- Limits of functions
 - Def: Let X and Y be metric space; suppose D ⊂ X, f: D → Y, and x₀ is a limit point of D. We write f(x) → q as x → x₀, or lim f(x) = q
 - if there is a point $q \in Y$ with the following property:
 - $\forall \boldsymbol{e} > 0 \; \exists \boldsymbol{d} > 0 \text{ such that } \forall x \in D, \; \underset{x \neq x_0}{0} < d^{X}(x, x_0) < \boldsymbol{d} \implies d^{Y}(f(x), q) < \boldsymbol{e}$
 - x_0 need not be in *D*. Even if $x_0 \in D$, we may have $f(x_0) \neq \lim_{x \to x_0} f(x)$.
 - $= \lim_{n \to \infty} f(x_n) = q \text{ for every sequence } \{x_n\} \text{ in } D \text{ such that } x_n \neq x, \text{ and } \lim_{n \to \infty} x_n = x.$ Proof. " \Rightarrow ": Given \boldsymbol{e} , can find \boldsymbol{d} such that $\underset{x \neq x_0}{0} < d^X(x, x_0) < \boldsymbol{d} \Rightarrow$ $d^Y(f(x), q) < \boldsymbol{e}. \text{ Also, given } \boldsymbol{e}' = \boldsymbol{d}, \text{ can find } N \text{ such that } \forall n \ge N, d^X(x_n, x_0)$ $< \boldsymbol{e}' = \boldsymbol{d}, \text{ which implies } d^Y(f(x_n), q) < \boldsymbol{e}.$ " \Leftarrow ": Suppose $\lim_{n \to \infty} f(x_n) \neq q$, then $\exists \boldsymbol{e} \quad \forall \boldsymbol{d} = \frac{1}{n}, \quad \underset{x \neq x_0}{0} < d^X(x_n, x_0) < \boldsymbol{d} \text{ and } d^Y(f(x_n), q) > \boldsymbol{e}.$ The sequence $x_n \to x_0$ but $f(x_n) \neq q$.
 - If *f* has a limit at *p*, this limit is unique.

Proof. If two limits, then any sequence has to converge to both limits, which implies the limits are equal.

• Let x_0 be a limit point of D, $Y \subset \mathbb{R}^n$, $\lim_{x \to x_0} f(x) = y_1$, and $\lim_{x \to x_0} g(x) = y_2$, then (1) $\lim_{x \to x_0} (f + g)(x) = y_1 + y_2$, and (2) $\lim_{x \to x_0} (f \cdot g)(x) = y_1 \cdot y_2$.

Proof. Consider any sequence $x_n \to x_0$. We have sequences in \mathbb{R}^k $f(x_n) \to y_1$ and $g(x_n) \to y_2$; thus, $f(x_n) + g(x_n) \to y_1 + y_2$, $f(x_n) \cdot g(x_n) \to y_1 \cdot y_2$.

• Let x_0 be a limit point of D, $Y \subset \mathbb{R}^n$. $\lim_{x \to x_0} f(x) = y \Leftrightarrow \lim_{x \to x_0} f_k(x) = (y)_k$.

Proof. " \Rightarrow " Consider any sequence $x_n \to x_0$; we have $\lim_{n \to \infty} f(x_n) = y$. In \mathbb{R}^n , convergence means convergence for each component. So, $\lim_{n \to \infty} f_k(x_n) = (y)_k$. This is true for any sequence $x_n \to x_0$. " \Leftarrow " Consider any sequence $x_n \to x_0$. For all k, $\lim_{x \to x_0} f_k(x) = (y)_k$; so, $\lim_{n \to \infty} f_k(x_n) = (y)_k$ for all k. Thus, $\lim_{n \to \infty} f(x_n) = y$. This is true for any sequence $x_n \to x_0$. Alternative proof. " \Rightarrow " $\lim_{x \to x_0} f(x) = y$ means $\forall \boldsymbol{e} \; \exists \boldsymbol{d} \; \text{such that} \; \underset{x \neq x_0}{0} < |x - x_0| < \boldsymbol{d} \Rightarrow$ $|f(x) - y| < \boldsymbol{e}$. Hence we have $|f_k(x) - y_k| \le \sqrt{\sum_{k=1}^n |f_k(x) - y_k|^2} = |f(x) - y| < \boldsymbol{e}$. " \Leftarrow " $\lim_{x \to x_0} f_k(x) = y_k$ means $\forall \boldsymbol{e} \; \exists \boldsymbol{d} \; \text{such that} \; \underset{x \neq x_0}{0} < |x - x_0| < \boldsymbol{d} \; \Rightarrow \; |f_k(x) - y_k| < \frac{\boldsymbol{e}}{\sqrt{n}}$. Thus, $|f(x) - y| = \sqrt{\sum_{k=1}^n |f_k(x) - y_k|^2} < \boldsymbol{e}$

• Euclidean: Let x_0 be a limit point of D, $Y \subset \mathbb{R}^n$. $\lim_{x \to x_0} |f(x)| = 0 \Leftrightarrow \lim_{x \to x_0} f(x) = 0$.

