, $f: \Omega \to \mathbb{R}^m$ differentiable. If $[a,b] \subset \Omega$, $x_0 \in \Omega$, then $|f(b)-f(a)-df(x_0)(b-a)| \le |b-a| \sup_{c \in (a,b)} |df(c)-df(x_0)|$.

Proof. Let
$$g(x) = f(x) - df(x_0) x : \Omega \to \mathbb{R}^m$$
. Then, $dg(x) = df(x) - df(x_0)$. From above, $\exists c \in (a,b) |g(b) - g(a)| \le |dg(c)(b-a)| \cdot |g(b) - g(a)| = f(b) - f(a)$. $|dg(c)(b-a)| = |(df(c) - df(x_0))(b-a)| \le |df(c) - df(x_0)| b - a|$ $\le |b-a| \sup_{c \in (a,b)} |df(c) - df(x_0)|$.

- MVT3: Let open $\Omega \subset \mathbb{R}^n$, $f: \Omega \to \mathbb{R}^m$ is C^1 . $x_0 \in \Omega$ $\forall \boldsymbol{e} > 0 \; \exists \boldsymbol{d}_{\boldsymbol{e}} > 0 \; \text{such that} \; \forall x_1 \; \forall x_2 \; x_1, x_2 \in \boldsymbol{B}_{\boldsymbol{d}_{\boldsymbol{e}}}(x) \Longrightarrow 1) \; x_1, x_2 \in \Omega$, and 2) $\left| f(x_2) - f(x_1) - df(x_0)(x_2 - x_1) \right| \leq \boldsymbol{e} \left| x_2 - x_1 \right|$.
- MVT3': Let open $\Omega \subset \mathbb{R}^n$, $f: \Omega \to \mathbb{R}^m$ is C^1 . $x_0 \in \Omega$ $\forall \boldsymbol{e} > 0 \; \exists \boldsymbol{d}_{\boldsymbol{e}} > 0 \; \text{such that} \; \forall x_1 \; \forall x_2 \; |x_k - x_0| \; \boldsymbol{\pounds} \; \boldsymbol{d}_{\boldsymbol{e}}, \; k = 1, 2 \Rightarrow 1) \; x_1, x_2 \in \Omega$, and 2) $|f(x_2) - f(x_1) - df(x_0)(x_2 - x_1)| \leq \boldsymbol{e} \; |x_2 - x_1|$.

Proof. Given $\mathbf{e} > 0$. Ω open implies $\exists \mathbf{d}_1 > 0 \ \forall \mathbf{d} \ 0 < \mathbf{d} < \mathbf{d}_1 \Rightarrow B_{\mathbf{d}}(x_0) \subset \Omega$. By continuity of df(x). Given $\mathbf{e} > 0$, $\exists \mathbf{d}_2 > 0 \ \forall c \in B_{\mathbf{d}_2}(x_0) \ | df(c) - df(x_0) | \leq \mathbf{e}$. Choose $\mathbf{d} = \min(\mathbf{d}_1, \mathbf{d}_2)$, then $\forall x_1 \ \forall x_2 \ x_1, x_2 \in B_{\mathbf{d}}(x) \Rightarrow 1$) $x_1, x_2 \in \Omega$ and $(x_1, x_2) \subset \Omega$ because $0 < \mathbf{d} < \mathbf{d}_1$, and open ball is convex, 2) because from above $|f(x_2) - f(x_1) - df(x_0)(x_2 - x_1)| \leq |x_2 - x_1| \sup_{c \in (x_1, x_2)} |df(c) - df(x_0)|$, and $\mathbf{d} < \mathbf{d}_2$ implies that an upperbound of $|df(c) - df(x_0)|$ is \mathbf{e} .

Mapping Theorems

• The injective mapping theorem: Let open $\Omega \subset \mathbb{R}^n$, $f:\Omega \to \mathbb{R}^m$ is C^1 , $c \in \Omega$. df(c) is injective $\Rightarrow \exists d > 0$ such that $f|_{B_d(c)}$ is injective.

Proof. df(c) is injective; thus, $\exists r > 0 \ \forall x \in \mathbb{R}^n \ r|x| \le |df(c)x|$. Note that from triangle inequality $|f(x_2) - f(x_1) - df(c)(x_2 - x_1)| \ge |df(c)(x_2 - x_1)| - |f(x_2) - f(x_1)|$ $\ge r|x_2 - x_1| - |f(x_2) - f(x_1)|$. From MVT3, choose $\mathbf{e} = \frac{r}{2}$ and $x_0 = c$. $\exists \mathbf{d} > 0$ such that $\forall x_1 \ \forall x_2 \ x_1, x_2 \in B_{\mathbf{d}}(c) \Rightarrow \frac{r}{2}|x_2 - x_1| \ge |f(x_2) - f(x_1) - df(x_0)(x_2 - x_1)|$ which is

$$\geq r |x_{2} - x_{1}| - |f(x_{2}) - f(x_{1})|. \text{ So, } |f(x_{2}) - f(x_{1})| \geq \frac{r}{2} |x_{2} - x_{1}|. \text{ Thus, } f(x_{2}) = f(x_{1}) \Rightarrow \frac{r}{2} |x_{2} - x_{1}| = 0. |f(x_{2}), f(x_{1})| \text{ are well defined because } x_{1}, x_{2} \in \Omega.$$

