Review

Suppose A₁, A₂,... is a countable collection of sets. The Cartesian product
 A₁ × A₂ ×··· is defined to be the set of sequences (a₁, a₂,...) where each a_n belongs to
 A_n.

The <u>countable axiom of choice</u> asserts that if the sets A_n are all non-empty, then the Cartesian product is also non-empty.

• If a, b, and c are non-negative real numbers, such that $a \le b + c$, then $\frac{a}{1+a} \le \frac{b}{1+b} + \frac{c}{1+c}$. (Converse is false, consider b = c = 1, and a = 3). $\frac{d}{dx} \frac{x}{1+x} = \frac{1}{(1+x)^2} > 0$. $\frac{a}{1+a} \le \frac{b+c}{1+b+c} \le \frac{b}{1+b+c} + \frac{c}{1+b+c} \le \frac{b}{1+b} + \frac{c}{1+c}$.

• If p and q are positive real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$ (in particular, p > 1 and

q > 1), then

• $ab \le \frac{a^p}{p} + \frac{b^q}{q}$ for all nonnegative real numbers *a* and *b*.

• Hölder's inequality:
$$\forall x, y \in \mathbb{C}^n$$
, $\left| \sum_{k=1}^n x_k y_k \right| \le \|x\|_p \|y\|_q$.

• Minkowski's inequality: $||x + y||_p \le ||x||_p + ||y||_p$, $p \ge 1$.

Euclidean Space and Metric Spaces

9.1 Structures on Euclidean Space

- Convention:
 - Letters at the end of the alphabet $\bar{x}, \bar{y}, \bar{z}$, etc., will be used to denote points in \mathbb{R}^n , so $\bar{x} = (x_1, x_2, ..., x_n)$ and x_k will always refer to the k^{th} coordinate of \bar{x} .
- Def: \mathbb{R}^n is the set of ordered *n*-tuples $\vec{x} = (x_1, x_2, ..., x_n)$ of real numbers.
- The **vector space** axioms:

A set *V* with a vector addition and scalar multiplication is said to be a vector space over the scalar field (\mathbb{R} or \mathbb{C}) provided

- 1. vector addition satisfies the commutative group axioms:
 - commutativity: $\vec{x} + \vec{y} = \vec{y} + \vec{x}$,
 - associativity: $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$,
 - existence of zero: $\vec{x} + \vec{0} = \vec{0} \forall \vec{x}$, and

- existence of additive inverses: $\vec{x} + (-\vec{x}) = \vec{0}$; and
- 2. scalar multiplication
 - is associative: $(ab)\vec{x} = a(b\vec{x})$ and
 - distributes over addition in both ways: $a(\vec{x} + \vec{y}) = a\vec{x} + a\vec{y}$ and $(a+b)\vec{x} = a\vec{x} + b\vec{x}$

• Metric space (*M*,*d*)

Def: A metric space *M* is a set with a real-valued **distance function** (or **metric**) $d(x, y): M \times M \to \mathbb{R}$ defined for *x*, *y* in *M* satisfying

1) positivity: $d(x, y) \ge 0$ with equality if and only if x = y,

•
$$\forall x d(x,x) = 0. x \neq 0 \Rightarrow d(x,y) > 0.$$

- 2) symmetry: d(x, y) = d(y, x),
- 3) triangle inequality: $d(x,z) \le d(x,y) + d(y,z)$.

- There is no need to assume that the space has a vector space structure.
- If (M,d) is a metric space, then

 $M_1 \subset M \Rightarrow (M_1, d)$ is also a metric space.

•
$$d(x_1, x_n) \leq d(x_1, x_2) + d(x_2, x_3) + \dots + d(x_{n-1}, x_n)$$

• "Quadrilateral inequality": $|d(x, y) - d(u, v)| \le d(x, u) + d(y, v)$

$$d(x, y) \leq d(x, u) + d(u, v) + d(y, v) \Leftrightarrow d(x, y) - d(u, v) \leq d(x, u) + d(y, v)$$

$$d(u, v) \leq d(u, x) + d(x, y) + d(y, v) \Leftrightarrow d(u, v) - d(x, y) \leq d(x, u) + d(y, v)$$

•
$$|d(x,y)-d(y,z)| \le d(x,z)$$

 $d(x,y) \le d(x,z) + d(y,z) \Leftrightarrow d(x,z) \ge d(x,y) - d(y,z)$
 $d(y,z) \le d(y,x) + d(x,z) \Leftrightarrow d(x,z) \ge d(y,z) - d(x,y)$

• $\left| d(x,y) - d(y,z) \right| \le d(x,z) \le d(x,y) + d(y,z)$

- Example of metric.
 - Euclidean (Pythagorean) distance between \vec{x} and \vec{y} : $d(\vec{x}, \vec{y}) = \sqrt{\sum_{j=1}^{n} (x_j y_j)^2}$.
 - \mathbb{R}^n with Pythagorean distance functions forms a metric space.
 - If (M,d) is a metric space, then (M,d_1) where $d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$ is also a metric space.
 - For any non-empty set *M*. The discrete metric $d(x, y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$. (*M*,*d*) is a metric space.
 - $d(x, y) = d^N (f(x), f(y))$. $f: M \xrightarrow{1:1} N$. and d^N is a metric on N. $d(x, y) = d^N (f(x), f(y)) \ge 0$. d(x, y) = d(y, x). $d(x, x) = d^N (f(x), f(x)) = 0$ $d(x, y) = 0 \Leftrightarrow d^N (f(x), f(y)) = 0 \Leftrightarrow f(x) = f(y) \Leftrightarrow x = y$ $d(x, z) = d^N (f(x), f(z)) \le d^N (f(x), f(y)) + d^N (f(y), f(z))$. = d(x, y) + d(y, z)

•
$$d(x, y) = |f(x) - f(y)|$$
, where f is one-to-one: $M \to \mathbb{R}$.

- Def: A <u>norm</u> on a real or complex vector space is a function $\|\vec{x}\|$ defined for every \vec{x} in the vector space satisfying
 - 1) positivity: $\|\vec{x}\| \ge 0$ with equality if and only if $\vec{x} = 0$,
 - 2) homogeneity: $\|a\vec{x}\| = |a| \|\vec{x}\|$ for any scalar *a*,
 - 3) triangle inequality: $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$.
 - A norm must be defined on a vector space in order for conditions 2 and 3 to make sense.
 - $\left\| \vec{x} \right\| \left\| \vec{y} \right\| \le \left\| \vec{x} \vec{y} \right\|.$

Proof. $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$. Let $\vec{x} = \vec{z} - \vec{y}$. Then $\|\vec{z}\| - \|\vec{y}\| \le \|\vec{z} - \vec{y}\|$. Switching \vec{y} and \vec{z} , we have $\|\vec{y}\| - \|\vec{z}\| \le \|\vec{y} - \vec{z}\| = \|\vec{z} - \vec{y}\|$.

- The absolute value and the norm coincide for \mathbb{R}^1
- Use single bars for the norm on \mathbb{R}^n .
- Examples of norms on \mathbb{R}^n

• (Minkowski) p-norm: $\|\vec{x}\|_p = \left(\sum_{j=1}^n |x_j|^p\right)^{\frac{1}{p}}$ where p is a constant satisfying $1 \le p < \infty$.

• Def: A <u>Euclidean norm</u> on \mathbb{R}^n is a function $|\vec{x}| = ||\vec{x}||_2 = \sqrt{\sum_{j=1}^n x_j^2}$ defined for every \vec{x} in \mathbb{R}^n .