Proof. By def. The right hand side means $\forall \boldsymbol{e} > 0 \exists \boldsymbol{d} > 0$ such that $\forall x \in D$, $\underset{x \neq x_0}{0} < |x - x_0| < \boldsymbol{d} \implies |f(x) - 0| < \boldsymbol{e}$. The left hand side has $||f(x)|| < \boldsymbol{e}$; same.

Euclidean Space

- $\forall x \ ax = 0 \Leftrightarrow a = 0$ matrix. Proof. Choose $x = e^{(j)}$. Then, ax is the j^{th} column of A. ax = 0 implies the j^{th} column of A is zero.
- Let *A* be any $m \times n$ matrix, $(a_{ij})_{\substack{i=1,\dots,m\\j=1,\dots,n}}$, then $\forall x \in \mathbb{R}^n \exists c$ such that $|Ax| \leq c|x|$.
 - Take $c = \sqrt{\sum_{k=1}^{m} \sum_{j=1}^{n} a_{kj}^2}$.
- $\lim_{x \to y} A(x-y) = 0$

Proof. $\exists c$ such that $|A(x-y)| \leq c|x-y|$.

- Little o
 - f(x) = o(h(x)) and g(x) = o(h(x)) as $x \to x_0$, then f(x) + g(x) = o(h(x)) as $x \to x_0$.

•
$$f(x) = o(h(x))$$
 as $x \to x_0$

$$\equiv \lim_{x \to x_0} \frac{f(x)}{h(x)} = 0 \text{ (don't care about } f(x_0), h(x_0))$$

 $= \forall \boldsymbol{e} > 0 \; \exists \boldsymbol{d} > 0 \; \text{such that} \; \forall x \in D \; |x - x_0| < \boldsymbol{d} \Rightarrow |f(x)| \le |h(x)| \boldsymbol{e} \; .$

$$\Rightarrow f(x_0) = 0.$$

$$= f(x) = o(h(x)) \text{ as } x \to x_0 \Leftrightarrow \forall k \ f_k(x) = o(h(x)) \text{ also as } x \to x_0.$$

Proof1. " \Rightarrow ": $\forall e > 0 \exists d > 0$ such that $\forall x \in D \ |x - x_0| < d \Rightarrow |f(x)| \le |h(x)|e$.

•
$$f(x) = o(|x-y|) \text{ as } x \to y$$

•
$$iff \forall e > 0 \exists d > 0 \text{ such that } \forall x \in D, |x-y| < d \Rightarrow |f(x)| \leq |x-y|e.$$

$$= \lim_{x \to y} \frac{f(x)}{|x-y|} = 0.$$

$$= \text{ for all } k, f_k(x) = o(|x-y|) \text{ as } x \to y.$$

Proof. Let $g(x) = \frac{f(x)}{|x-y|}$. Then, $g_k(x) = \left(\frac{f(x)}{|x-y|}\right)_k = \frac{f_k(x)}{|x-y|}$.

$$\lim_{x \to y} g(x) = 0 \Leftrightarrow \lim_{x \to y} g_k(x) = 0.$$

$$\Rightarrow \lim_{x \to y} f(x) = 0.$$

Proof. By def of $f(x) = o(|x-y|)$, given e , use $d' = \min\{d, 1\}$. Then $|x-y| < d'$
still $< d$; thus, $|f(x)| \leq |x-y|e < e$.

$$\Rightarrow f(y) = 0 \text{ if } f(x) \text{ is continuous.}$$

$$\Rightarrow \text{ If } f(x) = a(x-y) + b$$
, then $f(x) = 0 \forall x.$
Proof. $f(y) = 0 \Rightarrow b = 0$. We then have $\lim_{x \to y} \frac{a(x-y)}{|x-y|} = 0$. This is true $\forall x \to y$.
So, consider x only of the form $x = y + tw$ where $w \neq 0$. As $t \to 0^+, x \to y$.

$$\lim_{t \to 0^+} \frac{a(y + tw - y)}{|y + tw - y|} = \lim_{t \to 0^+} \frac{a(tw)}{|w|} = \lim_{x \to y^+} \frac{a(tw)}{|w|} = a(w) = 0 \Rightarrow a = 0.$$

• For scalars $a, ao(|x-y|)$ is still $o(|x-y|)$.
• For scalars $a, ao(|x-y|) + bo(|x-y|)$ and $g(x) = o(|x-y|)$ implies $g \cdot f(x)$ is $o(|x-y|)$.
Proof. This implies $\lim_{x \to y} \frac{f_k(x)}{|x-y|} \frac{g(x)}{|x-y|} = 0$. Thus, $\frac{(g \cdot f)_k(x)}{|x-y|^2} = o(|x-y|^2)$ and $\frac{g \cdot f_k(x)}{|x-y|} = o(|x-y|)$.

