Mapping Theorems and the Implicit Function Theorem

(Ax,y)=(A)"y =8 (row xx)y, =8 & AX.Y,
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h(x)=(f (x),2)=2" f(x),then dh(x)=2z'df (x).
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"xI R"Ax=0U0 A=0 matrix.

Proof. “p ” Choose x =€), Then, Axisthej" columnof A. Ax=0 impliesthej™
column of A is zero.

Let ||A|| = min{c: "x] R" |Ax|£ c|x|}.
WINETES

Let Abeany n” n matrix
det:R""® R iscontinuous.

Al if exigts, is a continuous function of the entries of A.
Proof. Cramer’'srule.

Linear map: L,(x)=Ax:R"® R"™, where Aisan m" n matrix.
n=dim(]R”)3 dim({Ax:xT R“})

L, or A, , isinjective
o "xT R", Ly(x)=La(%)0 x =x,.
o $r>0"xI R" r|x|£|L(x)|.D (r|x|£|Ax|£|A||x|)

Proof. “0 " A =A%, P A(X - %) =0.S0, 0=|A(X - %,)| 3 r|x - x,|. Thus,

% - %| =0.“0 " Because | x| =|L(x)| isanormon R", it is equivalent to |x].
° L(x)=0iff x=0.

Proof. “P ” Because A0=0,s0, AXx=0=A0P x=0.“U"” Ax =AX, b

A(x - %)=0P x- X =0.




°©  Ax=0hasonly thetrivia solution.
° "pb Ax =Dbhasat most one solution.

©  Thencolumnsof A are linearly independents. P n£ m |1: 1

P x| =|L(X) =|A isanormon R".
Proof. 1) |42 0. x=0P Ax=0.BecauselL isinjective, Ax=0p x=0.2)
|A(ax)] =[al] A - 3) [A(x+ Y)|£] A +| A

Def: L, or A, ,issurjectiveif "yl R™$x1 R" suchthat L,(x)=y.

° "pl R™theequation Ax = b always has a least one solution.

© Thencolumnsof Aspan R™ P n3 m.| onto

Def: L, or A, isbijectiveif it is both injective and surjective. (1:1 and onto).
° Aisinvertible.
°© Alissurjective® A isinjective.

Mean Value theorem

Def: Let (a,b) denote the line segment joining a and b.

MVTO: Mean Vaue theorem:
Letopen Wi R", f :W® R differentiable.

[ab]l Wb $cl (a,b) suchthat f(b)- f(a)=df ((b- a)=Nf(c)xb- a).

MVT1: Letopen WI R", f :W® R™ differentiable.

n

[ab]l WP $cl (ab) suchthat |f (b)- f(a)|£‘df(c)(b- a)

Proof. Let y= f(b)- f(a),fixed. If y=0, then done because |df (c)(b- a)|3 0. For
1

: y 3 _éfh fh, \u
1 0,consderh(x)=( f(x),=)=—a f.(x)y. .Then dh(c)=e—|(cC)---—I(C)(
y (3 < ()|y|> L R0y Then ch(o)= g (0) (e}
... Th 18 of 18 |
with —(x)=— — =— f (X SO
)= e () = yra v (g,
g fh g 18 | N
dh(c)(b- a) =8 o (c)(b- @), =& - v (g, (b- @),
i=1 TX; j=l|y| k=1



MVT2: Letopen WI R", f :W® R™ differentiable.
If [a,b]T W, x,T W, then |f (b)- f(a)- df (x,)(b - &)| £|b- a sup |df (c)- df (x,)-
cl ab

Proof. Let g(x) = f(x)- df (%)x:W® R™. Then, dg( ) =df
above, $ci (ab) |g(b)- g(a)|£]dg(c)(b- a)|. |g a( )|
[dg (c)(b- a)] =|(df (c)- df (x;))(b- a)| £]df (c)- df (x,)[p -
Elb- ajds(li!ct)))|df (c) - df (%)|-

(x)- df (%) . From
= f

() f(a).

MVT3: Let open Wi R", f :W® R™isCL x,1 W
"e>08%d, >0 suchthat " %" X, %, %1 By (Xx)P 1) x,%1 W, and2)
[ (%) (%) df (%) (%~ %) £efx,- x].

MVT3¢ Let open Wi R", f:W® R™isC. x,1 W
"e>0%$d, >0 suchthat " X" X, |X - %|£d,, k=12P 1) x,%1 W,and?2)
[F0¢)- f00)- df () (- %) £elx- x|

Proof. Given e>0. W open implies $d, >0 "d 0<d <d, P B, (xo)i W. By
continuity of df (x).Given e>0, $d, >0"cl B (%) |df (c)- df (x)|£e.