• Euclidean norm $|\vec{x}|$ is a norm $\Rightarrow |\vec{x} - \vec{y}|$ is a metric.

- $\left\|\vec{x}\right\|_1 = \sum_{j=1}^n \left|x_j\right|$
 - Interpret the distance $\|\vec{x} \vec{y}\|_1$ as the shortest distance between \vec{x} and \vec{y} along a broken line segment that moves parallel to the axes.
- $\|\vec{x}\|_{\sup} = \max_{j} \{ |x_j| \} = \|\vec{x}\|_{\infty} = \lim_{p \to \infty} \|\vec{x}\|_p$

• Ex Let C([a,b]) denote the continuous functions on [a,b].

Then, $||f||_{sup} = \sup |f(x)|$ is a norm on C([a,b]), called the sub norm.

- If $\|\vec{x}\|$ is a norm, then $d(\vec{x}, \vec{y}) = \|\vec{x} \vec{y}\|$ (called the induced metric) is a metric.
 - The metric $d(\vec{x}, \vec{y}) = \|\vec{x} \vec{y}\|$ is said to be the metric associated with (or induced by) the norm.
- If ||x|| is any norm on \mathbb{R}^n , then there exists a positive constant *M* such that $\forall x \in \mathbb{R}^n$,

 $||x|| \le M |x|$. One possible *M* is $\sqrt{\sum_{j=1}^{n} ||e^{(j)}||^2}$.

- Let $f(x) = ||x|| : M \to \mathbb{R}$. *f* is continuous if $d^{\mathbb{R}}$ is associated to a norm (any norm in \mathbb{R}) and one of these occurs
 - (1) $d^{M}(y,x) = ||y-x||.$

(2)
$$M \subset \mathbb{R}^n$$
. d^M is associated to a norm (any norm in \mathbb{R}^n).
Proof. (1) $\|f(y) - f(x)\| \leq M_1 |f(y) - f(x)| = M_1 \|\|y\| - \|x\|$
 $\leq M_1 \|y - x\| \leq M_1 M_2 \|y - x\|$

(2) $d^{\mathbb{R}}(f(y), f(x)) \le M_1 ||y - x|| \le M_1 M_2 ||y - x||'$ where ||x||' is a norm on $M \subset \mathbb{R}^n$ with which d^M is associated. (a) and (b): Any norm on \mathbb{R}^n are equivalent.

- $f(x) = ||x|| : M \subset \mathbb{R}^n \to \mathbb{R}$ is continuous when the metrics d^M and $d^{\mathbb{R}}$ are Euclidean.
- Def: An inner product on a real vector space is a real-valued function $\langle \vec{x}, \vec{y} \rangle$ defined for all \vec{x} and \vec{y} in the vector space satisfying
 - 1) symmetry: $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$,
 - 2) bilinearity: $\langle a\bar{x} + b\bar{y}, \bar{z} \rangle = a \langle \bar{x}, \bar{z} \rangle + b \langle \bar{y}, \bar{z} \rangle$ and $\langle \bar{x}, a\bar{y} + b\bar{z} \rangle = a \langle \bar{x}, \bar{y} \rangle + b \langle \bar{x}, \bar{z} \rangle$ for all real numbers *a*, *b*,
 - 3) positive definiteness: $\langle \bar{x}, \bar{x} \rangle \ge 0$ with equality if and only if $\bar{x} = \bar{0}$.
- Cauchy-Schwartz Inequality

On a real or complex inner product space, $|\langle \vec{x}, \vec{y} \rangle| \le \sqrt{\langle \vec{x}, \vec{x} \rangle} \sqrt{\langle \vec{y}, \vec{y} \rangle}$, with equality if and only if \vec{x} and \vec{y} are collinear.

- If $\langle \vec{x}, \vec{y} \rangle$ is an inner product, then $\|\vec{x}\| = \sqrt{\langle \vec{x}, \vec{x} \rangle}$ is the associated or induced norm.
 - which implies $\|\vec{x} \vec{y}\|$ is a metric.
 - Not every norm is associated to an inner product. (Among $\|\vec{x}\|_1$, $\|\vec{x}\|_2$, $\|\vec{x}\|_{sup}$, only $\|\vec{x}\|_2$ is.)
- An inner product defines a norm via $\|\vec{x}\| = \sqrt{\langle \vec{x}, \vec{x} \rangle}$, and a norm defines a metric via $d(x, y) = \|x y\|$.
- Ex On \mathbb{R}^n , the scalar product or dot product $\vec{x} \cdot \vec{y} = \sum_{j=1}^n x_j y_j$ is an inner product;

hence,
$$|\vec{x}| = \sqrt{\sum_{j=1}^{n} x_j^2}$$
 is a norm and $|\vec{x} - \vec{y}|$ is a metric.

• On an inner product space,

• the polarization identity
$$\langle \vec{x}, \vec{y} \rangle = \frac{1}{4} \left(\|\vec{x} + \vec{y}\|^2 - \|\vec{x} - \vec{y}\|^2 \right)$$
 holds. $\left(\|\vec{x}\| = \sqrt{\langle \vec{x}, \vec{x} \rangle} \right)$

- the associated norm satisfies the <u>parallelogram law</u> $\|\bar{x} + \bar{y}\|^2 + \|\bar{x} - \bar{y}\|^2 = 2\|\bar{x}\|^2 + 2\|\bar{y}\|^2$.
 - Geometrically, the parallelogram law can be interpreted to say the sum of the squares of the diagonals of a parallelogram equals the sum of the squares of the sides.

• If a norm $\|\cdot\|$ satisfies the parallelogram law $\|\vec{x} + \vec{y}\|^2 + \|\vec{x} - \vec{y}\|^2 = 2\|\vec{x}\|^2 + 2\|\vec{y}\|^2$,

then the polarization identity $g(x, y) = \frac{1}{4} \left(||x + y||^2 - ||x - y||^2 \right)$ defines an inner product.

- The norm associated with this inner product $f(x) = \sqrt{g(x,x)}$ is the original norm $\|\cdot\|$.
- If a norm $\|\cdot\|$ satisfies the parallelogram law $\|\bar{x} + \bar{y}\|^2 + \|\bar{x} \bar{y}\|^2 = 2\|\bar{x}\|^2 + 2\|\bar{y}\|^2$, then it is induced by an inner product $\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 \|x y\|^2)$.
- \mathbb{C}^n is the set of *n*-tuples $\overline{z} = (z_1, z_2, ..., z_n)$ of complex numbers.
 - Has complex dimension *n* since the basis vectors ê⁽¹⁾,...,ê⁽ⁿ⁾ of ℝⁿ also form a basis of ℂⁿ, z̄ = z₁ê⁽¹⁾ + ··· + z_nê⁽ⁿ⁾.
 - Regarded as a real vector space, \mathbb{C}^n has dimension 2n with $\hat{e}^{(1)}, \dots, \hat{e}^{(n)}, i\hat{e}^{(1)}, \dots, i\hat{e}^{(n)}$ forming a basis.
- Def: A complex inner product on a complex vector space is a complex-valued function \$\langle \vec{x}, \vec{y} \rangle\$ defined for all \$\vec{x}\$ and \$\vec{y}\$ in the space satisfying
 - 1) Hermitian symmetry: $\langle x, y \rangle = \overline{\langle y, x \rangle}$,
 - 2) Hermitian linearity: $\langle a\vec{x} + b\vec{y}, \vec{z} \rangle = a \langle \vec{x}, \vec{z} \rangle + b \langle \vec{y}, \vec{z} \rangle$ and $\langle \vec{x}, a\vec{y} + b\vec{z} \rangle = \overline{a} \langle \vec{x}, \vec{y} \rangle + \overline{b} \langle \vec{x}, \vec{z} \rangle$,
 - 3) positive definiteness: $\langle \vec{x}, \vec{x} \rangle$ is real and $\langle \vec{x}, \vec{x} \rangle \ge 0$ with equality if and only if $\vec{x} = \vec{0}$.

