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Review
Suppose A, A,,... isacountable collection of sets. The Cartesian product
A"~ A’ - isdefined to be the set of sequences (&, a,,...) whereeach a, belongsto
An.

The countable axiom of choice asserts that if the sets A, are all non-empty, then the
Cartesian product is also non-empty.

If a, b, and ¢ are non-negative real numbers, suchthat a£b +c, then

A ¢ b . (Converseisfase consderb=c=1,anda=3).
l1+a 1+b 1+c
dx_1>0a£b+c£b+c£b+c

dx1+x_(1+x)2 "1+a 1+b+c 1+b+c 1+b+c 1+b 1+c

If p and q are positive real numbers such that l+ L =1 (in particular, p>1 and

g>1),then
ab b :
ab E? +E for all nonnegative real numbers a and b.
Holder's inequality: " x,yl C", | XV, £||x||p||y||q.
k=1

Minkowski’sinequality: |x+y| £|x] +|y],, p® 1.

Euclidean Space and Metric Spaces
9.1 Structureson Euclidean Space

Convention:

Letters at the end of the alphabet X,y,z, etc., will be used to denote pointsin R",
S0 X =(%,%,,..., %, ) and x will aways refer to the k™ coordinate of .

Def: R" isthe set of ordered n-tuples X =(%,,%,,...,%,) of rea numbers.

TheVvector space axioms:

A set V with a vector addition and scalar multiplication is said to be a vector space
over the scalar field (R or C) provided

1. vector addition satisfies the commutative group axioms:
commutativity: X+y=y +X,
associativity: (X+y)+z=x+(y+2),

existence of zero: x+0=0" X, and



existence of additive inverses: X+ (- X) =0; and
2. scalar multiplication
isassociative: (ab)x =a(bx) and
distributes over addition in both ways: a(x +y) =ax +ay and
(a+b)x =ax +bx

Metric space (M,d)
Def: A metric space M is a set with area-valued distance function (or metric)
d(xy):M M ® R defined for X, yin M satisfying

1) positivity: d(x,y)2® O with equality if and only if x =y,
"xd(xx)=0.x* 0P d(x,y)>0.

2) symmetry: d(xy)=d(y,x),

3) triangleinequality: d(x,z) £d(x,y)+d(y,z).

X

d(x,2)
d(x.y)

Y d(y.2) z

There is no need to assume that the space has a vector space structure.

If (M,d) isametric space, then

M, 1 M P (M,d) isasoametric space.

d (3%, ) £d(x,%)+d(%,%)+-+d(X.1,%)

“Quadrilateral inequality”: |d(x,y)- d(u,v)|€ d(xu)+d(y.v)
d(xy)Ed(xu)+d(u,v)+d(y,v) O d(x,y)- d(u,v)Ed(xu)+d(y,v)
d(uv)£d(u,x)+d(x,y)+d(y,v)0 d(u,v)- d(x,y)Ed(xu)+d(y,\v)
[d(xy)- d(y.2) £d(x 2)

d(xy)£d(x,z)+d(y,z) O d(x,z)2d(xy)- d(y,2)
d(y,z) £d(y,x)+d(x2) U d(x,z)3 d(y,2)- d(xy)
[d(xy)- d(y.z)|£ d(x,2)£d(x,y)+d(y.2)




Example of metric.

Euclidean (Pythagor ean) distance between x and y: d(X,y) =,|a (xj - yj)2 .

j=1

R" with Pythagorean distance functions forms a metric space.

If (M,d) isametric space, then (M ,d,) where d, (X, y) __dlxy) isalsoa

1+d(x,y)
metric space.
For any non-empty set M. The discrete metric d(x,y) :12 ilz 5 (M,d) isa
]
metric space.
d(x,y):dN(f(x) f(y)). f:M¥%9® N.andd"isametricon N.
d(xy) =d"(£(x), £ (y))* 0. d(xy) =d(y.x).

Def: A NOrm on areal or complex vector space is afunction ||x|| defined for every x
in the vector space satisfying

1) positivity: |x]|2 O with equality if and only if x =0,

2) homogeneity: |lax|| =|a||X| for any scalar a,

3) triangleinequality: |x+ Y| £]] +[¥]-

A norm must be defined on a vector space in order for conditions 2 and 3 to make
sense.

I1- It £1%- 91
Proof. |x+ Y| £]X| +|Y||. Let x=2- y.Then |Z|- ||| £|z- ¥||. Switching
y and z, wehae |y|- |4 £]y- Z|=|z- ¥
The absolute value and the norm coincide for R*

Use single bars for thenormon R".
Examples of normson R"




1

. . ~ (25 p OP . L
(Minkowski) | p-norm: ||x||p =ca |xj| where p is a constant satisfying
=1

(%)

1£ p<¥.