Choose d =min(d,,d,), then " x," X, X,%1 By(x) P 1) x,%1 Wand (x,x,)1 W
because 0 <d <d,, and open ball is convex, 2) because from above

(%) f(x)- df (%)(%- %) £ |%- x1|ds(,xue )|df (c)- df (x)|.and d <d, implies
that an upperbound of |df (c)- df (x,)| ise.

Mapping Theorems

The injective mapping theorem: Let open Wi R", f :W® R™isC', cl W. df (c) is
injectivep $d >0 suchthat f|, © ISinjective.

Proof. df (c) isinjective; thus, $r >0" xT R" r x|£|df )X|. Note that from triangle
inequality | (x,)- f(x)- df ()(%,- x| * [df (c)(x,- x)|-[f (x)- f(x)
3 )%, - x|-|f(x)- f(x). From MVT3, choose e :5 and x, =c. $d >0 such that

"5 %61 B(C)P - x| 3 [ () f (%)~ of (x)(x - x| whichis




-] [ () - 1 (6)]- S0, | ()~ T (x)|* Sl x| Thus, () = f(x) P

12|x2- x|=0. f(x),f(x) arewell defined because x,x,1 W.

$r>0 " %" % %, %1 B,(c)P [f(x)- f(x1)|3L2|x2- x|

e, - B (c) %23 (B (c)).

Thus, well defined inverse g =( |, )+ (B, (c) %% B, ).

0=(ly ) : (B(c) % ¥ B, (c) isuniformly continuous.
Proof. Let y,,y,1 f(B,(c)),then $x,% T B, (c) suchthat y, = f(x) and
V.= 1) (%= 0(y) adx =g(x.). |1 (x)- T (%) Spe- x| P

2
|9(%2)- g(W)[ £~y - vil.
P $d, >0 suchthat B, (c)I Wand " xI B, (c) df (x) isinjective.
Proof. df (c) isinjective; so, $r >0 r|y| £|df (c)y|. By continuity of df (x),

$d,>0 |x- c|<d, P |df (c)- df (x| %. Hence, |df (x)y]

* [ (c)yf- [of (c)y- df (x)y] * r|y|- |df (c) - df (]|} * r]yi- Sy

P $d, >0 such that
1) f|,  isinjective
2) "xI B, (c) df (x) isinjective.

-1

3 g :( f|Bd(C)) f (B, (c))%¥® B, (c) is unique, and uniformly continuous.

4 >0 %" %, %% 1 B(0)P [ ()~ F(x)]* S x|

Proof. Take d, =min(d,d,) >0.
df (c) issurjective. ( Ldf(c)(x) =df (c)x:R"® R™ is surjective)
° (Def) "yl R™$xI R" suchthat Ldf(c)(x) =df (c)x=y.
P $M df )M =1 ,ie, Lot (o) © L (x) = x. (identity mapping)

, n"m m m
m' n




Proof. Let e?,..., ™ be the canonical basisin R™, then " i1 {1,...,m} $u®)T R"

such that €") = df (c)u(i).AIso, "xT R™ x= é_ xe' . Define
i=1
L, (x)=a xu” :R"® R". Then, M = gj(l) u(m)g. And

i=1

Lurgey© Lur (%) = Ly (Lt (X)) = () Mx = dff (c )83 xu®© ém xdf (c)u?

i=1

= xe = x.

Qos

xdf (c)u(i) =

1 i

" QJOB

1l
=

Note also that |Mx| = ‘ a xul

| & el £ 68T =00

The surjective mapping theorem: Let open Wi R", f :W® R™isC', ¢l W. df (c) is
surjective
b $e,e,>0 suchthat B, (c)I Wand B_(f(c))1 f(B ().

P $a,b >0 suchthat "yl R"|y- f(c)|£;—b, $x1 R" |x- c|£a suchthat f(x)=y.

P $a,b >0 suchthat B, (f(c))1 f(B(c))-

2b

P $a,b >0 suchthat "yl R" |y- f(c)|<;—b,$xT R" |x- c|<a suchthat f(x)=y.

Proof. From MV T3¢ let e :%, X, = c. Takea =d . Because df (c) is

surjective, $M df (c)M = 1. Also, $b >0 |Mx|£ b|x|. Giveny, |y- f(c)|£2a—b,wi||

construct sequence X ® x, |x- c/£a and f(x)=y.Letxo=c.
Define




=XV m(f(c)- y).