$$\frac{f_k(x)}{|x-y|} = o(|x-y|)$$

Differential Calculus in Euclidean Space

• $f: \mathbb{R}^n \to \mathbb{R}^m$

• Limit of a function: $\lim_{x \to x_0} f(x)$ exists if $\exists y \left(=\lim_{x \to x_0} f(x)\right)$, such that

 $\forall \boldsymbol{e} > 0 \ \exists \boldsymbol{d} > 0 \text{ such that } \forall x \in D, |x - x_0| < \boldsymbol{d} \text{ and } x \neq x_0 \Rightarrow |f(x) - y| < \boldsymbol{e}.$

The Differential

- Convention: all vectors are considered as column vectors in any equation involving matrix multiplication.
- $a: m \times n$ matrix (*m* rows and *n* columns)

• Affine function:
$$g(x) = ax + b = \begin{pmatrix} g_1(x) \\ \vdots \\ g_m(x) \end{pmatrix}, g_k(x) = \sum_{j=1}^n a_{kj}x_j + b_k.$$

• $f: D \to \mathbb{R}^m$ with $D \subseteq \mathbb{R}^n$. *D* is an open set.

•
$$f(x) = g(x) + o(|x - y|)$$
 as $x \to y$.

$$\equiv \lim_{x \to y} \frac{f(x) - g(x)}{|x - y|} = 0 \in \mathbb{R}^{m}$$

- $= \forall \boldsymbol{e} > 0 \exists \boldsymbol{d} > 0 \text{ such that } \forall x \in D, |x y| < \boldsymbol{d} \implies |f(x) g(x)| \le |x y| \boldsymbol{e}.$
- If there exists an affine function g(x) such that f(x) = g(x) + o(|x y|) as $x \to y$, then it is unique.
- Zero is the only affine function such that g(x) = o(|x y|) as $x \to y$.
- Def: $f: D \to \mathbb{R}^m$, $y \in D$. g(x) = ax + b is a best affine approximation of f at y provide that f(x) = g(x) + o(|x y|) as $x \to y$.
 - $\Rightarrow b = f(y).$
- Def: $f: D \to \mathbb{R}^m$ is differentiable at $y \in D$
 - if there exists an $m \times n$ matrix df(y), called the **differential** of f at y, such that

•
$$f(x) = f(y) + df(y)(x-y) + o(|x-y|)$$
 as $x \to y$.

$$\equiv \lim_{x \to y} \frac{f(x) - f(y) - df(y)(x-y)}{|x-y|} = 0$$

$$\equiv \lim_{x \to y} \frac{|f(x) - f(y) - df(y)(x-y)|}{|x-y|} = 0$$

 $= \forall \boldsymbol{e} > 0 \; \exists \boldsymbol{d} > 0 \text{ such that } |x - y| < \boldsymbol{d} \Rightarrow |f(x) - f(y) - df(y)(x - y)| \le |x - y| \boldsymbol{e}.$

- = each of the coordinate function $f_k: D \to \mathbb{R}$ is differentiable at y.
- Differentiability \Rightarrow continuity

Proof. $\lim_{x \to y} f(x) = \lim_{x \to y} (f(y) + df(y)(x-y) + o(|x-y|)) = f(y).$

- If f is real valued, then df(y) is $1 \times n$ (row vector). It is sometimes called the gradient of f and written $\nabla f(y)$.
- Def: If *f* is differentiable at every point of *D*, we say *f* is differentiable on *D*.
 We can regard the differential *df*(*y*) as a function of *y*, taking values in the space of *m×n* matrices R^{*m×n*}.

If $df: D \to \mathbb{R}^{m \times n}$ is continuous, we say f is continuously differentiable or f is C^1 .

- Differentiability and differential are linear. If both $f: D \to \mathbb{R}^m$ and $g: D \to \mathbb{R}^m$ are differentiable at *y*, then so is af + bg for scalars *a*, *b* and d(af + bg) = adf + bdg.
- If $f: D \to \mathbb{R}^m$ and $g: D \to \mathbb{R}$ are differentiable at y, then so is $g \cdot f$, and $d(g \cdot f)(y) = g(y)df(y) + f(y)dg(y)$.
- The <u>partial derivative</u> $\frac{\partial f_k}{\partial x_j} \in \mathbb{R}$ is said to exist at a point y
 - Def: if $f_k(y + te_j) = f_k(y) + \frac{\partial f_k}{\partial x_j}(y)t + o(t)$ as $t \to 0$.

$$= f_k(y + te_j) = f_k(y) + \frac{\partial f_k}{\partial x_j}(y)t + o(|t|) \text{ as } t \to 0.$$