Def: A Euclidean normon R" isafunction |X| =[], = /én, X defined for
j=1

every X in R".
Euclidean norm |%| isanorm b |X- y| is ametric.

n
%], =a [x]
j=1

Interpret the distance |X- Y], asthe shortest distance between x and y
along a broken line segment that moves paralld to the axes.

[4., = max{[x } =Ix], = im|,

Ex Let C([a,b]) denote the continuous functionson [a,b] .

Then, | f|, =sup|f (x)| isanormon C([a,b]), called the sub norm.

If ||X]| isanorm, then d(X,y) =|%- || (called the induced metric) is a metric.
The metric d(X,y) =|x- V]| is said to be the metric associated with (or induced
by) the norm.

If ||x| isany normon R", then there exists a positive constant M such that " xT R",

|X| £ M|X. One possible M is ’én |
j=1

Let f(x)=[X|:M ® R.fiscontinuousif d* isassociated to a norm (any normin
R') and one of these occurs

(1) d" (v.x) =[ly- x[.
(2 M1 R". d" isassociated to a norm (any norminRR").
proof. (1) | (y)- £ (<)|& M| (v)- (] =Ml - ]
EM]y- EMM,| y-

(b)
@ d*(f(y).f (X))EM,|y- X|£MM,]ly- X|[® where [ is anorm on
M1 R" withwhich d" isassociated.
(@) and (b): Any normon R" are equivalent.



f(x)=|q:MT R"® R iscontinuous when the metrics d" and d* are
Euclidean.

Def: An inner product on areal vector space is area-valued function (X, y)

defined for al X and y in the vector space satisfying

1) symmetry: (X,y)=(y,X),

2) bilinearity: (ax +by,z) = a(x,z)+b(y,z) and (x,ay+bz) =a(x,y)+b(x,z) for
all real numbers a, b,

3) positive definiteness: (X,X) 3 0with equality if and only if x =0.

Cauchy-Schwartz I nequality

On areal or complex inner product space, ([(X, V)| £ (%, X)/( ¥, ¥) |

with equality if and only if X and y are collinear.

If (,y) isan inner product, then | | =1/<X,X> is the associated or induced norm.

which implies |x- || is ametric.
Not every norm is associated to an inner product. (Among ||X[,, %], | X[, only

%] is)

An inner product defines a normvia ||%|| = ,/(X,X) , and a norm defines a metric via
d(xy)=[x- .

Ex On R" , the scalar product or dot product X xy = é_ X;y; isaninner product;
j=1

hence, x| = /én_ X' isanormand |X- Y| isametric.
j=1

On an inner product space,
the polarization identity (x,y)= %(”)‘( +y|°- % - y||2) holds. (||>‘<|| = ()‘()‘(>)

the associated norm satisfies the parallelogram law
[%+ I +[%- 9l = 2% +2] 9"

Geometrically, the parallelogram law canbe interpreted to say the sum of the
squares of the diagonals of a parallelogram equals the sum of the squares of
the sides.

If anorm |4 satisfies the parallelogram law |+ y|* + |- I = 2XI[ +2|y|".




then the polarization identity g (x,y) = (||x+y||2 - |x- y||2) defines an inner

NlipR

product.
The norm associated with this inner product f (x) =./g(x,x) isthe original norm

[4-

If anorm |} satisfies the parallelogram law ||+ y|" +[x- 9| = 2||x[" +2|y|’, theniit

isinduced by an inner product (x, y) :%(”x + y||2 - |x- y||2) :
C" istheset of n-tuples Z2=(z,2,,...,2,) of complex numbers.

Has complex dimension n since the basis vectors &%,...,&" of R" dsoforma

basisof C", z=z8" +...+ 78",
Regarded as areal vector space, C" has dimension 2n with
..... & jg". ... ig" forming abasis.

Def: A complex inner product on a complex vector space is a complex-vaued
function (X,y) defined for all X and y in the space satisfying

1) Hermitian symmetry: (x, y)=(y,x),

2) Hermitian linearity: (ax +by,z) =a(x,z)+b(y,z) and
(%,ay+bz) =a(x,y) +b(%,z),

3) positive definiteness: (X,X) isred and (X,X) 2 0with equality if and only if
X =0.

For C", the usual inner product is (z,W)=§ z,W, .
i=1

Let (% denotes an inner product on a (real or complex) vector space V and let |4 be
the corresponding norm. Then

(xy)=({xz2)"xI VP y=z

{>% is continuous

Pythagorusidentity: (x,y)=0p [x+y[" =[x +[y|’
Paralldlogram law: [x+ yif" +[x- y|" = 2|x|" + 2[}y[]
Polarization identity:

1
Real case: (x,y) = [p+ vl - [x- o).



Complex case: <Z’W>=%,(”Z+V\’“2' ||z vv||2+ i||z+iW||2 ) i||z- iv\4|2).
Cauchy-Schwarz inequality: [(x, y)| £ 4| Y]

9.2 Topology of Metric Spaces

(M,d) isametric space. M¢ M P (M ¢d) isalso ametric space.