For /31, X" =x - M(f(x[) f(x"*)- df (c)(xX - x’ 1))
Claim: kINl)‘ Xevlg 2 and2)| |£3?L-ik;°a<a
& 2%
1) _ ] a_a
|M y)|£b2b 5 - Al

RERIE S =
Assumetruefork =1, .., . Thenby 2), x,,x,.,1 B,(c), thus
[£(x)- £(x)- o (€)(x - x| - X Hence,

X" - x‘|:‘-M (f (x‘)- f(x*)- df (c)(x - x“)) £

bixf_ X(—l|
2b

la _a + / 0 a 10
Eo ~g A K <P 6 e el o
_ 16
_éai 24+1Ba
Thus, X1 B, (c). Also, ( (“)) is Cauchy. Assume k > ¢, then by 1)
gk 51 § a _a
X X =1a (% - %) £a|>q >ﬁ1|£a2.+1 & S =5 Also,by 2),
i=/( i=/

x- ¢|= Iim|x( "
n® ¥

c £L£@ry§i- ?Ea =a .
Claim: df (c:)(x/‘+l - x/') =y- f(x).

of (c)(x(l) - x(o)) =y- f(x). By induction,

df (c)(x“l- x‘) =- f(x")+ f (x“)+df (c )( ‘- x"'l)
:-f(x‘)+f(“)+y- f(x..)=y- f(x)

Thus, 0|y~ f (x)|=lim|y- f(x,) =lim|df ()(x"- x’)|£|df ¢)jo=0.

I® ¥

Proof. Take a ¢>a . Also, take b¢ large enough such that —¢<—.Then

n a A

" m|y, G e c @ n _ ¢

yl R™|y- f( 2b¢£ o (c)|£2b $x1 R" |x- c| £a <a¢ such that
f(x)=y.



Open mapping theorem Letopen Wi R". f :W® R™isC". " xT W df (x)issurjective,

Then, f is an open mapping. ( open Gl W, f(G) isopenin Rm)

Proof. Let bl f(G). Then, $cl G f (c) =b. Consider f onopen G. df (c) is surjective.
By the SMT, $e,.e, >0 suchthat B, ()1 G and B, (f(c))1 f(B, (c))T f(G).

Inversion (Mapping) Theorem: Letopen Wi R", f:W® R" isC*, ¢ W. df (c) is

n n

bijective, then $U open neighborhood of ¢ such that
1) V=1(U) isan open neighborhood of f(c).
2) f|,:U®V isbijective.

3 g=(f|,):veu isch

4) "yl v dg(y)=gdf (o (v))§ -

Proof 2): By injective mapping theorem, because df (c) isinjective, $U =B, (c)
suchthat f|, isinjectiveand " xT U df (x) isinjective (P bijectiveb surjective).
Also, unique g =(f|,) "V % ¥® U iscontinuous; V = f (U).
Proof 1): Because " x1 U df (x) is surjective, by open mapping theorem,
V=f(U) isopen. cT UP f(c)l V.
Proof 4): Let y,y,1 V. Then, $ unique x,x,T U, f(x)=y, g(y)=x, f(%)=Y,
9(¥) =% %1 U b gif (%) exists f isdifferentiable at xo, thus,

F(x)- £06)=0f (%)(x- %) +o(|x x]) & x® x,.
" gdf (%), and get

g ()H (v ¥o) =9(¥)- 9(¥ )+ &t (%) of % x|).
Claim: r (x) =0o(|x- x|) x® x,,then Ar(x)=0o(]y- y,|) as y® y,.
By continuity of g, a5 y® y,, wehave x® x,. Notethat |Ar (x)| £|A|r(x)|,

and by the IMT, |y - yo| =| f (%)~ T ()] ° 12|X x| Ths || _(X)I£|I‘A”r(X)|
y yO E|X XJ|
NN 1 AN 17 . L1
X®X0|X- X0| y®yo|y_ yo| x®>%L|X_ X0|




Proof 3): dg(y) = gdf (g (y))Hl is CL. By inversion theorem, g(y) is continuous. df is
continuous. So, df (g (y)) is continuous. Inverse is also continuous (already know
that determinant * 0).
fog(y)=x:V®V, gof (x)=y:U®U.
Inverse Function Theorem: Let f :(a,b)® R beC*, f ((a,b)) =(c,d); and suppose either
f¢x)>0or f§x)<0 on(ab). Then f *:(c,d)% 3@ (ab) isC*, and
(%) =% if y = ().