•
$$\exists r > 0 \ \forall x_1 \ \forall x_2 \ x_1, x_2 \in B_d(c) \Rightarrow \left| f(x_2) - f(x_1) \right| \ge \frac{r}{2} \left| x_2 - x_1 \right|.$$

•
$$f|_{B_{d}(c)}: B_{d}(c) \xrightarrow{1:1} f(B_{d}(c)).$$

Thus, well defined inverse $g = \left(f \big|_{B_d(c)} \right)^{-1} : f\left(B_d(c) \right) \xrightarrow{\text{onto}} B_d(c)$.

•
$$g = \left(f\big|_{B_{\boldsymbol{d}}(c)}\right)^{-1} : f\left(B_{\boldsymbol{d}}(c)\right) \xrightarrow{\text{1:1} \atop \text{onto}} B_{\boldsymbol{d}}(c)$$
 is uniformly continuous.

Proof. Let $y_1, y_2 \in f\left(B_{\boldsymbol{d}}(c)\right)$, then $\exists x_1, x_2 \in B_{\boldsymbol{d}}(c)$ such that $y_1 = f\left(x_1\right)$ and $y_2 = f\left(x_2\right) \left(x_1 = g\left(y_1\right) \text{ and } x_2 = g\left(y_2\right)\right) . \left|f\left(x_2\right) - f\left(x_1\right)\right| \ge \frac{r}{2} |x_2 - x_1| \Rightarrow \left|g\left(y_2\right) - g\left(y_1\right)\right| \le \frac{2}{r} |y_2 - y_1|.$

- $\exists \boldsymbol{d}_{1} > 0 \text{ such that } B_{\boldsymbol{d}_{1}}(c) \subset \Omega \text{ and } \forall x \in B_{\boldsymbol{d}_{1}}(c) \ df(x) \text{ is injective.}$ Proof. df(c) is injective; so, $\exists r > 0 \ r |y| \le |df(c)y|$. By continuity of df(x), $\exists \boldsymbol{d}_{1} > 0 \ |x c| < \boldsymbol{d}_{1} \ \Rightarrow |df(c) df(x)| \le \frac{r}{2}. \text{ Hence, } |df(x)y|$ $\ge |df(c)y| |df(c)y df(x)y| \ge r|y| |df(c) df(x)||y| \ge r|y| \frac{r}{2}|y|.$
- $\Rightarrow \exists d_2 > 0 \text{ such that}$
 - 1) $f|_{B_{d_2}(c)}$ is injective
 - 2) $\forall x \in B_{d_2}(c) df(x)$ is injective.
 - 3) $g = (f|_{B_d(c)})^{-1} : f(B_d(c)) \xrightarrow{\text{onto}} B_d(c)$ is unique, and uniformly continuous.

4)
$$\exists r > 0 \ \forall x_1 \ \forall x_2 \ x_1, x_2 \in B_d(c) \Rightarrow \left| f(x_2) - f(x_1) \right| \ge \frac{r}{2} \left| x_2 - x_1 \right|.$$

Proof. Take $\mathbf{d}_2 = \min(\mathbf{d}, \mathbf{d}_1) > 0$.

•
$$df(c)$$
 is surjective. ($L_{df(c)}(x) = df(c)x : \mathbb{R}^n \to \mathbb{R}^m$ is surjective)

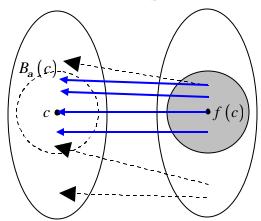
$$\equiv \quad \text{(Def)} \ \, \forall y \in \mathbb{R}^m \, \, \exists x \in \mathbb{R}^n \, \, \text{such that} \, \, L_{df(c)} \big(\, x \big) = df \big(c \, \big) \, x = y \, .$$

$$\Rightarrow \exists \underset{n \times m}{M} df\left(c\right) \underset{n \times m}{M} = \underset{m \times m}{I}, \text{ i.e., } L_{df\left(c\right)} \circ L_{M}\left(x\right) = x \text{ . (identity mapping)}$$

Proof. Let $e^{(1)}, \dots, e^{(m)}$ be the canonical basis in \mathbb{R}^m , then $\forall i \in \{1, \dots, m\}$ $\exists u^{(i)} \in \mathbb{R}^n$ such that $e^{(i)} = df(c)u^{(i)}$. Also, $\forall x \in \mathbb{R}^m$ $x = \sum_{i=1}^m x_i e^{(i)}$. Define $L_M(x) = \sum_{i=1}^m x_i u^{(i)} : \mathbb{R}^m \to \mathbb{R}^n$. Then, $M_{n \times m} = \left[u^{(1)} \cdots u^{(m)}\right]$. And $L_{df(c)} \circ L_M(x) = L_{df(c)}\left(L_M(x)\right) = df(c)Mx = df(c)\left(\sum_{i=1}^m x_i u^{(i)}\right) = \sum_{i=1}^m x_i df(c)u^{(i)} = \sum_{i=1}^m x_i df(c)u^{(i)} = x$.