Def: A subspace M ¢ of ametric space M is a subset of M with the same metric.
Use the word “ball” for the solid region, and “sphere” for the boundary.

Def: The open ball B, (y) inametric space M with center y and radius r is
Br(y):{xT M :d(x,y)<r}.

If Ul W, the open ball in U are the intersections of U with open ballsin Wwith
the same center and radius:

B’ (y)=UCB"(y).

If UT W and U isopeninW,then " yT U $r (small enough, depending on y)
suchthat B, (y), =B (y),-

An open ball B (y) also contains open balls B, . (x) centered at all its other
points x1 B" (y). P openball in M isan open setin M.

Def: A subset A of ametric space M issaid to be 0Open in M if
every point of A liesin an open ball (in M) entirely contained in A.
o "xI A $r,>0suchthat B"(x)I A.

°o "xI A$r,>0suchthat "yl M d(y,x)<rp yl A
o "xI A $r, >0 suchthat (M\A)CB"(x)=/.
0 A=A,
U M\Aiscosedin M.
Al M isnot openin M iff
$xT Asuchthat "r>0 B"(x)E A
o $xI Asuchthat "r>0 (M\A)CB" (x)* &
Let M be amatrix subspace of ametric space My. (M1 M,).

Then, for Al M

Alisopenin M if and only if there exists an open subset A; of M1 such that
A= AC M.

If M isopenin M1, then Aisopen in M if and only if Aisopenin M;.




Let M, beamatrix subspace of ametric space My, .(M ., 1 M, ).

Then, for A, 1 M.y,
A isopenin M, if and only if there exists an open subset A, of My,
suchthat A=A, C M-
If Mg isopenin My, ,then Aisopenin Mg, if and only if Aisopenin
M

big *

Al M .BisopeninMb BC A isopenin A.
Examples of open set in M

A, M.

(0,1) openin R. {0} (0,2) isnot openin R>.

Theorem: In any metric space,
anarbitrary union of open sets isopen.
afiniteintersection of open sets isopen.

Def: A neighborhood of a point is an open set containing the point.

Def: The interior of aset A isthe set of all points contained in open balls contained
inA.

,OA:{XT A;$r, >0 such that B (x)1 A}

Sequence: { X} 1 X, %,,...

Range of { x} isthe set of all points x, (n=1, 2, 3, ...). May be finite or
infinite).
The sequence is bounded if itsrange is bounded.

Convergence, limit of a sequence
Def: If x,X,,... isasequence of pointsin M, then the sequence has a limit x (in
M) (or the sequence converges (in M) to x), written x, ® x or LI@rTQXn =X,
provided that

» L $Nsuchtha " n3 N d(xn,x)£l.
m m

° limd(x, x) =0 inthe Euclidesnsense.

° every neighborhood of x contains all but a finite number of xp.

limx, =x U !1|®er(>9, x) =0 in the Euclideansense.

Definition of “convergent sequence”’ depends not only on { xn} but also on M.




Let x,xd M .If limx, = x and limx, = x¢, then x=x(.
Proof. " e take N large enough. Then " n3 N, both d(x,,x) and d(x,,x9
are E% So, d(x,x £d(x, x) +d(x, X} £e.

If {x} converges, then {x} isbounded..
Proof. Let limx, =x.Then $N "n? N d(x,x)£1. Let

r=max{L,d(x, %,d(%,x),...,d(x,,x)} . Then d(x,,x)£r foraln.
Def: If {x.} does not converge, it is diverge.

On C([a.h]),

convergence in the sup-norm metric & ( ) f (x)| E%g
isthe same as

uniform convergence ? %SSN "k N x| (X)- f(x)|£%g.

s, £, (9 ()£ 0 " x| (x)- {(]E=

If x, ® x inametric space andy is any other point in the space, then
limd(x,,y) =d(xy) in the Euclidean sense.

n® ¥

If x ® x and y. ® y inametric space, then Ii®er(>§1,yn):d(x,y) in the
Euclidean sense.

Use quadrilateral inequality: |d(x,y)- d(x,.y,)

(%%)+d(y.,).
R" and Euclidean metric.

A sequence x¥ x? in R" convergesto x if and only if the sequence of
coordinates xk x& ,... convergesto xcforevery k=1, ..., n

Proof. “ ":"e $N " n3 N

(%), - (¥) E\/él(xn)k- (y),] =Ix-v|€e.*U " e $N"ns N

- O£ e o= B o) - 0 2 2 =




Suppose { x,} and {y,} aresequencein R, {a,} isasequence of real
numbers, and |i®rrgxn =X, “@nQ Y, =Y, Ii®rr¥1<';1n =a. Then(a)

lim(x, +y,) =x+y, (b) lim(x,>y,) =%y, () lim(ax,) =ax.

n® ¥

Proof. Convergenceof {x} and {y,} implies convergence of all their

component. Consider the above operations for each component, then, from
what we know about sequencein R, we know that they converges for
each component. Because all component converges, this prove (a) and (c).
For (b), we know that finite addition of convergent sequences in R
converges.