 $= f_k(y + te_j) \text{ as a function of } t \text{ is differentiable at } t = 0 \text{ with derivative } \left[df(y) \right]_{k_j}.$

$$= \lim_{t \to 0} \frac{f_k(y + te_j) - f_k(y)}{t}$$

- Obtained by keeping all the variables $x_1, ..., x_n$ except x_j fixed and differentiating f_k as a function of x_j .
- Def: the **partial derivative of** f with respect to x_j :

$$\frac{\partial f}{\partial x_{j}}(y) = d_{e_{j}}f(y) = \lim_{t \to 0} \frac{f(y + te_{j}) - f(y)}{t} : D \to \mathbb{R}^{m}$$

- If nonzero $u \in \mathbb{R}^n$, the <u>directional derivative</u> $d_u f \in \mathbb{R}^m$ is said to exist at a point y
 - Def: if $f(y+tu) = f(y) + d_u f(y)t + o(t)$ as $t \to 0$.

$$= \lim_{t\to 0} \frac{f(y+tu)-f(y)}{t}.$$

- If u = 0, then $d_u f = 0$.
- Def: $d_u f_k(y) = [d_u f(y)]_k$ = the k^{th} component of $d_u f(y)$.
- If f is differentiable at y, then all partial and directional derivative exists at y

$$df(y) = \begin{pmatrix} \nabla f_{1}(y) \\ \vdots \\ \nabla f_{m}(y) \end{pmatrix} = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(y) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(y) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(y) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(y) \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial x_{1}}(y), \dots, \frac{\partial f}{\partial x_{n}}(y) \\ \frac{\partial f}{\partial x_{j}}(y) = d_{e_{j}}f(y) = df(y)e_{j} = \text{the } j^{\text{th}} \text{ column of } df(y)$$
$$\frac{\partial f_{k}}{\partial x_{j}} = \left[df(y)\right]_{k_{j}} = \left[d_{e_{j}}f(y)\right]_{k}$$
$$d_{u}f(y) = df(y)u = df(y)\left(\sum_{j=1}^{n}u_{j}e_{j}\right) = \sum_{j=1}^{n}u_{j}df(y)e_{j} = \sum_{j=1}^{n}u_{j}\frac{\partial f}{\partial x_{j}}(y).$$

• $f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$ has directional derivatives in all directions at all points in the plane but

is not differentiable at the origin.

- Let $f: D \to \mathbb{R}^m$ with $D \subset \mathbb{R}^n$ have partial derivatives $\frac{\partial f}{\partial x_j}: D \to \mathbb{R}^m$ for j = 1, ..., n that are continuous in a neighborhood of *y*. Then, *f* is differentiable at *y*.
- Let $f: D \to \mathbb{R}^m$ with $D \subset \mathbb{R}^n$ open, $y \in D$. If $\forall k \forall j$ partial derivatives $\frac{\partial f_k}{\partial x_j}$ exists in a neighborhood of y and continuous at y, then f is differentiable at y. And df is continuous at y.

• A function
$$f: D \to \mathbb{R}^m$$
 with $D \subset \mathbb{R}^n$ open is C^1 iff the partial derivatives

$$\left(\frac{\partial f}{\partial x_j}: D \to \mathbb{R}^m \text{ for } j = 1, \dots, n\right) \text{ exist and are continuous on } D.$$

- Note
 - $f: D \to \mathbb{R}^m$ is differentiable at a point (df(y) exists) if and only if each of the coordinate functions $f_k: D \to \mathbb{R}$ is differentiable at that point $\left(df_k(y) = \nabla f_k(y) \text{ exists}\right)$.
 - $f: D \to \mathbb{R}^m$ is continuous if and only if all the $f_k: D \to \mathbb{R}$ are continuous.

• $f: D \to \mathbb{R}^m$, open $D \subset \mathbb{R}^n$ is C^1 iff all $f_k: D \to \mathbb{R}$ are C^1 .

Proof. " \Rightarrow " df exists and continuous $\Rightarrow \forall x \forall k \forall j \ \frac{\partial f_k}{\partial x_j}(x)$ exists and continuous \Rightarrow for each $k, \forall x \forall j \ \frac{\partial f_k}{\partial x_j}(x)$ exists and continuous. Hence, df_k exists and continuous. • $\frac{\partial f}{\partial x_j}: D \to \mathbb{R}^m$ exists $\Leftrightarrow \frac{\partial f_k}{\partial x_j}$ exists $\forall k = 1, ..., m$. $\frac{\partial f}{\partial x_j}(y) = \begin{pmatrix} \frac{\partial f_1}{\partial x_j} \\ \vdots \\ \frac{\partial f_m}{\partial x_j} \end{pmatrix}$ (always, need not assume continuity.) Proof. Let $g(t) = \frac{f(y + te_j) - f(y)}{t}$. Then,

$$\frac{\partial f}{\partial x_{j}}(y) = \lim_{t \to 0} \frac{f(y + te_{j}) - f(y)}{t} = \lim_{t \to 0} g(t), \text{ and}$$
$$\frac{\partial f_{k}}{\partial x_{j}}(y) = \lim_{t \to 0} \frac{f_{k}(y + te_{j}) - f_{k}(y)}{t} = \lim_{t \to 0} g_{k}(t).$$

Then, use $\lim_{t\to 0} g(t) = w \Leftrightarrow \lim_{t\to 0} g_k(t) = w_k$.