• Note also that
$$|Mx| = \left| \sum_{i=1}^{m} x_i u^{(i)} \right| \le \sum_{i=1}^{m} |x_i| |u^{(i)}| \le \left(\sqrt{\sum_{j=1}^{m} |u^{(i)}|^2} \right) |x| = b |x|$$

- The <u>surjective mapping theorem</u>: Let open $\Omega \subset \mathbb{R}^n$, $f : \Omega \to \mathbb{R}^m$ is C^1 , $c \in \Omega$. df(c) is surjective
 - $\Rightarrow \exists \textbf{\textit{e}}_{1}, \textbf{\textit{e}}_{2} > 0 \text{ such that } B_{\textbf{\textit{e}}_{1}}\left(c\right) \subset \Omega \text{ and } B_{\textbf{\textit{e}}_{2}}\left(f\left(c\right)\right) \subset f\left(B_{\textbf{\textit{e}}_{1}}\left(c\right)\right).$
 - $\Rightarrow \exists \boldsymbol{a}, \boldsymbol{b} > 0 \text{ such that } \forall y \in \mathbb{R}^m \left| y f(c) \right| \le \frac{\boldsymbol{a}}{2\boldsymbol{b}}, \ \exists x \in \mathbb{R}^n \ \left| x c \right| \le \boldsymbol{a} \text{ such that } f(x) = y.$
 - $\Rightarrow \exists a, b > 0 \text{ such that } B_{\frac{a}{2b}}(f(c)) \subset f(B_a(c)).$
 - $\Rightarrow \exists \boldsymbol{a}, \boldsymbol{b} > 0 \text{ such that } \forall y \in \mathbb{R}^m \ \left| y f(c) \right| < \frac{\boldsymbol{a}}{2\boldsymbol{b}}, \ \exists x \in \mathbb{R}^n \ \left| x c \right| < \boldsymbol{a} \text{ such that } f(x) = y.$



Proof. From MVT3', let $\mathbf{e} = \frac{1}{2\mathbf{b}}$, $x_0 = c$. Take $\mathbf{a} = \mathbf{d}$. Because df(c) is

surjective, $\exists M \ df(c)M = I$. Also, $\exists \mathbf{b} > 0 \ |Mx| \le \mathbf{b}|x|$. Given y, $|y - f(c)| \le \frac{\mathbf{a}}{2\mathbf{b}}$, will construct sequence $x^{(n)} \to x$, $|x - c| \le \mathbf{a}$ and f(x) = y. Let $x_0 = c$.

Define

$$x^{(1)} = x^{(0)} - M(f(c) - y).$$

For
$$\ell \ge 1$$
, $x^{\ell+1} = x^{\ell} - M(f(x^{\ell}) - f(x^{\ell-1}) - df(c)(x^{\ell} - x^{\ell-1}))$.

Claim:
$$\forall k \in \mathbb{N} \ 1$$
 $\left| x^{(k)} - x^{(k-1)} \right| \le \frac{\mathbf{a}}{2^k}$, and 2) $\left| x^{(k)} - c \right| \le \left(1 - \frac{1}{2^k} \right) \mathbf{a} < \mathbf{a}$

Proof. For
$$k = 1$$
, $|x^{(1)} - x^{(0)}| = |M(f(c) - y)| \le b \frac{a}{2b} = \frac{a}{2^1}$. Also,

$$|x^{(1)} - c| = |x^{(1)} - x^{(0)}| \le \frac{\mathbf{a}}{2^1} = \left(1 - \frac{1}{2^1}\right)\mathbf{a}$$
.