Def: x isa limit point of a sequence { x,} if
every neighborhood of x contains x, for infinitely many n.

©  There exists a subsequence (xnk) suchthat x, ® x.

Limit point of a set
Def: x (I M) isalimit point of a set A W

if every neighborhood of x contains points of A not equal to x.
° "r>0 $yl B*(x) suchthat y?* x.

°  There exists asequence of point* x in A converging to x.
° Every neighborhood of x contains infinitely many points of A.

Proof. 1) “U ” for any neighborhood, has infinite point of A; so at least
one point isnot x. 2) “P ” Assume a neighborhood contain only finite
points 1 x of A. Then, there exists min distancer to x, insgde which no
points in A except may be x.

P There exists a sequence of point in A converging to X.
Proof. Pick sequence x, T By (x).

n

If $r >0 suchthat B (x) C A=/, then x isnot alimit point of A,

A finite set has no limit point.

Proof. Need every neighborhood of the limit point to contain infinitely many
points of the set.

If xT Misalimit point of aset A. Then, x T M isalimit point of aset B E A.
Proof $yT B*(x)1 B’(x) suchthat y* x.

Every point of an open set is alimit-point.

Def: A sstisclosedinM
if it contains all its limit points.




°Co O

A=A

M\ Aisopenin M.

Whenever the terms of a convergent sequence arein A, the limit must aso bein
A

Example of closed sets

A set with no limit points such as the empty set, or afinite set, is automatically
closed.

Closed ball in M with center y T M and radiusr, Az{xT M :d(x,y) £r}.

Proof. Let x be alimit point of A. Then, there exists a sequence (xn):zli A
converging to x. Because " nd(x,,y)£r, d(x,y) = Ii®rQHd(>g,y) £r.

Sphere in M with center y T M and radiusr, A:{XT M :d(x,y) :r}
Proof. " nd(%,y)=r.Thus, d(xy) :LEJQHd(wa) =r.

Def: The closur e of a set consists of the set together with al its limit points.
A= AE {limit points of A} .

The closure is aways a closed set.

x isalimit point of closureof AP xisalimit point of A.

A setisclosed if and only if it equals its closure.
Def: If Al B, Aisdensein B (A is a dense subset of B) if

(0]

the closure of A contains B. (Ai Bl closure( A)) .

Every point in Bis either apoint of A or alimit-point of A.

In ametric space, a set is closed if and only if its complement is open.

Finite unions and arbitrary inter sections of closed sets are closed.

Cauchy sequence

Def: {x} isaCauchy sequenceif " 1 $N suchthat " j,k3 N, d(Xi’Xk)£i'
m m

A convergent sequence is aways a Cauchy sequence
(d(xi ,xk)ﬁd(x,x() + d(x,xk)) :

The converse is not true for the general metric space.

Ex. rational numbers

Let { xn} be a Cauchy sequence. If there exists a subsequence converging to X,
then the whole sequence converges to x. (Consider sequence x;,X, %, X....)
On C([a,b]) , the Cauchy criterion for a sequence { fn} in the sup-norm metric is
identical to the uniform Cauchy criterion




gesupX f.(x)- fk(x)|£%0 x|, (x)- fk(x)|£—;.

complete
Def: A metric space is complete

if every Cauchy sequence has a limit.

if every Cauchy sequence is convergent.

Ex. R", C([a,b]) with the sup-norm metric

b
Ex not complete: C([a,b]) withthe L* metric: d(f,g) = )f (x)- g(x)fox.

(consider a sequence of continuous functions converging Pointwise to a
discontinuous function.)

Ex. M not complete: (R,d), d(x,y) =|f (x) - f(y)|,where

f (x) =arctan(x),e", or 1 with (RW{O} ,d) or some other one-to-one
X

function whose tail converges to some value but never reach that value.

Take {xn} ({n} or {-n}) to be a sequence going along the tail direction.
Then, lim f (x,) = a. Sequence {xn} is Cauchy because

d(%,%,) =[f (%) - £ (x,)]=]F(x)- a+a- f(x,)
E|f(x)-d+p- (%)
and |f (x,)- &, |a- f(x,)| canbemade<any e by takingn, mbig
enough.
Assume $x,T M suchthat n% % x,. Thismeans d(n,x,) %% %% 0.
So, limd(n,x%,) =lim| f (n)- f (%,)| =0. Now, we know that the

n® ¥ n® ¥

sequence X, = f(n) ® ain Euclidean (d, (x,y) =|x- y|). So, have
limd, (x,, f (%)) =d,(a (%)) =0. Contradiction because there is no

n® ¥
%, 1 M such that f(xo) = a (the limit of the tail) by construction of
function.