• For \mathbb{C}^n , the usual inner product is $\langle \vec{z}, \vec{w} \rangle = \sum_{j=1}^n z_j \overline{w}_j$.

- Let $\langle \cdot, \cdot \rangle$ denotes an inner product on a (real or complex) vector space V and let $\|\cdot\|$ be the corresponding norm. Then
 - $\langle x, y \rangle = \langle x, z \rangle \ \forall x \in V \Rightarrow y = z$
 - $\langle \cdot, \cdot \rangle$ is continuous
 - Pythagorus identity: $\langle x, y \rangle = 0 \Rightarrow ||x + y||^2 = ||x||^2 + ||y||^2$
 - Parallelogram law: $||x + y||^2 + ||x y||^2 = 2||x||^2 + 2||y||^2$
 - Polarization identity:

Real case: $\langle x, y \rangle = \frac{1}{4} (||x + y||^2 - ||x - y||^2).$

Complex case: $\langle z, w \rangle = \frac{1}{4} (||z + w||^2 - ||z - w||^2 + i||z + iw||^2 - i||z - iw||^2).$

• Cauchy-Schwarz inequality: $|\langle x, y \rangle| \le ||x||| ||y||$

9.2 Topology of Metric Spaces

- (M,d) is a metric space. $M' \subset M \Rightarrow (M',d)$ is also a metric space.
- Def: A subspace M' of a metric space M is a subset of M with the same metric.
- Use the word "ball" for the solid region, and "sphere" for the boundary.
- Def: The <u>open ball</u> $B_r(y)$ in a metric space M with center y and radius r is $B_r(y) = \{x \in M : d(x, y) < r\}.$
 - If $U \subset W$, the open ball in U are the intersections of U with open balls in W with the same center and radius:

 $B_r^U(y) = U \cap B_r^W(y).$

- If $U \subset W$ and U is open in W, then $\forall y \in U \exists r \text{ (small enough, depending on } y)$ such that $B_r(y)_U = B_r(y)_W$.
- An open ball $B_r^M(y)$ also contains open balls $B_{r-d(x,y)}^M(x)$ centered at all its other points $x \in B_r^M(y)$. \Rightarrow open ball in *M* is an open set in *M*.
- Def: A subset A of a metric space M is said to be <u>open</u> in M if
 - every point of *A* lies in an open ball (in *M*) entirely contained in *A*.
 - $\equiv \quad \forall x \in A \; \exists r_x > 0 \text{ such that } B_r^M(x) \subset A.$
 - $\equiv \forall x \in A \; \exists r_x > 0 \text{ such that } \forall y \in M \; d(y, x) < r \Longrightarrow y \in A$
 - $= \forall x \in A \; \exists r_x > 0 \text{ such that } (M \setminus A) \cap B_r^M(x) = \emptyset.$
 - $\iff A = A \, .$
 - $\Leftrightarrow M \setminus A \text{ is closed in } M.$
- $A \subset M$ is not open in M iff
 - $\exists x \in A \text{ such that } \forall r > 0 \ B_r^M(x) \not\subset A$
 - $\equiv \exists x \in A \text{ such that } \forall r > 0 \ (M \setminus A) \cap B_r^M(x) \neq \emptyset$
- Let *M* be a matrix subspace of a metric space M_1 . $(M \subset M_1)$.

Then, for $A \subset M$

- A is open in M if and only if there exists an open subset A_1 of M_1 such that $A = A \cap M$.
- If M is open in M_1 , then A is open in M if and only if A is open in M_1 .

• Let M_{small} be a matrix subspace of a metric space $M_{big} \cdot (M_{small} \subset M_{big})$. Then for $A \subset M$

Then, for $A_{small} \subset M_{small}$,

- A_{small} is <u>open in</u> M_{small} if and only if there exists an open subset A_{big} of M_{big} such that $A_{small} = A_{big} \cap M_{small}$.
- If M_{small} is <u>open in</u> M_{big} , then A is open in M_{small} if and only if A is open in M_{big} .
- $A \subset M$. *B* is open in $M \Rightarrow B \cap A$ is open in *A*.
- Examples of open set in M
 - Ø, *M*.
 - (0,1) open in \mathbb{R} . $\{0\} \times (0,1)$ is not open in \mathbb{R}^2 .
- Theorem: In any metric space,
 - an **arbitrary union of open sets** is open.
 - a **<u>finite intersection of open sets</u>** is open.
- Def: A <u>neighborhood</u> of a point is an open set containing the point.
- Def: The <u>interior</u> of a set *A* is the set of all points contained in open balls contained in *A*.

$$\overset{\circ}{A} = \left\{ x \in A; \exists r_x > 0 \text{ such that } B^M_{r_x} \left(x \right) \subset A \right\}$$

- **Sequence**: $\{x_n\}$: $x_1, x_2, ...$
 - **Range** of $\{x_n\}$ is the set of all points x_n (n = 1, 2, 3, ...). May be finite or infinite).
 - The sequence is bounded if its range is bounded.
- <u>Convergence</u>, limit of a sequence
 - Def: If x₁, x₂,... is a sequence of points in M, then the sequence has a <u>limit</u> x (in M) (or the sequence **converges** (in M) to x), written x_n → x or lim_{n→∞} x_n = x, provided that

•
$$\forall \frac{1}{m} \exists N \text{ such that } \forall n \ge N \ d(x_n, x) \le \frac{1}{m}.$$

$$\equiv \lim_{n \to \infty} d(x_n, x) = 0 \text{ in the } \underline{\text{Euclidean}} \text{ sense.}$$

- = every neighborhood of x contains all but a finite number of x_n .
- $\lim_{n \to \infty} x_n = x \iff \lim_{n \to \infty} d(x_n, x) = 0$ in the <u>Euclidean</u> sense.
- Definition of "convergent sequence" depends not only on $\{x_n\}$ but also on *M*.

• Let $x, x' \in M$. If $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} x_n = x'$, then x = x'. Proof. $\forall e$ take *N* large enough. Then $\forall n \ge N$, both $d(x_n, x)$ and $d(x_n, x')$

are
$$\leq \frac{\boldsymbol{e}}{2}$$
. So, $d(x, x') \leq d(x_n, x) + d(x_n, x') \leq \boldsymbol{e}$.

- If $\{x_n\}$ converges, then $\{x_n\}$ is bounded.. Proof. Let $\lim_{n \to \infty} x_n = x$. Then $\exists N \quad \forall n \ge N \quad d(x_n, x) \le 1$. Let $r = \max\{1, d(x_1, x), d(x_2, x), \dots, d(x_N, x)\}$. Then $d(x_n, x) \le r$ for all n.
- Def: If $\{x_n\}$ does not converge, it is **diverge**.
- On C([a,b]),

convergence in the sup-norm metric $\left(\forall \frac{1}{m} \exists N \ \forall k \ge N, \sup_{x} \left| f_{k}(x) - f(x) \right| \le \frac{1}{m} \right)$

is the same as

uniform convergence $\left(\forall \frac{1}{m} \exists N \ \forall k \ge N \ \forall x \left| f_k(x) - f(x) \right| \le \frac{1}{m} \right)$. $\sup_x \left| f_k(x) - f(x) \right| \le \frac{1}{m} \Leftrightarrow \forall x \left| f_k(x) - f(x) \right| \le \frac{1}{m}$.