Assume true for $k = 1, ..., \ell$. Then by 2), $x_{\ell}, x_{\ell-1} \in B_d(c)$, thus

$$\left| f\left(x^{\ell}\right) - f\left(x^{\ell-1}\right) - df\left(c\right)\left(x^{\ell} - x^{\ell-1}\right) \right| \leq \frac{1}{2\boldsymbol{b}} \left| x^{\ell} - x^{\ell-1} \right|. \text{ Hence,}$$

$$\left| x^{\ell+1} - x^{\ell} \right| = \left| -M \left(f \left(x^{\ell} \right) - f \left(x^{\ell-1} \right) - df \left(c \right) \left(x^{\ell} - x^{\ell-1} \right) \right) \right| \le \mathbf{b} \frac{1}{2\mathbf{b}} \left| x^{\ell} - x^{\ell-1} \right|$$

$$\leq \frac{1}{2} \frac{a}{2^{\ell}} = \frac{a}{2^{\ell+1}} \cdot \text{Also, } \left| x^{(\ell+1)} - c \right| < \left| x^{(\ell+1)} - x^{(\ell)} \right| + \left| x^{(\ell)} - c \right| \leq \frac{a}{2^{\ell+1}} + \left(1 - \frac{1}{2^{\ell}} \right) a$$

$$= \left(1 - \frac{1}{2^{\ell+1}}\right) \mathbf{a} \dots$$

Thus, $x^{(n)} \in B_d(c)$. Also, $(x^{(n)})$ is Cauchy. Assume $k > \ell$, then by 1)

$$\left|x^{\ell} - x^{k}\right| = \left|\sum_{i=\ell}^{k-1} \left(x_{i} - x_{i+1}\right)\right| \le \sum_{i=\ell}^{k-1} \left|x_{i} - x_{i+1}\right| \le \sum_{i=\ell}^{k-1} \frac{\mathbf{a}}{2^{i+1}} < \sum_{i=\ell}^{\infty} \frac{\mathbf{a}}{2^{i+1}} = \frac{\mathbf{a}}{2^{\ell}}$$
. Also, by 2),

$$|x-c| = \lim_{n\to\infty} |x^{(n)}-c| \le \lim_{n\to\infty} \left(1-\frac{1}{2^n}\right) \boldsymbol{a} = \boldsymbol{a}.$$

Claim:
$$df(c)(x^{\ell+1}-x^{\ell})=y-f(x_{\ell}).$$

$$df(c)(x^{(1)} - x^{(0)}) = y - f(x_0)$$
. By induction,

$$df(c)(x^{\ell+1} - x^{\ell}) = -f(x^{\ell}) + f(x^{\ell-1}) + df(c)(x^{\ell} - x^{\ell-1})$$

= $-f(x^{\ell}) + f(x^{\ell-1}) + y - f(x_{\ell-1}) = y - f(x_{\ell})$

Thus,
$$0 \le |y - f(x)| = \lim_{\ell \to \infty} |y - f(x_{\ell})| = \lim_{\ell \to \infty} |df(c)(x^{\ell+1} - x^{\ell})| \le |df(c)| = 0$$
.

Proof. Take a' > a. Also, take b' large enough such that $\frac{a'}{2b'} < \frac{a}{b}$. Then

$$\forall y \in \mathbb{R}^m \left| y - f(c) \right| < \frac{\mathbf{a'}}{2\mathbf{b'}} \le \frac{\mathbf{a}}{2\mathbf{b}} \left| y - f(c) \right| \le \frac{\mathbf{a}}{2\mathbf{b}} \quad \exists x \in \mathbb{R}^n \quad \left| x - c \right| \le \mathbf{a} < \mathbf{a'} \text{ such that } f(x) = y.$$

• Open mapping theorem Let open $\Omega \subset \mathbb{R}^n$. $f: \Omega \to \mathbb{R}^m$ is C^1 . $\forall x \in \Omega$ df(x) is surjective. Then, f is an open mapping. $(\forall \text{ open } G \subset \Omega, f(G) \text{ is open in } \mathbb{R}^m)$

Proof. Let $b \in f(G)$. Then, $\exists c \in G \ f(c) = b$. Consider f on open G. df(c) is surjective. By the SMT, $\exists \mathbf{e}_1, \mathbf{e}_2 > 0$ such that $B_{\mathbf{e}_1}(c) \subset G$ and $B_{\mathbf{e}_2}(f(c)) \subset f(B_{\mathbf{e}_1}(c)) \subset f(G)$.

• <u>Inversion (Mapping) Theorem</u>: Let open $\Omega \subset \mathbb{R}^n$, $f: \Omega \to \mathbb{R}^n$ is C^1 , $c \in \Omega$. df(c) is

bijective, then $\exists U$ open neighborhood of c such that

- 1) V = f(U) is an open neighborhood of f(c).
- 2) $f|_{U}: U \to V$ is bijective.
- 3) $g = (f|_U)^{-1} : V \to U \text{ is } C^1$
- 4) $\forall y \in V \ dg(y) = \left[df(g(y)) \right]^{-1}$.

Proof 2): By injective mapping theorem, because df(c) is injective, $\exists U = B_d(c)$ such that $f|_U$ is injective and $\forall x \in U$ df(x) is injective (\Rightarrow bijective \Rightarrow surjective).

Also, unique $g = (f|_U)^{-1} : V \xrightarrow{\text{onto}} U$ is continuous; V = f(U).