A subspace A of a complete metric space M is itself complete if and only if itisa
closed setin M.

In afinite-dimensional vector space, every metric associated to anorm is
complete. (no proof).

Closed vs. Complete




A metric space M is dways closed M. A metric space M may or may not
complete.

A st A is complete iff every Cauchy sequence hasalimitin A.

A set A isclosed in M iff Cauchy sequence (x,)’_ in Ahaslimitin M P (x,)

has limit in A.

Ex. M =(0,2], A=(0,4]. Thepoint0 T A isalimitpointof Ain R, thusA is
not closed in R . However, 0T M ; thus, 0 isnot alimit point (in M) of A. In
fact, (0,1] isclosedin (0,2].

A subspace A of a complete metric space M is itself complete if and only if itisa

closed setin M.

Def: The completion M of M isthe set of equivalence classes of Cauchy sequences
of pointsin M.

¥
n=1

Weregard M as astbset of M by identifying the point x in M with the equivalent
class of the sequence (X,X,...).

We can make M into ametric space by defining the distance between the equivalent
classof (x,%,,...) and the equivalence classof (y;, Y,.,...) tobe Ii&d(&,yn):o.

This definition requires that we verify
1) thelimit exists

2) thelimit isindependent of the choice of sequences from the equivalence classes,
and

3) the distance so defined satisfies the axioms for a metric.
Def: A complete normed vector space is called a Banach space.
Def: A complete inner product space is called a Hilbert space.

Def: If Aisasubset of M, wesay 3, acollection of subsets Bof M, isacovering if A
it Al | JB andan open covering if all the sets B are open setsin M.

B
A subcovering means a subcollection B¢of B
Boundedness:

$x1 A $R>0 finitesuchthat "yT A, d(xy)<R.
$x1 A $R>0 finitesuch that B;(x) = A.

Theinf of such R defines the radius of the space with respect to x.
the radius is finite with respect to every point in the space (£ 2R).

Let D =supd(x,y) bethe diameter of the space.
X,y

The diameter is finite iff the radiusis finite.
For any given x, let R be aradius with respect to x. Then



RE£DE2R.
Heine-Borel property: every open covering has afinite subcovering

If Alisasubspace of M, the the Heine-Borel property for A as a subspace of M
(open meaning open in M) is equivaent to the Heine-Borel property for Aasa
subspace of A.

compact

A is compact (A isacompact subset of a metric space)
(Def) if every sequence a,,a,,...of pointsin A hasalimit point in A.

° every sequence a,,a,,...0f pointsin A has a subsequence that converges to a
pointin A.

© (Heine-Boré€l) A has the Heine-Borel property:
every open covering has a finite subcovering

If Alisasubspace of M, then the Heine-Borel property for A as a subspace
of M (open meaning open in A) is equivalent to the Heine-Borel property
for A as a subspace of A.

° Aisbounded, complete, and " 1 there exists afinite subset x,,...,x, such
m

that every point in A is within distance 1 of one of them.
m

It isthe same thing to say A isacompact subset of M or A is acompact subset of
N if N isany subspace of M containing A.

Def: A metric space M is compact
if M is acompact subset of itself
° if all sequences of pointsin M have limit pointsin M.

A isacompact subset of M if and only if A as a subspace is a compact metric
space.

A is acompact metric space b
A is complete (converse not true. Ex. R)
A has a countable dense subset
A is bounded.

1 there exists a finite set of points x,...,X, such that every point is within
m

B, (x,) covers the space.

.o 1
m

distance — of one of them b B, (%),
m L

m

A subspace of R" is compact if and only if it is closed (complete) and bounded.
Thisis not true of general metric space.
X compact. Al X1 M .Adosedin M. b A iscompact.




(Closed subsets of compact sets are compact.)

Proof. Sequence { x,} in A issequencein X . By compactness of X, {x} has
limit point in X, whichisaso alimit point (in M) of A. A is closed; thus, the
limit pointisin A.

X compact. X1 M.b Xisclosedin M.

(Compact subsets of metric spaces are closed.)
Proof. Letx T M bealimit point of X. Then, $ sequencein X {x,} ® x. So,x
isalimit point of a sequencein
By compactness of X, x isin X.

C([a,b]) with sub-norm metric d(f ,g) =sup| f (x)- g(x)

complete
Let f,, f,,... beasequence of continuous function converging Pointwiseto a
discontinuous function. Let A betheset { f,, f,,..} . Then, A is bounded, closed

(no limit point), and not compact ( f,, f,,... isasegquence from A with no
convergent subsequent.)

Def: A sequence of function { f,} onadomain D is said to be uniformly bounded if
$M suchthat | f, (x)|£M foral kandall xinD.