Implicit Function Theorem

Implicit Function Theorem: Let Wi R"" R™ open. F:W® R™ C*. (x,,Y,)T W,
F(%.%)=0, d,F( %, %) isinvertible, then
1) $W open neighborhood of X,, and a unique function f of cassC!, f :W® R",
f (%)= Yo, and " xT W F(x f(X)=0.
2) Also, $U open neighborhood of (x,, Y,) suchthat if (x,y)T U and F(x,y) =0 then
xI W and y=f(x).

3) Moreover, $r >0 |x- x|<r b df (x)=- (dyF(x f(x)))-ldxF(x,f (x))-

We want to corsider a system of m equations for m unknown functions y1, yo, ..., Ym
(each being afunction of n variables xi, ..., Xn.)

Notice that we are prejudging the outcome that the number of equations and unknowns
should be equal if there is to be any hope of having unique solutions.

Replace F be its best affine approximation at (xo, yo) :

F (x,y) = EGRST+ OF (%,36) (%) (%:%)
= dxF()%’yo)(X - )%)"'dyF(XmYO)(y‘ yo)
F(x,y)=0p

(d, F(%:¥0)) Y =[Ay = b(x)] = d,F (%, Yo) (X~ %)+, F (%, Yo) Yo
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Proof 1): by reducing the implicit function theorem to the inversion theorem.
é I " 0n’m l;]

H(xy)=(%F(x y)): W® R"" R isalso C. dH (xy)=8

-1 .
(dyF(xo,yO)) exists.
By inversion mapping theorem, have U , open neighborhood of (X, Ys),
V. ® U C.Ddinej,:V®R"

Hl, :

j ,:V® R", both C'by G(x,y)=

(1) Visan open neighborhood of H ( x,, Y,

U%%®BV , and G=(H| )

o)) dF (%.%) (d,F(%.%))

1

%
(

g ,(xy)o
(% Y)g

0

. Note that

Yo) = (%,0).

&
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_, 0, exists because

H

F(x,y) dyF(x,y)l,J'

H



()" (xy)T V HoG(xy)=(xy). But HoG(xy) = H

J(xy)
EFjl( (%Y

F(xj o(x )

() " (xy)T U GoH(xy)=(xy).But GoH ( g
%o,

))9 Hence, j ,(X,y) = x, and F(j (% y). z(X'Y)):y P

N
Q- o

® C‘)
(xF () +. Hence, j ,(x F(x,y)) =y Since (%, y,)T U, wehave

2

j 2(Xo F(x) yo)) i 2(%:0) =y
Let W ={xT R",(x,0)1 V} . Because V is an open neighborhood of (x,,0), Wisan open
neighborhood of Xo.
Let f(x)=j,(x0):W® R™ C. "xI W, wehave (x,0)T V; hence
F(x,j 2(x,O)) =0. So, F(x, f(x)) = F(x,j 2(x,O)) = 0. Also, from (I11), we have
f (%) =] .(%,0) =¥,
- Proof 2) If (x,y)T U, thenby (111), j ,(x F(x,y)) = y.If, inaddition F(x,y)=0, then
j»(x0)=y.Hence f(x)=y.
. Proof 3) Define K (x) =(x, f(x)):W® R"" R".C.By1) "xI W
FoK (x)=F(x f(X))=0.Hence, d(F o K)(x)=dF (K(X)dK(x)=0.

. F (K (%)) dyF(K(x))ggdf I(X)gzdxF(K(x))+dyF(K(x))df (x)=0.

- d,F(K(x%))=d,F(%,Y,) isinvertible. $e >0 ld, F(K(x))- F(K(x))|<eP
dyF(K(x)) invertible, FoK isC'pb d F( (x)) is continuous. $r >0
|x-x0|<rb|dFK x))- F(K(x))|<e

- Regarding df (x)= (d F(x f(x) )) FOuf (),
( )
L it
- if yl R, wehave x —(xy)= ‘HF( y).

Ty



Example: For motivation, with abuse of notation: Let F(X,y) = y*x +5x3y+ X %,y*

TF 2 Ty > Ty Ty _
= F(11)=7.Then, —(x,y(x)) = y* + X (2y) =+5x: =+ X ¥ + xX,3y —==0.
(11) ‘ﬂx1( y(x)) = y? +x( y)."xl Xzﬂxl LY xlzyzﬂxl
T oy Y2+ %y TF o a_
Hence, —=( x) = - .Notethat —(x,y)=y“+x,y° =0 and