- If x_n → x in a metric space and y is any other point in the space, then lim d (x_n, y) = d (x, y) in the Euclidean sense.
- If $x_n \to x$ and $y_n \to y$ in a metric space, then $\lim_{n \to \infty} d(x_n, y_n) = d(x, y)$ in the Euclidean sense.

Use quadrilateral inequality: $|d(x, y) - d(x_n, y_n)| \le d(x, x_n) + d(y, y_n)$.

- \mathbb{R}^n and <u>Euclidean metric</u>.
 - A sequence $x^{(1)}, x^{(2)}, ...$ in \mathbb{R}^n converges to x if and only if the sequence of coordinates $x_k^{(1)}, x_k^{(2)}, ...$ converges to x_k for every k = 1, ..., n

Proof. "\Rightarrow ":
$$\forall \boldsymbol{e} \ \exists N \ \forall n \ge N$$

 $|(x_n)_k - (y)_k| \le \sqrt{\sum_{k=1}^K |(x_n)_k - (y)_k|^2} = |x - y| \le \boldsymbol{e} \ .$ "\varepsilon": $\forall \boldsymbol{e} \ \exists N \ \forall n \ge N$
 $|(x_n)_k - (y)_k| \le \frac{\boldsymbol{e}}{\sqrt{K}} \ . \ |x - y| = \sqrt{\sum_{k=1}^K |(x_n)_k - (y)_k|^2} \le \sqrt{K \left(\frac{\boldsymbol{e}}{\sqrt{K}}\right)^2} = \boldsymbol{e} \ .$

• Suppose $\{x_n\}$ and $\{y_n\}$ are sequence in \mathbb{R}^k , $\{a_n\}$ is a sequence of real numbers, and $\lim_{n \to \infty} x_n = x$, $\lim_{n \to \infty} y_n = y$, $\lim_{n \to \infty} a_n = a$. Then (a) $\lim_{n \to \infty} (x_n + y_n) = x + y$, (b) $\lim_{n \to \infty} (x_n \cdot y_n) = x \cdot y$, (c) $\lim_{n \to \infty} (a_n x_n) = ax$.

Proof. Convergence of $\{x_n\}$ and $\{y_n\}$ implies convergence of all their component. Consider the above operations for each component, then, from what we know about sequence in \mathbb{R} , we know that they converges for each component. Because all component converges, this prove (*a*) and (*c*). For (*b*), we know that finite addition of convergent sequences in \mathbb{R} converges.

- Def: x is a limit point of a sequence $\{x_n\}$ if
 - every neighborhood of x contains x_n for infinitely many n.
 - = There exists a subsequence (x_{n_k}) such that $x_{n_k} \to x$.
- Limit point of a set
 - Def: $x \in M$ is a **limit point of a set** $A \subset M$
 - if every neighborhood of x contains points of A not equal to x.
 - $\equiv \forall r > 0 \; \exists y \in B_r^A(x) \text{ such that } y \neq x.$
 - = There exists a sequence of point $\neq x$ in A converging to x.
 - = Every neighborhood of x contains infinitely many points of A.

Proof. 1) " \Leftarrow " for any neighborhood, has infinite point of *A*; so at least one point is not *x*. 2) " \Rightarrow " Assume a neighborhood contain only finite points $\neq x$ of *A*. Then, there exists min distance *r* to *x*, inside which no points in *A* except may be *x*.

 \Rightarrow There exists a sequence of point in A converging to x.

Proof. Pick sequence $x_n \in B_{\frac{1}{n}}^A(x)$.

- If $\exists r > 0$ such that $B_r^M(x) \cap A = \emptyset$, then x is not a limit point of A.
- A finite set has no limit point.

Proof. Need every neighborhood of the limit point to contain infinitely many points of the set.

• If $x \in M$ is a limit point of a set A. Then, $x \in M$ is a limit point of a set $B \supset A$.

Proof $\exists y \in B_r^A(x) \subset B_r^B(x)$ such that $y \neq x$.

- Every point of an open set is a limit-point.
- Def: A set is **<u>closed</u>** in *M*
 - if it contains all its limit points.

 $\Leftrightarrow \ \overline{A} = A$

- $\Leftrightarrow M \setminus A \text{ is open in } M.$
- = Whenever the terms of a convergent sequence are in A, the limit must also be in A.
- Example of closed sets
 - A set with no limit points such as the empty set, or a finite set, is automatically closed.
 - Closed ball in *M* with center $y \in M$ and radius *r*, $A = \{x \in M : d(x, y) \le r\}$.

Proof. Let *x* be a limit point of *A*. Then, there exists a sequence $(x_n)_{n=1}^{\infty} \subset A$ converging to *x*. Because $\forall n \ d(x_n, y) \leq r$, $d(x, y) = \lim_{n \to \infty} |d(x_n, y)| \leq r$.

• Sphere in *M* with center $y \in M$ and radius *r*, $A = \{x \in M : d(x, y) = r\}$

Proof. $\forall n \ d(x_n, y) = r$. Thus, $d(x, y) = \lim_{n \to \infty} |d(x_n, y)| = r$.

- Def: The <u>closure</u> of a set consists of the set together with all its limit points. $\overline{A} = A \cup \{ \text{limit points of } A \}.$
- The closure is always a closed set.
 - x is a limit point of closure of $A \Rightarrow x$ is a limit point of A.
- A set is closed if and only if it equals its closure.
- Def: If $A \subset B$, A is <u>dense</u> in B (A is a dense subset of B) if
 - the closure of A contains B. $(A \subset B \subset \text{closure}(A))$.
 - = Every point in *B* is either a point of *A* or a limit-point of *A*.
- In a metric space, <u>a set is closed if and only if its complement is open.</u>
- Finite unions and arbitrary intersections of closed sets are closed.
- Cauchy sequence
 - Def: $\{x_n\}$ is a Cauchy sequence if $\forall \frac{1}{m} \exists N \text{ such that } \forall j, k \ge N, d(x_j, x_k) \le \frac{1}{m}$.
 - A convergent sequence is always a Cauchy sequence $(d(x_j, x_k) \le d(x, x_k) + d(x, x_k)).$
 - The converse is not true for the general metric space.
 - Ex. rational numbers
 - Let $\{x_n\}$ be a Cauchy sequence. If there exists a subsequence converging to x, then the whole sequence converges to x. (Consider sequence $x_1, x, x_2, x, ...$)
 - On C([a,b]), the Cauchy criterion for a sequence $\{f_n\}$ in the sup-norm metric is identical to the uniform Cauchy criterion.

$$\left(\sup_{x}\left|f_{j}(x)-f_{k}(x)\right|\leq\frac{1}{m}\Leftrightarrow\forall x\left|f_{j}(x)-f_{k}(x)\right|\leq\frac{1}{m}\right).$$

• <u>complete</u>

• Def: A metric space is complete

- if every Cauchy sequence has a limit.
- if every Cauchy sequence is convergent.
- Ex. \mathbb{R}^n , C([a,b]) with the sup-norm metric
- Ex <u>not complete:</u> C([a,b]) with the L^1 metric: $d(f,g) = \int_a^b |f(x) g(x)| dx$.