Proof 1): Because $\forall x \in U \ df(x)$ is surjective, by open mapping theorem,

V = f(U) is open. $c \in U \Rightarrow f(c) \in V$.

Proof 4): Let $y, y_0 \in V$. Then, \exists unique $x, x_0 \in U$, f(x) = y, g(y) = x, $f(x_0) = y_0$,

 $g(y_0) = x_0$. $x_0 \in U \implies [df(x_0)]^{-1}$ exists. f is differentiable at x_0 , thus,

$$f(x) - f(x_0) = df(x_0)(x - x_0) + o(|x - x_0|)$$
 as $x \to x_0$.

 $\times [df(x_0)]^{-1}$, and get

$$[df(x_0)]^{-1}(y-y_0) = g(y) - g(y_0) + [df(x_0)]^{-1}o(|x-x_0|).$$

Claim: $r(x) = o(|x - x_0|)$ $x \to x_0$, then $Ar(x) = o(|y - y_0|)$ as $y \to y_0$.

By continuity of g, as $y \to y_0$, we have $x \to x_0$. Note that $|Ar(x)| \le |A| |r(x)|$,

and by the IMT, $|y - y_0| = |f(x) - f(x_0)| \ge \frac{r}{2} |x - x_0|$. Thus, $\frac{|Ar(x)|}{|y - y_0|} \le \frac{|A||r(x)|}{\frac{r}{2}|x - x_0|}$.

And
$$\lim_{x \to x_0} \frac{|r(x)|}{|x - x_0|}$$
, we have $\lim_{y \to y_0} \frac{|Ar(x)|}{|y - y_0|} = \lim_{x \to x_0} \frac{|A||r(x)|}{\frac{r}{2}|x - x_0|} = 0$.

Proof 3): $dg(y) = [df(g(y))]^{-1}$ is C^1 . By inversion theorem, g(y) is continuous. df is continuous. So, df(g(y)) is continuous. Inverse is also continuous (already know that determinant $\neq 0$).

- $f \circ g(y) = x:V \to V$, $g \circ f(x) = y:U \to U$.
- Inverse Function Theorem: Let $f:(a,b) \to \mathbb{R}$ be C^1 , f((a,b)) = (c,d); and suppose either f'(x) > 0 or f'(x) < 0 on (a,b). Then $f^{-1}:(c,d) \xrightarrow{\text{onto}} (a,b)$ is C^1 , and $(f^{-1})'(y) = \frac{1}{f'(x)}$ if y = f(x).

Implicit Function Theorem

- Implicit Function Theorem: Let $\Omega \subset \mathbb{R}^n \times \mathbb{R}^m$ open. $F : \Omega \to \mathbb{R}^m$ C^1 . $(x_0, y_0) \in \Omega$, $F(x_0, y_0) = 0$, $d_v F(x_0, y_0)$ is invertible, then
 - 1) $\exists W$ open neighborhood of x_0 , and a unique function f of class C^1 , $f: W \to \mathbb{R}^m$, $f(x_0) = y_0$, and $\forall x \in W \ F(x, f(x)) = 0$.
 - 2) Also, $\exists U$ open neighborhood of (x_0, y_0) such that if $(x, y) \in U$ and F(x, y) = 0 then $x \in W$ and y = f(x).
 - 3) Moreover, $\exists r > 0 \ |x x_0| < r \implies df(x) = -(d_x F(x, f(x)))^{-1} d_x F(x, f(x))$.
 - We want to consider a system of m equations for m unknown functions $y_1, y_2, ..., y_m$ (each being a function of n variables $x_1, ..., x_n$.)
 - Notice that we are prejudging the outcome that the number of equations and unknowns should be equal if there is to be any hope of having unique solutions.
 - Replace F be its best affine approximation at (x_0, y_0) ,

$$F(x,y) = F(x_0, y_0) + dF(x_0, y_0)((x,y) - (x_0, y_0))$$

$$= d_x F(x_0, y_0)(x - x_0) + d_y F(x_0, y_0)(y - y_0)$$

$$F(x,y) = 0 \Rightarrow$$

$$(d_y F(x_0, y_0)) y = \overline{Ay = b(x)} = d_x F(x_0, y_0)(x - x_0) + d_y F(x_0, y_0) y_0$$