E(x,y) = 2yx, + 5% + X %,3y°.
iy
If VI R" R™ isan open neighborhood of (x,, Y, ), then W:{xT R™, (X, yo)T V} isan
open neighborhood of Xo.
Proof. First, because (X,,Y,)T V,wehave x,T W.Let xi W.Then (x¢y,)T V.Vis
open; thus, $d >0 |(x,y) - (x¢y,)|<d P (xy)T V. Hence, |x- x¢<d b
(6. Y,) - (X6Y,)| = [x- x$<d P (x,y,)T VP xI W.
Implicit Function Theorem(2: Strichartz): Let F(x,y) beaC" function defined in a
neighborhood of x,T R" and y,T R™, taking valuesin R™, with F(,y,) =c. Then

if d, F( %, y) isinvertible,
1) there exists a neighborhood W of x, and aC* function f :W ® R™ such that
f (%))=Y, and F(x f(x))=c "xI W.
2) Furthermore, f is unique in that there exists a neighborhood f (W) of yo such that there is
only onesolution yd f (W) of F(x,y® =c, namely y¢= f(x).
3) Finadly, the differential of f can be computed by implicit differentiation as
df (x)=- (d, F(x f(x))) " d F(xf ().
Proof. Let G(X,y) =F(x.y)- F(%.¥,). Then, G( %, ) =0, and
d,G(%, o) =d, F( %, %) . Thus, if d, F( %, y) isinvertible, d,G(x,,Y,) isaso

invertible, and by the implicit function theorem, we have neighborhood W of xo and a
unique C* function f such that f (x,) =y,,and " xI W F(x, f(x))=F (%, ¥)-

| nver se Function Theorem (Strichartz): Let f bea C* function defined in a neighborhood of
cin R"taking vauesin R".If df (c) isinvertible, then there exists a neighborhood V of

f (c) andaC* function g:V ® R" such that

) f(g(y))=y "yl V.

2) Furthermore, g maps V one-to-one onto a neighborhood U of ¢ and g ( f (x)) =X
"xI U.




3) Thefunction g isuniquein that for any yin V, thereisonly one x¢in U with f (x =y
namely x¢=g(y).

4) Finaly, dg(y)=gdf (X)g " if f(x) =y.
Inverse function theorem is a special case of the implicit theorem.
GivenaC' functiong and dg(y,) isinvertible. Then, letF (x,y)=g(y)- x, and

X =0(Y,). Notethat F(%,¥,) =9(¥,)- % =0.d,F(%,y,)=dg(y,) invertible. Then
$W open neighborhood of X, = g(yo), and a unique function f = g* of classC?,

f:W® R™, f(%)=Yy,ad"xi W g(f(x))=x.Also, $U open neighborhood of
(%o, ¥o) suchthat if (x,y)T U and g(y)=x then xI W and y= f(x).Moreover, $r >0

[x- | <r b df (x)=-(dg( (%)) (-1)=(dg( (%))

Let f:R?*® R beaC! function. Then, the restriction of f to any open set of R? isnot
injective.



Summary

Letopen Wi R", f :W® R™isC*, cl W.
The injective mapping theorem:
df (c) isinjectivep $d >0 suchthat f|, ¢ isinjective.

1) f|B(C) isinjective
2) "xIB,(c) df (x) isinjective.

3 g :( fla )_1: f (B, (c)) %Y@ B, (c) isunique, and uniformly continuous.

4 $r>0 "x" % x50 By(0)P [1()- 1 (x)]* S x.

The surjective mapping theor em:
df (c) issurjective P $e,,e, >0 suchthat B, (c)I Wand B (f(c))1 f(B (c)).

Open mapping theorem
"x1 W df (x)issurjective. P f is an open mapping.

|nversion (Mapping) Theorem: Letopen Wi R", f :W® R" isC*, cT W. df (c) is

n n

bijective, then $U open neighborhood of ¢ such that
1) V=1(U) isan open neighborhood of f(c).
2) f|,:U®V isbijective.

3 g=(f|],):veuisc

4) "yl v dg(y)=gdf (a(v))§ -

Implicit Function Theorem: Let Wi R"” R™ open. F:W® R™ Ch. (x,,¥,)T W,
F(%. %) =0, d, F(x, ) isinvertible, then

1) $W open neighborhood of x,, and a unique function f of dlassC?*, f :W® R™,
f (%) =Yy and " xT W F(x f(¥))=0.

2) Also, $U open neighborhood of (x,, Y,) suchthat if (x,y)T U and F(x,y) =0 then
xT W and y= f(x).

3) Moreover, $r >0 |x- x|<r b df (x)=- (dyF(x f(x)))_ldxF(x,f (x)).