(consider a sequence of continuous functions converging Pointwise to a discontinuous function.)

• Ex. *M* not complete: $(\mathbb{R}, d), d(x, y) = |f(x) - f(y)|$, where

$$f(x) = \arctan(x), e^x$$
, or $\frac{1}{x}$ with $(\mathbb{R}^+ / \{0\}, d)$ or some other one-to-one

function whose tail converges to some value but never reach that value.

Take $\{x_n\}$ ($\{n\}$ or $\{-n\}$) to be a sequence going along the tail direction. Then, $\lim_{n \to \infty} f(x_n) = a$. Sequence $\{x_n\}$ is Cauchy because

$$d(x_{n}, x_{m}) = |f(x_{n}) - f(x_{m})| = |f(x_{n}) - a + a - f(x_{m})|$$

$$\leq |f(x_{n}) - a| + |a - f(x_{m})|$$

and $|f(x_n) - a|$, $|a - f(x_m)|$ can be made < any e by taking n, m big enough.

Assume $\exists x_0 \in M$ such that $n \xrightarrow{d} x_0$. This means $d(n, x_0) \xrightarrow{\text{Euclidean}} 0$. So, $\lim_{n \to \infty} d(n, x_0) = \lim_{n \to \infty} |f(n) - f(x_0)| = 0$. Now, we know that the sequence $x_n = f(n) \rightarrow a$ in Euclidean $(d_2(x, y) = |x - y|)$. So, have $\lim_{n \to \infty} d_2(x_n, f(x_0)) = d_2(a, f(x_0)) = 0$. Contradiction because there is no $x_0 \in M$ such that $f(x_0) = a$ (the limit of the tail) by construction of function.

- A subspace A of a <u>complete</u> metric space M is itself <u>complete</u> if and only if it is a <u>closed</u> set in M.
 - In a finite-dimensional vector space, every metric associated to a norm is complete. (no proof).
- Closed vs. Complete

- A metric space *M* is always closed *M*. A metric space *M* may or may not complete.
- A set *A* is complete iff every Cauchy sequence has a limit in *A*.

A set *A* is closed in *M* iff Cauchy sequence $(x_n)_{n=1}^{\infty}$ in *A* has limit in $M \Rightarrow (x_n)_{n=1}^{\infty}$ has limit in *A*.

- Ex. M = (0,2], A = (0,1]. The point $0 \notin A$ is a limit point of A in \mathbb{R} , thus A is not closed in \mathbb{R} . However, $0 \notin M$; thus, 0 is not a limit point (in M) of A. In fact, (0,1] is closed in (0,2].
- A subspace *A* of a <u>complete</u> metric space *M* is itself <u>complete</u> if and only if it is a <u>closed</u> set in *M*.
- Def: The <u>completion</u> *M* of *M* is the set of equivalence classes of Cauchy sequences of points in *M*.

We regard *M* as a subset of \overline{M} by identifying the point *x* in *M* with the equivalent class of the sequence (x, x, ...).

We can make \overline{M} into a metric space by defining the distance between the equivalent class of $(x_1, x_2, ...)$ and the equivalence class of $(y_1, y_2, ...)$ to be $\lim_{n \to \infty} d(x_n, y_n) = 0$.

This definition requires that we verify

- 1) the limit exists
- 2) the limit is independent of the choice of sequences from the equivalence classes, and
- 3) the distance so defined satisfies the axioms for a metric.
- Def: A complete normed vector space is called a **Banach** space.
- Def: A complete inner product space is called a Hilbert space.
- Def: If A is a subset of M, we say \mathcal{B} , a collection of subsets B of M, is a <u>covering</u> if A if $A \subseteq \bigcup_{\mathfrak{B}} B$ and an open covering if all the sets B are open sets in M.

A subcovering means a subcollection \mathcal{B}' of \mathcal{B}

- **Boundedness**:
 - $\exists x \in A \ \exists R > 0$ finite such that $\forall y \in A$, d(x, y) < R.
 - $\exists x \in A \ \exists R > 0$ finite such that $B_R(x) = A$.
 - The inf of such *R* defines the radius of the space with respect to *x*.
 - the radius is finite with respect to every point in the space ($\leq 2R$).
 - Let $D = \sup d(x, y)$ be the diameter of the space.

The diameter is finite iff the radius is finite.

• For any given x, let R be a radius with respect to x. Then

 $R \le D \le 2R \; .$

- Heine-Borel property: every open covering has a finite subcovering
 - If A is a subspace of M, the the Heine-Borel property for A as a subspace of M (open meaning open in M) is equivalent to the Heine-Borel property for A as a subspace of A.

• <u>compact</u>

- A is compact (A is a compact subset of a metric space)
 - (Def) if every sequence a_1, a_2, \dots of points in A has a limit point in A.
 - ≡ every sequence $a_1, a_2, ...$ of points in A has a subsequence that converges to a point in A.
 - $\equiv (\underline{\text{Heine-Borel}}) A \text{ has the Heine-Borel property:} every open covering has a finite subcovering}$
 - If A is a subspace of M, then the Heine-Borel property for A as a subspace of M (open meaning open in A) is equivalent to the Heine-Borel property for A as a subspace of A.
 - = A is bounded, complete, and $\forall \frac{1}{m}$ there exists a finite subset x_1, \dots, x_n such that every point in A is within distance $\frac{1}{m}$ of one of them.

• It is the same thing to say A is a compact subset of M or A is a compact subset of N if N is any subspace of M containing A.

- Def: A metric space *M* is compact
 - if *M* is a compact subset of itself
 - = if all sequences of points in M have limit points in M.
- A is a compact subset of *M* if and only if *A* as a subspace is a compact metric space.
- A is a compact metric space \Rightarrow
 - A is complete (converse not true. Ex. \mathbb{R})
 - *A* has a countable dense subset
 - *A* is bounded.
 - $\forall \frac{1}{m}$ there exists a finite set of points x_1, \dots, x_n such that every point is within

distance
$$\frac{1}{m}$$
 of one of them $\Rightarrow B_{\frac{1}{m}}(x_1), \dots, B_{\frac{1}{m}}(x_n)$ covers the space.

- A subspace of \mathbb{R}^n is compact if and only if it is closed (complete) and bounded.
 - This is not true of general metric space.
- X compact. $A \subset X \subset M$. A closed in $M \Rightarrow A$ is compact.

(Closed subsets of compact sets are compact.)

Proof. Sequence $\{x_n\}$ in *A* is sequence in *X*. By compactness of *X*, $\{x_n\}$ has limit point in *X*, which is also a limit point (in *M*) of *A*. A is closed; thus, the limit point is in *A*.

X compact. X ⊂ M . ⇒ X is closed in M.
 (Compact subsets of metric spaces are closed.)

Proof. Let $x \in M$ be a limit point of X. Then, \exists sequence in $X \{x_n\} \to x$. So, x is a limit point of a sequence in By compactness of X, x is in X.