•
$$dF(x,y) = [d_x F(x,y) \quad d_y F(x,y)]$$

$$= \begin{bmatrix} \frac{\partial F_1}{\partial x_1}(x, y) & \cdots & \frac{\partial F_1}{\partial x_n}(x, y) & \frac{\partial F_1}{\partial y_1}(x, y) & \cdots & \frac{\partial F_1}{\partial y_m}(x, y) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1}(x, y) & \cdots & \frac{\partial F_m}{\partial x_n}(x, y) & \frac{\partial F_m}{\partial y_1}(x, y) & \cdots & \frac{\partial F_m}{\partial y_m}(x, y) \end{bmatrix}$$

$$\bullet \quad d_{x}F(x,y) = \begin{bmatrix} \frac{\partial F_{1}}{\partial x_{1}}(x,y) & \cdots & \frac{\partial F_{1}}{\partial x_{n}}(x,y) \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{m}}{\partial x_{1}}(x,y) & \cdots & \frac{\partial F_{m}}{\partial x_{n}}(x,y) \end{bmatrix}, d_{y}F(x,y) = \begin{bmatrix} \frac{\partial F_{1}}{\partial y_{1}}(x,y) & \cdots & \frac{\partial F_{1}}{\partial y_{m}}(x,y) \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{m}}{\partial y_{1}}(x,y) & \cdots & \frac{\partial F_{m}}{\partial y_{m}}(x,y) \end{bmatrix}.$$

• $d_y F(x_0, y_0)$ is invertible iff $L_2(v) = dF(x_0, y_0) \begin{bmatrix} 0 \\ v \end{bmatrix} = dF(x_0, y_0) v$ is bijective.

$$\bullet \quad \begin{bmatrix} I & 0 \\ d_x F & d_y F \end{bmatrix}^{-1} = \begin{bmatrix} I & 0 \\ -(d_y F)^{-1} (d_x F) & (d_y F)^{-1} \end{bmatrix}$$

• Proof 1): by reducing the implicit function theorem to the inversion theorem.

$$H(x,y) = (x,F(x,y)): \Omega \to \mathbb{R}^n \times \mathbb{R}^m \text{ is also } C^1. \ dH(x,y) = \begin{bmatrix} I_{n \times n} & 0_{n \times m} \\ d_x F(x,y) & d_y F(x,y) \end{bmatrix}.$$

$$(dH(x_0, y_0))^{-1} = \begin{bmatrix} I & 0 \\ -(d_y F(x_0, y_0))^{-1} d_x F(x_0, y_0) & (d_y F(x_0, y_0))^{-1} \end{bmatrix}, \text{ exists because } (d_y F(x_0, y_0))^{-1} \text{ exists.}$$

By inversion mapping theorem, have U, open neighborhood of (x_0, y_0) ,

$$H|_{U}: U \xrightarrow{1:1} V$$
, and $G = (H|_{U})^{-1}: V \xrightarrow{\mathbb{R}^{n} \times \mathbb{R}^{m}} U$. Define $\mathbf{j}_{1}: V \to \mathbb{R}^{n}$,

$$\boldsymbol{j}_2: V \to \mathbb{R}^m$$
, both C^1 by $G(x,y) = \begin{pmatrix} \boldsymbol{j}_1(x,y) \\ \boldsymbol{j}_2(x,y) \end{pmatrix}$. Note that

(I) V is an open neighborhood of $H(x_0, y_0) = (x_0, 0)$.

(II)
$$\forall (x,y) \in V \ H \circ G(x,y) = (x,y)$$
. But $H \circ G(x,y) = H\begin{pmatrix} \mathbf{j}_1(x,y) \\ \mathbf{j}_2(x,y) \end{pmatrix} = \begin{pmatrix} \mathbf{j}_1(x,y) \\ F(\mathbf{j}_1(x,y),\mathbf{j}_2(x,y)) \end{pmatrix}$. Hence, $\mathbf{j}_1(x,y) = x$, and $F(\mathbf{j}_1(x,y),\mathbf{j}_2(x,y)) = y \Rightarrow F(x,\mathbf{j}_2(x,y)) = y$.

(III)
$$\forall (x,y) \in U$$
 $G \circ H(x,y) = (x,y)$. But $G \circ H(x,y) = \begin{pmatrix} \boldsymbol{j}_1(x,F(x,y)) \\ \boldsymbol{j}_2(x,F(x,y)) \end{pmatrix} = \begin{pmatrix} x \\ \boldsymbol{j}_2(x,F(x,y)) \end{pmatrix}$. Hence, $\boldsymbol{j}_2(x,F(x,y)) = y$. Since $(x_0,y_0) \in U$, we have $\boldsymbol{j}_2(x_0,F(x_0,y_0)) = \boldsymbol{j}_2(x_0,0) = y_0$.

Let $W = \{x \in \mathbb{R}^n, (x,0) \in V\}$. Because V is an open neighborhood of $(x_0,0)$, W is an open neighborhood of x_0 .

Let
$$f(x) = \mathbf{j}_2(x,0) : W \to \mathbb{R}^m$$
 C^1 . $\forall x \in W$, we have $(x,0) \in V$; hence $F(x,\mathbf{j}_2(x,0)) = 0$. So, $F(x,f(x)) = F(x,\mathbf{j}_2(x,0)) = 0$. Also, from (III), we have $f(x_0) = \mathbf{j}_2(x_0,0) = y_0$.