• $\frac{\partial f}{\partial x_j}: D \to \mathbb{R}^m$ exists and is continuous if and only if $\frac{\partial f_k}{\partial x_j}$ is exists and is continuous $\forall k = 1, ..., m$.

Proof. Existence relationship follows from above. Continuity relationship follows because $\frac{\partial f_k}{\partial x_j}$ is the k^{th} component of $\frac{\partial f}{\partial x_j}$ by the formula given above.

- Thus, theorem(s) using existence or continuity of $\frac{\partial f}{\partial x_j}$ is equivalent to theorem using existence or continuity of $df \quad \forall k = 1, ..., m$.
- Pointwise Lipschitz condition: If f is differentiable at y, then $\exists d > 0$ and constant M_y (depending on y) such that $|x - y| < d \Rightarrow |f(x) - f(y)| \le M_y |x - y|$.

Proof. $|f(x) - f(y)| = |df(y)(x-y) + o(|x-y|)| \le |df(y)(x-y)| + |o(|x-y|)|$ $\le c|x-y| + |x-y|$. The inequality of the second part of the sum requires that x and y are close enough.

- Let $f: D \to \mathbb{R}^m$ with $D \subseteq \mathbb{R}^n$ and $g: A \to \mathbb{R}^p$ with $f(D) \subset A \subset \mathbb{R}^m$. $g \circ f: D \to \mathbb{R}^p$ is defined by $g \circ f(x) = g(f(x))$ for $x \in D$.
- Recall, $g(t): \mathbb{R} \to \mathbb{R}$. $g'(t_0)$ exists. g(t) attains its max or min at $t = t_0$, then $g'(t_0) = 0$.

Proof. Assume max.
$$g'(t_0) = \lim_{t \to t_0} \frac{g(t) - g(t_0)}{t - t_0}$$
 exists. $\lim_{t \to t_0^+} \frac{g(t) - g(t_0)}{t - t_0} \le 0$, and

$$\lim_{t \to t_0^-} \frac{\overbrace{g(t) - g(t_0)}^{\leq 0}}{\underbrace{t - t_0}_{<0}} \ge 0. \text{ Hence, } \lim_{t \to t_0} \frac{g(t) - g(t_0)}{t - t_0} = 0.$$

• Let $f: D \to \mathbb{R}$ for $D \subseteq \mathbb{R}^n$, and let y be a point in the interior of D. If f assumes its maximum or minimum value at y and f is differentiable at y, then $df(y) = \nabla f(y) = 0 \left(\frac{\partial f}{\partial x_k}(y) = 0 \forall k = 1, ..., n\right).$

Proof.
$$g(t) = f(y+te_j)$$
 is differentiable at 0 because $g'(0) = \lim_{t \to 0} \frac{g(t) - g(t)}{t} = \lim_{t \to 0} \frac{f(y+te_j) - f(y)}{t} = d_{e_j}f(y)$, and f is differentiable at y . Also, $d_{e_j}f(y) = \frac{\partial f}{\partial x_j}(y)$.

Because g(t) attains its max or min at t = 0, g'(0) = 0.

• Let f(x) = Ax + b, then df(x) = A.

Proof.
$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - A(x - x_0)}{|x - x_0|} = \lim_{x \to x_0} \frac{Ax + b - Ax_0 - b - A(x - x_0)}{|x - x_0|} = \lim_{x \to x_0} \frac{0}{|x - x_0|} = 0.$$

- If f: D→ ℝ^m with D⊂ ℝⁿ is differentiable, then we regard df as a function df: D→ ℝ^{m×n} taking values in the space of m×n matrices.
- f is differentiable at y. h(w, z) = o(|w z|) as $w \to z$. Then, h(f(x), f(y)) = o(|x - y|) as $x \to y$.

Proof. By the differentiability at y,
$$|x - y| < d \Rightarrow |f(x) - f(y)| \le M_y |x - y|$$
. From def,
 $h(f(x), f(y)) = o(|f(x) - f(y)|)$ as $f(x) \to f(y)$. By continuity of $f, x \to y$ implies
 $f(x) \to f(y)$. So, $\lim_{x \to y} \frac{h(f(x), f(y))}{|f(x) - f(y)|} = \lim_{f(x) \to f(y)} \frac{h(f(x), f(y))}{|f(x) - f(y)|} = 0$. Thus,
 $\lim_{x \to y} \frac{h(f(x), f(y))}{|x - y|} = \lim_{x \to y} \frac{h(f(x), f(y))}{|x - y|} = \lim_{x \to y} \frac{h(f(x), f(y))}{|f(x) - f(y)|} = \lim_{x \to y} \frac{h(f(x), f(y))}{|f(x) - f(y)|} = 0$. Thus,
 $= 0$.