- C([a,b]) with sub-norm metric $d(f,g) = \sup |f(x) g(x)|$
 - complete
 - Let f₁, f₂,... be a sequence of continuous function converging Pointwise to a discontinuous function. Let A be the set {f₁, f₂,...}. Then, A is bounded, closed (no limit point), and not compact (f₁, f₂,... is a sequence from A with no convergent subsequent.)
- Def: A sequence of function $\{f_k\}$ on a domain *D* is said to be <u>uniformly bounded</u> if $\exists M$ such that $|f_k(x)| \leq M$ for all *k* and all *x* in *D*.
- Def: A sequence of function $\{f_k\}$ on a domain *D* is said to be <u>uniformly</u> <u>equicontinuous</u> if $\forall \frac{1}{m} \exists \frac{1}{n}$ such that $|x - y| < \frac{1}{n} \Rightarrow \forall k | f_k(x) - f_k(y) |$.
- Arzela-Ascoli theorem: A sequence of uniformly bounded and uniformly equicontinuous functions on a compact interval has a uniformly convergent subsequent.
- **Equivalent** metrics
 - Def: two metrics d_1 and d_2 on the same set M is equivalent
 - if $\exists c_1, c_2 > 0$ such that $\forall x, y \in M$, $d_1(x, y) \le c_2 d_2(x, y)$ and $d_2(x, y) \le c_1 d_1(x, y)$
 - $\equiv \exists \boldsymbol{a}, \boldsymbol{b} > 0 \text{ such that } \boldsymbol{a} d_2(x, y) \leq d_1(x, y) \leq \boldsymbol{b} d_2(x, y).$
 - If d_1 and d_2 are equivalent,
 - $x_n \to x$ in d_1 -metric iff $x_n \to x$ in d_2 -metric.
 - then they have the same open sets.
 - Any metrics associated with a norm on \mathbb{R}^n are equivalent.

Continuous Functions on Metric Spaces

• $f: M \to N . A \subset M . f(A) \subset B \Rightarrow A \subset f^{-1}(B)$

•
$$f: M \to N \ . \ A \subset f^{-1}(B) \underset{\text{implicitly implies}}{\subset} M \Rightarrow$$

• Def:

- $f: M \to N$ means f is a function whose domain is M and whose range is N, where both M and N are metric spaces.
- The image $f(M) = \{ y \in N : \exists x \in M \text{ such that } f(x) = y \} \subset N.$
- f(M) = N iff f is onto.
- $\int f^{-1}(B) = \left\{ x \in M : f(x) \in B \right\} = f^{-1}(B \cap f(M)) \subset M.$

•
$$f^{-1}(f(M)) = M$$

• $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$ $f(A \cup B) = f(A) \cup f(B)$

The statement $f(A \cap B) = f(A) \cap f(B)$ is false. Consider $A = \{1, 2\}$, $B = \{2, 3\}$, and f(1) = f(3) = a, f(2) = b.

• $f: M \to N$

•
$$f^{-1}(N) = M$$

•
$$f(f^{-1}(N)) = f(M) \subset N$$

• If
$$A \cup B = N$$
 then $M = f^{-1}(N) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

• <u>Continuous</u>

Let *M* and *N* be metric spaces, $f: M \to N$ a function.

The following three conditions are equivalent (and a function satisfying them is called continuous.)

1)
$$\forall \frac{1}{m} \text{ and } x_0 \text{ in } M, \exists \frac{1}{n} \text{ such that } d^M(x, x_0) \leq \frac{1}{n} \Rightarrow d^N(f(x), f(x_0)) \leq \frac{1}{m}.$$

$$\equiv \forall \frac{1}{m} \text{ and } x_0 \text{ in } M, \exists \frac{1}{n} \text{ such that } x \in B_{\frac{1}{n}}^M(x_0) \Rightarrow x \in B_{\frac{1}{m}}^N(x_0).$$

$$\equiv \forall \frac{1}{m} \text{ and } x_0 \text{ in } M, \exists \frac{1}{n} \text{ such that } f\left(B_{\frac{1}{n}}^M(x_0)\right) \subset B_{\frac{1}{m}}^N(x_0).$$

2) If $x_1, x_2,...$ is any convergent sequence in *M*, then $f(x_1), f(x_2),...$ is convergent in *N*.

$$\Rightarrow \lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right).$$

- 3) If B is any open set in N, then $f^{-1}(B)$ is open in M.
 - Note: When $M \subset \mathbb{R}$ and *M* is open in \mathbb{R} ,

 $f^{-1}(B)$ is open in $M \Leftrightarrow f^{-1}(B)$ is open in \mathbb{R} .

B open in $N \Leftrightarrow B$ open in \mathbb{R} .

• In stead of N, we can use any set N' containing f(M):

It is immaterial whether we take the range N as given, or reduce it to f(M), or enlarge it to some space containing N, as long as we keep the same metric on the image.

• B open in $N' \Rightarrow B \cap f(M)$ open in f(M).

•
$$f^{-1}(B) = \{x \in M : f(x) \in B\} = f^{-1}(B \cap f(M)).$$

•
$$f: M \to N$$
 is continuous $\Rightarrow \lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n).$

- Example of continuous function
 - Consider (M,d) and $(\mathbb{R}, |\cdot|)$. Let $x_0 \in M$, then $f(x) = d(x, x_0) : M \to \mathbb{R}$ is continuous.
 - $d(x, y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$. Then any function $f: (M, d) \to (N, d^N)$ is continuous. Set $\delta < 1$, then $d(x, x_0) \le \mathbf{d} \Rightarrow d(x, x_0) < 1 \Rightarrow d(x, x_0) = 0 \Rightarrow x = x_0$. So, $d^N(f(x), f(x_0)) = d^N(f(x_0), f(x_0)) = 0 \le \mathbf{e}$

• This includes
$$(M,d) \rightarrow (\mathbb{R},|\cdot|), (\mathbb{R},d) \rightarrow (\mathbb{R},|\cdot|).$$

- $f(x) = \begin{cases} 0, & x = x_0 \\ 1, & x \neq x_0 \end{cases}$ is not continuous from $(\mathbb{R}, |\cdot|) \to (\mathbb{R}, |\cdot|)$ nor $(M, |\cdot|) \to (\mathbb{R}, d)$.
- Coordinate projection maps: $f: (\mathbb{R}^n, |\cdot|) \to (\mathbb{R}, |\cdot|)$. $f(x) = \text{the } k^{th} \text{ coponent of } x$.
- Let $\mathbf{a} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$ denote *n*-tuple of non-negative integers (each \mathbf{a}_k can equal 0, 1, 2, ...), and let $x^{\mathbf{a}} = x_1^{\mathbf{a}_1} x_2^{\mathbf{a}_2} \cdots x_n^{\mathbf{a}_n}$. Then, $p(x) = \sum c_{\mathbf{a}} x^{\mathbf{a}}$, were the sum is finite

and c_a are constants, is the general **polynomial**s on \mathbb{R}^n . Let $|\mathbf{a}| = \sum_{i=1}^n \mathbf{a}_i = ||\mathbf{a}||_1$. We call x^a a **monomial** of order or degree $|\mathbf{a}|$, and we call the **order** of the

polynomial the order of the highest monomial appearing in it with non-zero coefficient.