Def: A sequence of function { f,} onadomain D is said to be uniformly

equicontinuous if " 1 $1 such that |x - y] <lp- k|f(x)- f(y)-
m n n

Arzela-Ascoli theorem: A sequence of uniformly bounded and uniformly
equicontinuous functions on a compact interval has a uniformly convergent

subsequent.

Equivalent metrics
Def: two metrics d; and d on the same set M is equivalent

if $c,c, >0 suchthat " x, yT M, d,(x,y) £cd,(x,y) and
d,(x,y) £cd,(x )
° $a,b >0 suchthat ad,(x,y)£d(xy)Ebd,(xy).
If d; and d; are equivalent,
X, ® X indi-metriciff x, ® Xx in da-metric.
then they have the same open sets.
Any metrics associated with anormon R" are equivalent.
Continuous Functionson Metric Spaces

f:M®N.Al M. f(AI BPAI f*(B)



f:M®N.AI f4B) 1 M®Pb

implicitly implies
Def:

f:M ® N meansf isafunction whose domain is M and whose range is N,
where both M and N are metric spaces.

Theimage|f (M) ={yT N:$1 M suchthatf(x)=y}/1 N.
f (M) =N iff f isonto.
£1(B)={xI M:f ()T B =f*(BCf(M))|i M.
fH(f(M))=M
f*(AEB)=f*(AJEf *(B)
f*(ACB)=f"*(A)Cf*(B)
f(AEB)=f(A)E f (B)
The statement f (AC B) = f (A) C f (B) isfase. Consider A={1,3,
B={2,3,and f()=f(3)=a f(2)=b.
f:M® N
f*(N)=M
f(f*(N))=f(M)T N
If AEB=N then M= f*(N)=f *(AEB)=f *(A)Ef *(B).

Continuous

Let M and N be metric spaces, f : M ® N afunction.

The following three conditions are equivalent (and a function satisfying them is called
continuous.)

1) " 1 and Xo in M, $1 such that d" (x,xO)Elp dN(f(X)'f(Xo))El'
m n n m

o L adxoinM. $2 suchthat xI B (%) P xT B (%).
m n n m

o L adxoinM, $2 suchthat f GBY (x)21 Bl (x,).
m n e n g m

2) If X,X,,... isany convergent sequencein M, then f (x,), f(x,).... isconvergent
inN.

b limf (x,)=f (limx,].

n® ¥ ne¥




3) IfBisany opensetinN,then f*(B) isopenin M.

Note: When M1 R andM isopenin R,
f*(B) isopeninMU f *(B) isopenin R.
BopeninN U Bopenin R.

In stead of N, we can use any set N¢ containing f (M):

It isimmaterial whether we take the range N as given, or reduce it to
f (M ) , or enlarge it to some space containing N, as long as we keep the
same metric on the image.
Bopenin N¢p BG f (M) openin f(M).
f1(B)={xI M:f (x)T B} =f*(BGf(M)).
f:M® N iscontinuousk lim f (x,)=f (LI@I’Q xn)

Example of continuous function

Consider (M,d) and (R, [¥). LetxoT M, then f(x)=d(x%):M ® R is
continuous.

z. Then any function f: (M,d)® (N,dN) is continuous.

Setd <1 then d(x%)£d P d(x,%)<1P d(xx%)=0P x=Xx.So,
d"(f(x). f(x))=a"(f (x).f (x))=0£e
Thisincludes (M,d)® (R,[f), (R,d)® (R,]4).

f(x) :i(l) if: is not continuous from (R,[¥) ® (R,[§) nor (M,[$)® (R,d).

Coordinate projection maps. f :(R“,|>|<) ® (R,[§. f(x)= thek” coponent of x.
Let a =(a,,...,a,) denoten-tuple of non-negative integers (each a, can equal 0,
2,..) andlet X =x1x¢z 3. Then, p(x) =g ¢, X , werethe sumis finite
and c, areconstants, is the general polynomialson R". Let |a| :ér: a, =|al,
i=1

Wecal x¥* amonomial of order or degree |a|,and we call the or der of the

polynomial the order of the highest monomial appearing in it with non zero
coefficient.




_j9(x), xisrationa
_"fh(x), otherwise
continuous from R ® R . Then, f(x) is continuous a x,1 R if and only if
9(%) =h(x).

“U": g(x%)=h(x) =a Then, by the continuity of g(x) and h(x), given e,

Let f:D® R where DI R. f(x) . g(x) and h(x) are

can find d > 0 such that |x - x;| <d impliesboth |g(x)- a|<% and

|h(x) - a| <%. Now, given x, |f (x)- f(xo)| can be one of the four

posstities: [g(x) - (%) (3 ()| a()- h()] e
In(x) - g(x,)|, depending on the rationality of x and xo. Whatever the form of
£ (x)- f(x) is they aredl <eif wekeep |x- x| <d.