• <u>Chain rule</u>: If *f* is differentiable at *y* and *g* is differentiable at z = f(y), then $g \circ f$ is differentiable at *y* and $d(g \circ f)(y) = dg(z) df(y)$ (matrix multiplication.)

• If g is real-valued, then $d(g \circ f)(y) = dg(z) df(y)$ $\frac{\partial}{\partial x_{j}}(g \circ f)(y) = \sum_{k=1}^{m} \frac{\partial g}{\partial z_{k}}(z) \frac{\partial f_{k}}{\partial x_{j}}(y).$

• Ex.
$$f : \mathbb{R}^n \to \mathbb{R}$$
, $df(y)$ exists, $g(t) = f(y + te^{(j)}) : \mathbb{R} \to \mathbb{R}$, then,
 $dg(t) = df(y + te^{(j)})e^{(j)} = \frac{\partial f}{\partial x_j}(y + te^{(j)})$. Hence, $dg(0) = df(y)e^{(j)} = \frac{\partial f}{\partial x_j}(y)$.

Alternatively, can have $g'(0) = \lim_{s \to 0} \frac{f(y + se^{(j)}) - f(y + 0e^{(j)})}{s} = \lim_{s \to 0} \frac{f(y + se^{(j)}) - f(y)}{s} = \sum_{s \to 0} \frac{f(y + se^{(j)}) - f(y$

 $\frac{\partial f}{\partial x_j}(y)$ (by definition of partial derivative); exists because df(y) exists.

- If f and g are differentiable (respectively C^1) on their domains, then so is $g \circ f$.
- If f and g are differentiable on their domains, $g \circ f$ is differentiable on its domain.
- If dg and df are continuous, $d(g \circ f)$ is continuous.

• MVT0: Mean Value theorem:

Let open $\Omega \subset \mathbb{R}^n$, $f : \Omega \to \mathbb{R}$ differentiable.

 $[a,b] \subset \Omega \implies \exists c \in (a,b)$ such that $f(b) - f(a) = df(c)(b-a) = \nabla f(c) \cdot (b-a)$.

Proof. Let u = b - a. Define a real-valued function g(t) = f(a+tu). Then, by chain rule, g'(t) = df(a+tu)u, exists. This is true $\forall t \in [0,1]$.

By the mean value theorem, $\exists t_0 \in (0,1)$ such that $g'(t_0) = \frac{g(1) - g(0)}{1 - Q} = f(b) - f(a)$. Let $c = a + t_0(b-a) = a + t_0 u$. Note that $c \in (a,b)$ because $t_0 \in (0,1)$. Hence, $\exists c \in (a,b)$ such that $g'(t_0) = df(c)(b-a) = f(b) - f(a)$.

- Let $f: \mathbb{R}^n \to \mathbb{R}^m$, then
 - 1) $df \equiv 0$ iff f is constant
 - 2) df is constant if and only if f is an affine function (Ax+b).

Proof 1): " \Leftarrow " f_k is constant. $\forall x \forall k \forall j \ \frac{\partial f_k}{\partial x}(x) = 0$, continuous. " \Rightarrow " Consider g(x) = $f_k(x)$. f is differentiable \Rightarrow f_k is differentiable \Rightarrow g is differentiable, $dg(x) = df_k(x) = 0$ $\forall x$. Consider any $x, y \in \Omega$, $x \neq y$. Then, by MVT0, $\exists z_0 \in (x, y)$ $f(y) - f(x) = \underbrace{df(z_0)}_{0 \text{ for any } z_0} (y - x) = 0$. Hence, f_k is constant. This is true $\forall k$. Proof 2): " \Leftarrow " Let f(x) = Ax + b, then df(x) = A constant. " \Rightarrow " Let f(0) = b. Consider $g(x) = f_k(x)$. So, $g(0) = b_k$. $dg(x) = df_k(x) = a^{(k)}$, the kth row of A. By MVTO, $\exists z_0 \in (0,x) \ g(x) - g(0) = dg(z_0) (x - 0) = a^{(k)}x. \text{ Therefore, } f_k(x) = g(x) = a^{(k)}x + b_k.$

$$a^{(k)}$$
 for any z_0

• Let $f:[a,b] \to \mathbb{R}^m$ be continuous. Also, $\forall t \in (a,b) df(t) = 0$. Then, f(a) = f(b).