- Proof 2) If $(x, y) \in U$, then by (III), $\mathbf{j}_2(x, F(x, y)) = y$. If, in addition F(x, y) = 0, then $\mathbf{j}_2(x, 0) = y$. Hence, f(x) = y.
- Proof 3) Define $K(x) = (x, f(x)) : W \to \mathbb{R}^n \times \mathbb{R}^m$. C^1 . By 1) $\forall x \in W$ $F \circ K(x) = F(x, f(x)) = 0$. Hence, $d(F \circ K)(x) = dF(K(x))dK(x) = 0$. $\begin{bmatrix} d_x F(K(x)) & d_y F(K(x)) \end{bmatrix} \begin{bmatrix} I \\ df(x) \end{bmatrix} = d_x F(K(x)) + d_y F(K(x))df(x) = 0.$
 - $d_y F(K(x_0)) = d_y F(x_0, y_0)$ is invertible. $\exists \mathbf{e} > 0 \ |d_y F(K(x)) F(K(x_0))| < \mathbf{e} \Rightarrow d_y F(K(x))$ invertible. $F \circ K$ is $C^1 \Rightarrow d_y F(K(x))$ is continuous. $\exists r > 0$ $|x x_0| < r \Rightarrow |d_y F(K(x)) F(K(x_0))| < \mathbf{e}$.
- Regarding $df(x) = -(d_y F(x, f(x)))^{-1} d_x F(x, f(x)),$

• if
$$y \in \mathbb{R}$$
, we have $\frac{\partial f}{\partial x_i}(x, y) = \frac{\frac{\partial F}{\partial x_i}(x, y)}{\frac{\partial F}{\partial y}(x, y)}$.

- Example: For motivation, with abuse of notation: Let $F(x,y) = y^2x_1 + 5x_2^2y + x_1x_2y^3$ = F(1,1) = 7. Then, $\frac{\partial F}{\partial x_1}(x,y(x)) = y^2 + x_1(2y)\frac{\partial y}{\partial x_1} + 5x_2^2\frac{\partial y}{\partial x_1} + x_2y^3 + x_1x_23y^2\frac{\partial y}{\partial x_1} = 0$. Hence, $\frac{\partial y}{\partial x_1}(x) = -\frac{y^2 + x_2y^3}{x_1(2y) + 5x_2^2 + x_1x_23y^2}$. Note that $\frac{\partial F}{\partial x_1}(x,y) = y^2 + x_2y^3 = 0$ and $\frac{\partial F}{\partial y}(x,y) = 2yx_1 + 5x_2^2 + x_1x_23y^2$.
- If $V \subset \mathbb{R}^n \times \mathbb{R}^m$ is an open neighborhood of (x_0, y_0) , then $W = \{x \in \mathbb{R}^n, (x, y_0) \in V\}$ is an open neighborhood of x_0 .

Proof. First, because $(x_0,y_0) \in V$, we have $x_0 \in W$. Let $x' \in W$. Then $(x',y_0) \in V$. V is open; thus, $\exists \mathbf{d} > 0 \ \big| (x,y) - (x',y_0) \big| < \mathbf{d} \Rightarrow (x,y) \in V$. Hence, $\big| x - x' \big| < \mathbf{d} \Rightarrow \big| (x,y_0) - (x',y_0) \big| = \big| x - x' \big| < \mathbf{d} \Rightarrow (x,y_0) \in V \Rightarrow x \in W$.

- <u>Implicit Function Theorem</u> (2: Strichartz): Let F(x,y) be a C^1 function defined in a neighborhood of $x_0 \in \mathbb{R}^n$ and $y_0 \in \mathbb{R}^m$, taking values in \mathbb{R}^m , with $F(x_0, y_0) = c$. Then if $d_y F(x_0, y_0)$ is invertible,
 - 1) there exists a neighborhood W of x_0 and a C^1 function $f:W\to\mathbb{R}^m$ such that $f(x_0)=y_0$ and $F(x,f(x))=c \ \forall x\in W$.
 - 2) Furthermore, f is unique in that there exists a neighborhood f(W) of y_0 such that there is only one solution $y' \in f(W)$ of F(x,y') = c, namely y' = f(x).
 - 3) Finally, the differential of f can be computed by implicit differentiation as $df(x) = -(d_x F(x, f(x)))^{-1} d_x F(x, f(x))$.

Proof. Let $G(x,y) = F(x,y) - F(x_0,y_0)$. Then, $G(x_0,y_0) = 0$, and $d_y G(x_0,y_0) = d_y F(x_0,y_0)$. Thus, if $d_y F(x_0,y_0)$ is invertible, $d_y G(x_0,y_0)$ is also invertible, and by the implicit function theorem, we have neighborhood W of x_0 and a unique C^1 function f such that $f(x_0) = y_0$, and $\forall x \in W F(x,f(x)) = F(x_0,y_0)$.