• Let $f: D \to \mathbb{R}$ where $D \subset \mathbb{R}$. $f(x) = \begin{cases} g(x), & x \text{ is rational} \\ h(x), & \text{otherwise} \end{cases}$. g(x) and h(x) are continuous from $\mathbb{R} \to \mathbb{R}$. Then, f(x) is continuous at $x_0 \in \mathbb{R}$ if and only if $g(x_0) = h(x_0)$. " \leftarrow ": $g(x_0) = h(x_0) = a$. Then, by the continuity of g(x) and h(x), given e, can find d > 0 such that $|x - x_0| < d$ implies both $|g(x) - a| < \frac{e}{2}$ and $|h(x) - a| < \frac{e}{2}$. Now, given x, $|f(x) - f(x_0)|$ can be one of the four possibilities: $|g(x) - g(x_0)|$, $|h(x) - h(x_0)|$, $|g(x) - h(x_0)|$, and $|h(x) - g(x_0)|$, depending on the rationality of x and x_0 . Whatever the form of $|f(x) - f(x_0)|$ is, they are all < e if we keep $|x - x_0| < d$. " \Rightarrow ": Assume $g(x_0) > h(x_0)$. Then, let $e = \frac{g(x_0) - h(x_0)}{3} > 0$. Then, for d small enough, by the continuity of g(x) and h(x), $|x - x_0| < d$ implies that $g(x) - h(x) > e = \frac{g(x_0) - h(x_0)}{2}$.

$$g(x) - h(x) > \mathbf{e} = \frac{1}{3}$$

- Continuous functions are closed under
 - restriction to a subspace
 - composition
 - addition (when the range is \mathbb{R}^n) and
 - multiplication (when the range of one is \mathbb{R} and the other \mathbb{R}^n).
- If $f_k: (M,d) \to (\mathbb{R},|\cdot|)$ for k = 1, ..., n and $f(x) = (f_1(x), ..., f_n(x)): (M,d) \to (\mathbb{R}^n, |\cdot|),$

the *f* is continuous if and only if all $f_k: M \to \mathbb{R}$ are continuous.

• Example of not continuous function

•
$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 is not continuous at the origin, but is

continuous in x for each fixed y and continuous in y for each fixed x.

- Def. $f: (\mathbb{R}^n, |\cdot|) \to (\mathbb{R}, |\cdot|)$ is <u>separately continuous</u> if $\forall k$ and every fixed value of all x_j with $j \neq k$, the function $g(x_k) = f(x_1, \dots, x_n): (\mathbb{R}, |\cdot|) \to (\mathbb{R}, |\cdot|)$ is continuous.
- Continuity implies separate continuity.

- $f: (\mathbb{R}^n, |\cdot|) \to (\mathbb{R}, |\cdot|)$ continuous $\Rightarrow g(x_k) = f(x_1, \dots, x_n): (\mathbb{R}, |\cdot|) \to (\mathbb{R}, |\cdot|)$ continuous.
- Def: $f: M \to N$ is said to be <u>uniformly continuous</u> if $\forall \frac{1}{m} \exists \frac{1}{n}$ such that

$$\forall x, y \in M, d(x, y) \leq \frac{1}{n} \Rightarrow d(f(x), f(y)) \leq \frac{1}{m}.$$

- Continuous function and compact set.
 - Let *M* be compact. Then $f: M \to N$ continuous implies it is uniformly continuous.

So, *M* compact, then $f: M \to N$ uniformly continuous iff continuous.

- If *M* is compact and $f: M \to \mathbb{R}$ is continuous, then $\sup_{x} f(x)$ and $\inf_{x} f(x)$ are finite and there are points in *M* where *f* attains these values.
- The image of a compact set under a continuous function is compact.

• Connected space

- *M* is connected
 - (Def) if there do not exist disjoint nonempty open (in *M*) sets *A* and *B* with $M = A \cup B$.
 - $A = B^c = M / B \neq \emptyset, M$ open and closed (clopen).
 - $B = A^c = M / A \neq \emptyset, M$ open and closed (clopen).
 - The pair *A* and *B* is called a disconnection of *M*.
- = the only sets both open and closed (clopen) in M are the empty set and M.
 - If *M* is not connected, then the *A* and *B* from the definition of *M* are two sets that are both open and closed and not equal to \emptyset, M .
 - (being of one piece; impossibility of splitting the space up into pieces.)
 - Not a relative property for metric spaces.
 - *M* is disconnected if and only if there exists a continuous map from *M* onto $\{0,1\}$.
 - Example of connected spaces
 - R
 - A subspace of \mathbb{R} is connected if and only if it is an <u>interval</u>.
 - Example of disconnected spaces.
 - A discrete space containing two or more points
 - *I* is an interval iff $\forall a, b \in I$, a < b, $\forall c \in \mathbb{R}$, $a < c < b \Rightarrow c \in I$.
 - If *c* is not in *I*, then $I = (I \cap (-\infty, c)) \cup (I \cap (c, \infty))$; not connected. open in *I* contain *a*open in *I* contain *b*

disioint

- Curve (or arc, path)
 - Def: a curve in *M* is a continuous function from an interval (in \mathbb{R}) to *M*. ($f: I \rightarrow M$)
 - Think of f(I) as being traced out by f(t) as t varies in I, interpreted as a time variable. Thus, the curve is a "trajectory of a moving particle" in M.
 - When *M* is a subspace of \mathbb{R}^n , the curve has the form $f(t) = (f_1(t), f_2(t), ..., f_n(t))$ where $f_k(t)$ are continuous numerical functions, giving the coordinates of the trajectory at each time *t*.
 - The graph of a continuous function $g: I \to \mathbb{R}$ is a curve $\left(M = \{(x, g(x)); x \in I\}\right)$ in the plane given by f(t) = (t, g(t)) for t in I.
- Arcwise (path wise) connected
 - A space *M* is arcwise connected
 - (def) if there exists a curve connecting any two points.
 - (def) if $\forall x, y \in M$, there exists a curve (continuous function) $f:[a,b] \to M$ with f(a) = x, f(b) = y

$$= if \forall x, y \in M , there exists a curve (continuous function) g: [a',b'] → M with g(a') = x, g(b') = y. Let h(t) = a + $\frac{b-a}{a'-b'}(t-a'): [a',b'] \xrightarrow{onto} [a,b].$
Let g(t) = f(h(t)); continuous because f and h are continuous.
g(b') = f(h(b')) = f(b) = y.
being able to join any two points by a continuous curve.$$

- Let *X* be a metric space and let $x_0, x_1, x_2 \in X$. Suppose that there is a curve connecting x_0 and x_1 and another curve connecting x_1 and x_2 . Then, there is a curve connecting x_0 and x_2 .
 - $\exists \text{ continuous } f:[0,1] \to X, f(0) = x_0, f(1) = x_1.$ $\exists \text{ continuous } g:[1,2] \to X, g(1) = x_1, g(2) = x_2.$

Let
$$h: [0,2] \to X$$
, $h(t) = \begin{cases} f(t), & 0 \le t < 1 \\ x_1, & t = 1 \\ g(t), & 1 < t \le 2 \end{cases}$. We need to show that h is

continuous.

Because *f* and *g* are continuous, $\forall t \neq 1$, we know that h(t) is continuous. At *t* = 1, because *f* and *g* are continuous, $\forall e$, we know that $\exists d_1$

$$t \in (1 - \boldsymbol{d}_1, 1] \Rightarrow |f(t) - f(1)| < \boldsymbol{e} \text{ and } \exists \boldsymbol{d}_2 \ t \in [1, 1 + \boldsymbol{d}_2) \Rightarrow |g(t) - g(1)| < \boldsymbol{e} .$$

Now, choose $0 < \boldsymbol{d} < \boldsymbol{d}_1, \boldsymbol{d}_2$. Then, for all $t \in (1 - \boldsymbol{d}, 1 + \boldsymbol{d})$,
 $t \in (1 - \boldsymbol{d}, 1] \subset (1 - \boldsymbol{d}_1, 1] \Rightarrow |h(t) - h(1)| = |f(t) - x_1| < \boldsymbol{e} ,$
 $t = 1 \Rightarrow |h(t) - h(1)| = 0 < \boldsymbol{e} ,$
 $t \in [1, 1 + \boldsymbol{d}) \subset [1, 1 + \boldsymbol{d}_2) \Rightarrow |h(t) - h(1)| = |g(t) - x_1| < \boldsymbol{e} ,$
So, $\forall \boldsymbol{e} \ \exists \boldsymbol{d}$ such that $t \in (1 - \boldsymbol{d}, 1 + \boldsymbol{d}) \Rightarrow |h(t) - h(1)| < \boldsymbol{e}$. Therefore, $h(t)$ is also continuous at $t = 1$.