Proof. Let z = f(b) - f(a), and $g(t) = z \cdot f(t) = \sum_{i=1}^{m} z_i f_i(t) : [0,1] \to \mathbb{R}$. Because f(t) is continuous on in [a,b], g(t) is also continuous on [a,b]. Also, because $\forall t \in (a,b)$ df(t) = 0, we also have $\frac{\partial f_i}{\partial t}(t) = f'_i(t) = 0$. Thus, $g'(t) = \sum_{i=1}^{m} z_i f'_i(t) = 0 \quad \forall t \in (a, b)$. By the mean value theorem, $\exists t_0 \in (a,b)$ such that $\frac{g(b) - g(a)}{a-b} = g'(t_0) = 0$. Hence, g(b) - g(a) = 0. Note that $g(b) - g(a) = (f(b) - f(a)) \cdot f(b) - (f(b) - f(a)) \cdot f(a)$ $=(f(b)-f(a))\cdot(f(b)-f(a))=|f(b)-f(a)|^{2}$

Thus, f(b) = f(a).

Def: Let (a,b) denote the line segment joining a and b. The points on this line segment can be expressed as $v = (1-t)a + tb = a + t(b-a), t \in [0,1]$.

- Def: We say a set $B \subset \mathbb{R}^n$ is <u>convex</u> if $\forall x, y \in B \ \forall I \in [0,1]$ we have $I x + (1 I) y \in B$.
 - Open balls are convex. Consider $B = B_r(x_0)$. Then $\forall x, y \in B \quad \forall l \in [0,1]$

$$|\mathbf{l} x + (1 - \mathbf{l}) y - x_0| = |\mathbf{l} (x - x_0) + (1 - \mathbf{l}) (y - x_0)|$$

$$\leq \mathbf{l} |x - x_0| + (1 - \mathbf{l}) |y - x_0| < \mathbf{l} r + (1 - \mathbf{l}) r = r$$

• Let $f: D \to \mathbb{R}^m$ where $D \subset \mathbb{R}^n$ is open and convex. Then, $df(x) = 0 \ \forall x \in D \Rightarrow f$ is constant.

> Proof. Let x be any point in D. Let f(x) = a. Consider any y in D. Define $g(t) = (1-t)x + ty : [0,1] \to \mathbb{R}^n$. Because D is convex, $\forall t \in [0,1], g(t) \in D$. Let $h(t) = f(g(t)) : [0,1] \to \mathbb{R}^m$. Then, $\forall t \in [0,1]$ dh(t) = df(g(t))dg(t) = 0 because df(g(t)) = 0. This implies h(0) = h(1), or equivalently, f(x) = f(y).

Proof. Let x be any point in D. Let f(x) = a. Consider any y in D. Because D is convex, D contains the line segment joining x and y.

For each k in $\{1, ..., m\}$, consider $f_k : D \to \mathbb{R}$. $df(x) = 0 \forall x \in D \Rightarrow$

$$\nabla f_k = \left(\frac{\partial f_k}{\partial x_1} \quad \cdots \quad \frac{\partial f_k}{\partial x_n}\right) = (0 \quad \cdots \quad 0). \text{ So, } f_k \text{ is } C^1, \text{ and } \exists z \text{ on the line joining } x \text{ and } y$$

such that $f_k(x) = f_k(y) + \nabla f(z) \cdot (y - x).$ For any value of z on the line segment, $\nabla f(z) = 0.$ So, $f_k(x) = f_k(y).$ This is true for all k , so $f(x) = f(y).$

• Let $f: D \to \mathbb{R}^m$ where $D \subset \mathbb{R}^n$ is open and connected (so arcwise-connected). Then, $df(x) = 0 \ \forall x \in D \Rightarrow f$ is constant.

Let x be any point in D. Let f(x) = a. Consider any y in D.

Let $A = \{t \in [0,1]; f(g(t)) = a\}$, and $t_0 = \sup A$.

 $0 \le t_0 \le 1$ because $0 \in A$ (f(g(0)) = f(x) = a), and 1 is an upper bound of A. Claim: $f(g(t_0)) = a$.

Because t_0 is the sup of $A \subset [0,1]$, \exists sequence $\{t_n\}$ in $A \subset [0,1]$ converging to t_0 . Because f and g are continuous, $f \circ g$ is continuous. Thus,

$$\lim_{n \to \infty} f \circ g(t_n) = f \circ g(\lim_{n \to \infty} t_n) = f \circ g(t_0) = f(g(t_0)). \text{ Because}$$
$$\lim_{n \to \infty} f \circ g(t_n) = \lim_{n \to \infty} f(g(0)) = f(g(0)) = a, \text{ we conclude that } f(g(t_0)) = a.$$

Claim: $t_0 = 1$.

Assume $0 \le t_0 < 1$, then because *D* is an open set in \mathbb{R}^n , $\exists r$ such that $B_r(g(t_0)) \subset D$. (If $r > |y - g(t_0)|$, set $r = |y - g(t_0)|$, and $B_r(g(t_0)) \subset D$, still.) Because $B_r(g(t_0))$ is convex, and $\forall x \in B_r(g(t_0))$, df(x) = 0, we conclude that $\forall x \in B_r(g(t_0))$, $f(x) = f(g(t_0)) = a$. By continuity of g, $\exists d$ such that $\forall t \in [0,1] | t - t_0 | < d \Rightarrow |g(t) - g(t_0)| < r$. Hence, $\exists t' \in [0,1]$, $t' > t_0$, $g(t') \in B_r(g(t_0))$, which implies f(g(t')) = a; so, $t' > t_0 \in A$. This contradict the assumption that $t_0 = \sup A$.