“p ": Assumeg(x,) > h(x). Then, let e :M>O. Then, for d

small enough, by the continuity of g(x) and h(x), |x - x| <d implies that

9(x)- h(x)>e :M_
Continuous functions are closed under

restriction to a subspace

composition

addition (when therangeis R") and

multiplication (when the range of oneis R and the other R").

If f,:(M,d)® (R,§) fork=1,...,nand

F(x)= (£(x), fu ()2 (M. d) @ (R™.]H),

thef is continuous if and only if all f, :M ® R are continuous.
Example of not continuous function

i 2xy
T , (xy)r(0,0
f(xy)= P+ y2 (xy)* (00) is not continuous at the origin, but is

{0 (xy)=(0.0)
continuous in x for each fixed y and continuous in y for each fixed x.
Def. f:(R"[{)® (R,|¥ isseparately continuous if  k and every fixed value of
al x; with j* k, thefunction g(x,)=f(x,....x,): (R.J¥)® (R4 iscontinuous.

Continuity implies separate continuity.




f:(R"|Y ® (R,[§) continuousb g (%)= f(x....x): (R @ (R}

continuous.

Def: f:M ® N issad to be uniformly continuous if " i $1 such that
m n

"yl M, d(x,y)£%b d(f()@,f(y))£%.

Continuous function and compact set.

Let M be compact. Then f: M ® N continuous impliesit is uniformly
continuous.

So, M compact, then f : M ® N uniformly continuous iff continuous.
If Miscompactand f :M ® R iscontinuous, then sup f (x) and inf f(x) are

finite and there are pointsin M where f attains these values.
The image of a compact set under a continuous function is compact.

Connected space
M is connected

(Def) if there do not exist disjoint nonempty open (in M) sets A and B with
M =AEB.

A=B =M /Bt A M open and closed (clopen).
B=A=M/A! A M open and closed (clopen).
The pair A and Bis called a disconnection of M.

° the only sets both open and closed (clopen) in M are the empty set and M.

If M is not connected, then the A and B from the definition of M are two
sets that are both open and closed and not equal to £ M .
(being of one piece; impossibility of splitting the space up into pieces.)
Not arelative property for metric spaces.
M is disconnected if and only if there exists a continuous map from M onto {0,1}.
Example of connected spaces
R
A subspace of R isconnected if and only if it isan interval.
Example of disconnected spaces.
A discrete space containing two or more points
| isaninterval iff "a,bl | ,a<b, "cl R, a<c<bpb cl I.
If cisnotin I,then 1 =(1 G (- ¥,c))E (1 G(c,¥)); not connected.

openinl openinl
containa containb
digoint




Curve (or arc, path)
Def: acurve in M is a continuous function from an interval (in R ) to M.
(f:1® M)

Think of f (1) asbeing traced out by f(t) ast variesin|, interpreted as atime
variable. Thus, the curveis a“trgectory of amoving particle” in M.

When M isasubspace of R", the curve has the form
f(t)=(f,(t),f,(t),.... f,(t)) wherefi(t) are continuous numerical functions,
giving the coordinates of the trajectory at each time .

The graph of a continuous function g:1 ® R isacurve (M :{(x, g(x)); x1 I})
inthe plane given by f (t) = (t, g(t)) fortinl.

Arcwise (path wise) connected

A space M is arcwise connected
(def) if there exists a curve connecting any two points.

(defy if " x,yI M, there exists a curve (continuous function) f :[a,b]® M
with f(a)=x, f(b)=y

° if "xyl M, thereexists acurve (continuous function) g:[a¢h§® M with
g(ag=x, g(bf=y.

_ ., b-
Let h(t)—a+a¢_

§¢(t- a®): [a¢bd %:9:% [a,b].

Letg(t) = f (h (t )) : continuous because f and h are continuous.

g(b9 = f(h(b9)=f (b)=y.
being able to join any two points by a continuous curve.

Let X be ametric space and let x,,x,,X, 1 X. Suppose that there is a curve

connecting Xo and X; and another curve connecting x; and x». Then, thereisa
curve connecting Xo and Xa.

$ continuous f 1[0, ® X, f(0)=x, f(1)=x.

$ continuous g:[1,2]® X, g(1)=x, g(2) =x,.
P f(t), 0£t<1

Let h:[0,2® X, h(t)={x, t=1 .Weneedtoshow thathis
%g(t), 1<t£2

continuous.

Because f and g are continuous, " t * 1, we know that h(t) iscontinuous. At t

=1, because f and g are continuous, " e, we know that $d,




th (- d, P |f(t)- f(1)|<e and$d, tT [L1+d,)P |g(t)- g(1)|<e.
Now, choose 0<d <d,,d,. Then for al tT (1-d,1+d),

tT (1-d, 21 (1-d,1] P |n(t)- h(D)| =] (t)- x| <e,

t=1pP |h(t)- h()|=0<e,

th [L1+d)1 [11+d,) P |h(t)- h(Y|=|a(t)- x|<e,
So, " e $d suchthat tT (1-d.1+d) b |h(t)- h(1)| <e. Therefore, h(t) is

also continuous at t = 1.
If M is arcwise connected, and g:M ® R isany continuous real- valued function,
then g has the intermediate value property.