- If *M* is arcwise connected, and $g: M \to \mathbb{R}$ is any continuous real-valued function, then *g* has the intermediate value property.
- Arcwise connected implies connected.
- Let $f: M \to N$ be continuous and onto (surjective) (f(M) = N).
 - If *M* is connected, then so is *N*.

$$N \text{ not connected} \Rightarrow N = \underset{\text{open in } N \\ \text{nonempty}}{A \cup B} B_{\text{open in } N}$$

 $\exists a \in N \ a \in A. \text{ By onto, } \exists x \in M \ f(x) = a. \text{ Thus, } f^{-1}(A) \neq \emptyset. \text{ Similarly,} \\ f^{-1}(B) \neq \emptyset. \text{ Also, } f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) = f^{-1}(\emptyset) = \emptyset. \text{ By} \\ \text{continuity of } f, \ f^{-1}(A) \text{ and } f^{-1}(B) \text{ are open. Thus,} \\ M = f^{-1}(N) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B), \text{ not connected.} \\ \text{open in } M \text{ nonempty} \\ \text{disjoint} \\ \text{disjoint} \\ \end{bmatrix}$

- If *M* is arcwise connected, then so is *N*.
- Fixed points: f(x) = x.

• Contractive mapping

- Consider a function whose domain and range are of the same metric space. which we assume is complete.
- Def: Let (M,d) be a metric space. $f: M \to M$ is a <u>contractive mapping</u> if $\exists r < 1$ such that $\forall x, y \in M$ $d(f(x), f(y)) \leq rd(x, y)$.
 - \Rightarrow continuity (Lipschitz condition with constant < 1)

$$f\left(\lim_{n\to\infty}f^{n}(x)\right) = \lim_{n\to\infty}f^{n+1}(x)$$

• Not work when having $d(f(x), f(y)) \le d(x, y)$ or even d(f(x), f(y)) < d(x, y).

- The map $f: M \to M$ is a contraction.
- \Rightarrow shrinking map.

• Def:
$$f^n = \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}}$$

- <u>Contractive mapping principle</u>: Let *M* be a complete metric space and $f: M \to M$ a contractive mapping. The n,
 - there exists a unique fixed point x_0 , and $x_0 = \lim_{n \to \infty} f^n(x) \quad \forall x \in M$, with

 $d(x_0, f^n(x)) \le cr^n$ for a constant *c* depending on *x*.

- Compact *M* with contractive mapping will work also because compact \Rightarrow complete.
- $d(f^{n+1}(x), f^n(x)) \leq rd(f^n(x), f^{n-1}(x)) \leq \cdots \leq r^n d(f(x), x)$

•
$$m > n$$
: $d(f^{m}(x), f^{n}(x)) \le \left(\sum_{k=n}^{m-1} r^{k}\right) d(f(x), x)$
 $\le \left(\sum_{k=n}^{\infty} r^{k}\right) d(f(x), x) = \frac{r^{n}}{1-r} d(f(x), x)$
• $d(f^{n}(x), x_{0}) = d(f^{n}(x), \lim_{m \to \infty} f^{m}(x)) = \lim_{m \to \infty} d(f^{n}(x), f^{m}(x))$

•
$$d(f^{n}(x), x_{0}) = d(f^{n}(x), \lim_{m \to \infty} f^{m}(x)) = \lim_{m \to \infty} d(f^{n}(x), f^{m}(x))$$
$$\leq \frac{r^{n}}{1 - r} d(f(x), x)$$

• $f:[a,b] \to [a,b]$ is continuous on [a,b], differentiable on (a,b), and has $|f'(x)| \le a < 1$ for all a < x < b. Then, *f* has a unique fixed point.

By the mean value theorem, $\forall x, y \exists x_0 \frac{f(x) - f(y)}{x - y} = f'(x_0)$. So,

$$\frac{\left|f(x)-f(y)\right|}{\left|x-y\right|} = \left|f'(x_0)\right| \le \mathbf{a} < 1.$$

• Let $f: X \xrightarrow{1:1}_{\text{onto}} X$, $g = f^{-1}: X \to X$. Then x_0 is a unique fixed point of $g \Leftrightarrow x_0$ is a unique fixed point of f.

Proof. " \Rightarrow " x_0 is a fixed point of $g \Rightarrow g(x_0) = x_0 \Rightarrow x_0 = f(x_0) \Rightarrow x_0$ is a fixed point of f. Let x_1 be any fixed points of f, then $f(x_1) = x_1$, which implies $g(x_1) = x_1$. By the uniqueness of the fixed point of g, we have $x_1 = x_0$.

Let (X,d) be a complete metric space and f:X→X be surjective. Assume that there exists c > 1 such that d(f(x), f(y)) ≥ cd(x,y) ∀x, y ∈ X. Then, 1) f is injective and 2) has a unique fix point.

Proof 1): Consider any $x \neq y$. So, d(x, y) > 0. $\Rightarrow d(f(x), f(y)) \ge cd(x, y) > 0$. $\Rightarrow f(x) \ne f(y)$. Proof 2) Define $g = f^{-1} : X \to X$. g is a contractive mapping. Consider any x, y. Let g(x) = a and g(y) = b. Then, $d(g(x), g(y)) = d(a, b) \le \frac{1}{c}d(f(a), f(b))$ $= \frac{1}{c}d(x, y)$. Note that $0 < \frac{1}{c} < 1$. So, there exists a unique fixed point x_0 ; $g(x_0) = x_0$. Hence, x_0 is a unique fixed point of f.

- Def: Let (M,d) be a metric space. A map $f: M \to M$ is a shrinking map if $\forall x, y \in M$ if $x \neq y, d(f(x), f(y)) < d(x, y)$
 - The function $g(x) = d(f(x), x): (M, d) \to (\mathbb{R}, |\cdot|)$ is continuous.

Using the quadrilateral inequality,
$$|g(x) - g(y)| = |d(f(x), x) - d(f(y), y)|$$

is $\leq d(x, y) + d(f(x), f(y))$. From def, this is $\leq 2d(x, y)$. (Lipschitz).

• If f is a shrinking map and M is compact, then f has a unique fixed point.

Because g(x) = d(f(x), x) is continuous and M is compact, $\exists x_0 \in M$ such that $g(x_0) = \inf_{x \in M} g(x)$. This x_0 is the fixed point $(d(f(x_0), x_0) = 0)$. If not, then $g(f(x_0)) = d(f(f(x_0)), f(x_0)) < d(f(x_0), x_0) = g(x_0)$, contradiction because minimum of g is attained at x_0 , $g(f(x_0))$ can't be lower than $g(x_0)$.

Uniqueness: If $x_1 \neq x_2$ are both fixed points, then $d(x_1, x_2) = d(f(x_1), f(x_2)) < d(x_1, x_2)$.

- Brouwer fixed point theorem: there is always a fixed point (not necessarily unique) if *M* is a closed ball in Rⁿ.
 - There does not have to be a fixed point if *M* is an open ball.