• Inverse Function Theorem (Strichartz): Let f be a C^1 function defined in a neighborhood of c in \mathbb{R}^n taking values in \mathbb{R}^n . If df(c) is invertible, then there exists a neighborhood V of

f(c) and a C^1 function $g:V\to\mathbb{R}^n$ such that

- 1) $f(g(y)) = y \ \forall y \in V$.
- 2) Furthermore, g maps V one-to-one onto a neighborhood U of c and g(f(x)) = x $\forall x \in U$.

- 3) The function g is unique in that for any y in V, there is only one x' in U with f(x') = y namely x' = g(y).
- 4) Finally, $dg(y) = \int df(x)^{-1}$ if f(x) = y.
- Inverse function theorem is a special case of the implicit theorem. Given a C^1 function g and $dg(y_0)$ is invertible. Then, let F(x, y) = g(y) x, and $x_0 = g(y_0)$. Note that $F(x_0, y_0) = g(y_0) x_0 = 0$. $d_y F(x_0, y_0) = dg(y_0)$ invertible. Then $\exists W$ open neighborhood of $x_0 = g(y_0)$, and a unique function $f = g^{-1}$ of class C^1 , $f: W \to \mathbb{R}^m$, $f(x_0) = y_0$, and $\forall x \in W \ g(f(x)) = x$. Also, $\exists U$ open neighborhood of (x_0, y_0) such that if $(x, y) \in U$ and g(y) = x then $x \in W$ and y = f(x). Moreover, $\exists r > 0$ $|x x_0| < r \Rightarrow df(x) = -(dg(f(x)))^{-1}(-I) = (dg(f(x)))^{-1}$.
- Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a C^1 function. Then, the restriction of f to any open set of \mathbb{R}^2 is not injective.

Summary

- Let open $\Omega \subset \mathbb{R}^n$, $f: \Omega \to \mathbb{R}^m$ is C^1 , $c \in \Omega$.
 - The injective mapping theorem:

df(c) is injective $\Rightarrow \exists d > 0$ such that $f|_{B_d(c)}$ is injective.

- 1) $f|_{B_d(c)}$ is injective
- 2) $\forall x \in B_d(c)$ df (x) is injective.
- 3) $g = \left(f|_{B_d(c)}\right)^{-1} : f\left(B_d(c)\right) \xrightarrow{\text{onto}} B_d(c)$ is unique, and uniformly continuous.
- 4) $\exists r > 0 \ \forall x_1 \ \forall x_2 \ x_1, x_2 \in B_d(c) \Rightarrow \left| f(x_2) f(x_1) \right| \ge \frac{r}{2} \left| x_2 x_1 \right|.$
- The surjective mapping theorem:

 $df\left(c\right) \text{ is surjective } \Rightarrow \exists \textbf{\textit{e}}_{1}, \textbf{\textit{e}}_{2} > 0 \text{ such that } B_{\textbf{\textit{e}}_{1}}\left(c\right) \subset \Omega \text{ and } B_{\textbf{\textit{e}}_{2}}\left(f\left(c\right)\right) \subset f\left(B_{\textbf{\textit{e}}_{1}}\left(c\right)\right).$

• Open mapping theorem

 $\forall x \in \Omega \ df(x)$ is surjective. $\Rightarrow f$ is an open mapping.

• <u>Inversion (Mapping) Theorem</u>: Let open $\Omega \subset \mathbb{R}^n$, $f: \Omega \to \mathbb{R}^n$ is C^1 , $c \in \Omega$. df(c) is

bijective, then $\exists U$ open neighborhood of c such that

- 1) V = f(U) is an open neighborhood of f(c).
- 2) $f|_{U}: U \to V$ is bijective.
- 3) $g = (f|_U)^{-1} : V \to U \text{ is } C^1.$
- 4) $\forall y \in V \ dg(y) = \left[df(g(y))\right]^{-1}$.
- Implicit Function Theorem: Let $\Omega \subset \mathbb{R}^n \times \mathbb{R}^m$ open. $F : \Omega \to \mathbb{R}^m$ C^1 . $(x_0, y_0) \in \Omega$, $F(x_0, y_0) = 0$, $d_y F(x_0, y_0)$ is invertible, then
 - 1) $\exists W$ open neighborhood of x_0 , and a unique function f of class C^1 , $f: W \to \mathbb{R}^m$, $f(x_0) = y_0$, and $\forall x \in W \ F(x, f(x)) = 0$.
 - 2) Also, $\exists U$ open neighborhood of (x_0, y_0) such that if $(x, y) \in U$ and F(x, y) = 0 then $x \in W$ and y = f(x).
 - 3) Moreover, $\exists r > 0 \mid x x_0 \mid < r \Rightarrow df(x) = -\left(d_y F(x, f(x))\right)^{-1} d_x F(x, f(x))$.