Arcwise connected implies connected.

Let f:M ® N be continuous and onto (surjective) (f(l\/l): N).

If M is connected, then so is N.

N not connectedb N= A E B
openinN  openinN
nonempty  nonempty

disioint

$al Nal A.Byonto, $xI M f(x)=a.Thus, f*(A)? A&. Similarly,
f*(B): £.Also, (A Cf*(B)=f"*(ACB)=f"(&=4.By
continuity of f, f *(A) and f*(B) are open. Thus,
M= f*(N)=f*(AEB)=f *(A)Ef *(B), not connected.

open inM openinM

nonempty nonempty
digoint

If M is arcwise connected, then so is N.

Fixed points: f (x) =x.

Contractive mapping
Consider afunction whose domain and range are of the same metric space. which

we assume is compl ete.

Def: Let (M,d) be ametric space. f : M ® M isacontractive mapping if $r<1
such that " x, yl M d(f(x),f (y))Erd(x,y).

P continuity (Lipschitz condition with constant < 1)

f(1im £ (x)) = lim £7(x)

Not work when having d( f (%), f (y)) £ d(x,y) or even
d( f(x),f(y)) <d(x,y).




Themep f:M ® M isacontraction.
P shrinking map.
Def: f"=fofo--of

%/—/
n times

Contractive mapping principle: Let M be acomplete metric spaceand f :M ® M
a contractive mapping. Then,

there exists a unique fixed point x,, and x, = lim f*(x) " xT M, with

d()g, f “(x)) £ cr" for aconstant ¢ depending on x.

Compact M with contractive mapping will work also because compact b
complete.

d(f”+1(x), f”(x))ﬁrd(f"(x),f“‘l(x))£---£r"d(f(x),x)

m>n:d(fm(x),f”(x))£§fjai‘nrkgd(f(x),x)
£afa:_nrkgd f(x),x)z rnrd(f(x) x)

f :[a,b] ® [ab] iscontinuous on [a,b], differentiable on (a,b), and has
|fqx)|£a <1 foral a<x <b. Then, f has a unique fixed point.

By the mean value theorem, " x,y $x, F)- fy) f¢x,) . So,

X-y

200
Let f:X %%%® X, g=1":X® X.Thenxo isaunique fixed pointof gU x¢isa
unique fixed point of f.

Proof. “P " xo isafixed pointof gb g(x,) =% P X% = f(%) P xoisafixed

point of f. Let x; be any fixed points of f, then f (x,) = x,, which implies

9(x%) = x.. By the uniqueness of the fixed point of g, we have x; = Xo.
Let (X,d) be a complete metric space and f:X® X be surjective. Assume that there
existsc>1suchthat d( f(X),f(y))2 cd(x,y) "%yl X.Then, 1) f isinjective and
2) has aunique fix point.




Proof 1): Consider any x* y. So, d(x,y)>0.p d(f(x),f(y)) 3 cd(x,y) >0.

P f(x)t f(y).

Proof 2) Define g = f*': X ® X . gisacontractive mapping. Consider any X, .
1

Let g(x)=aand g(y)=b.Then, d(g(x),g(y)) =d(ab) EEd(f(a),f (b))

:Ed(x,y) Notethat 0<Z<1. So, there exists a unique fixed point X, ;
c c

g (xo) =X, . Hence, Xo is a unique fixed point of f.

Def: Let (M,d) beametric space. Amap f :M ® M isashrinking map if

"xyl M ifxty, d(f(x),f(y))<d(x,y)

Thefunction g(x)=d(f(x),x):(M,d)® (R,]4) is continuous.
Using the quadrilateral inequality, |g(x) - g(y)|:|d(f(x),x)- d( f(y),y)|
is £d(x,y)+d( f(X,f(y)). From def, thisis £ 2d (x,y) . (Lipschitz).

If f isashrinking map and M is compact, then f has a unique fixed point.

Because g(x)=d( f(x),x) iscontinuousand M is compact, $x,1 M such that
g(x) =inf g(x). Thisxo is the fixed point (d(f(xo),xo):o). If not, then

g(f (%)) =d(f(f (%)) f(%))<d(f(%).%)=9(x). contradiction because
minimum of g is attained a xo, g( f (%)) can't belower than g(x,).

Uniqueness: If x5 * x are both fixed points, then
d(x%)=d( (%), f(%))<d(x,%,).

Brouwer fixed point theorem: there is always afixed point (not necessarily unique) if
Misaclosed bal in R".

There does not have to be a fixed point if M is an open ball.