We have shown that $f(g(t_0)) = a$. Because $t_0 = 1$, f(g(1)) = f(y) = a.

• If *D* is not connected, then *f* may not be constant. Ex. Let $D = (0,1) \cup (2,3)$, not connected because it is not an interval. Let $f(x) = \begin{cases} 0 & x \in (0,1) \\ 1 & x \in (2,3) \end{cases}$: $D \to \mathbb{R}$. Then, $f'(x) = 0 \quad \forall x \in D$, but f(x) is not constant.

Differentiating a general function defined by an integral

• If $g : \mathbb{R}^2 \to \mathbb{R}$ is continuous, then $G(x) = \int_a^b g(x, y) dy$ is continuous.

Proof. Consider at x_0 . g is continuous; thus, uniformly continuous on compact $[x_0 - \mathbf{d}', x_0 + \mathbf{d}'] \times [a, b]$. Thus, given $\mathbf{e} > 0$, $\exists \mathbf{d} > 0$ such that $\forall x \in [x_0 - \mathbf{d}', x_0 + \mathbf{d}']$ $\forall y \in [a, b] |x - x_0| < \mathbf{d} \Rightarrow |(x, y) - (x_0, y)| < \mathbf{d} \Rightarrow |g(x, y) - g(x_0, y)| < \mathbf{e}$. So, $\left| \sum_{j=1}^n g(x, y_j) \Delta y_j - \sum_{j=1}^n g(x_0, y_j) \Delta y_j \right| \le \sum_{j=1}^n |g(x, y_j) - g(x_0, y_j)| \Delta y_j \le \sum_{j=1}^n \mathbf{e} \Delta y_j = \mathbf{e} (b - a)$. Taking the limit as the max interval length of the partition goes to zero, the sum become integrals, and $|G(x) - G(x_0)| \le \mathbf{e} (b - a)$.

•
$$g: \mathbb{R}^2 \to \mathbb{R}$$
 is C^1 . Let $h_n \to 0$. $\forall x_0 \quad G_n(x_0, y) = \frac{g(x_0 + h_n, y) - g(x_0, y)}{h_n}$. Then,
 $G_n(x_0, y) \xrightarrow{\text{uniformly}} \frac{\partial g}{\partial x}(x_0, y)$ over $y \in [a, b]$. Hence, $\lim_{n \to \infty} \int_a^b \frac{g(x + h_n, y) - g(x, y)}{h_n} dy = \int_a^b \frac{\partial g}{\partial x}(x, y) dy$.

Proof. For a given x_0 , let $H_n(y) = G_n(x_0, y)$. Then, for uniform convergence of $H_n(y)$ to $\frac{\partial g}{\partial x}(x_0, y)$ over $y \in [a, b]$, need $\forall \boldsymbol{e} > 0 \exists N \in \mathbb{N} \quad \forall y \in [a, b] \left| H_n(y) - \frac{\partial g}{\partial x}(x_0, y) \right| \leq \boldsymbol{e}$.

g is *C*¹. By the mean value theorem,
$$\forall y \forall n \exists z_{n,y} x_0 < z_{n,y} < x_0 + h$$

 $G_n(x_0, y) = \frac{g(x_0 + h_n, y) - g(x_0, y)}{h_n} = \frac{\partial g}{\partial x}(z_{n,y}, y).$
Given $e > 0$. Note that $\left| H_n(y) - \frac{\partial g}{\partial x}(x_0, y) \right| = \left| \frac{\partial g}{\partial x}(z_{n,y}, y) - \frac{\partial g}{\partial x}(x_0, y) \right|$. By the uniform continuity of $\frac{\partial g}{\partial x}(x, y)$ on compact $[x_0 - d', x_0 + d'] \times [a, b], \exists d > 0 \quad \forall y \in [a, b]$
 $\left| (z_{n,y}, y) - (x_0, y) \right| < d \Rightarrow \left| \frac{\partial g}{\partial x}(z_{n,y}, y) - \frac{\partial g}{\partial x}(x_0, y) \right| < e$. Note that $\left| z_{n,y} - x_0 \right| < h_n$, and $h_n \to 0$; thus, $\exists N \in \mathbb{N}, \forall n \ge N \quad \left| z_{n,y} - x_0 \right| < d$.

• Recall:

•
$$f_n(x) \xrightarrow{\text{uniformly}} f(x) \text{ iff } \forall \boldsymbol{e} > 0 \ \exists N \in \mathbb{N} \ \forall x \in D \ \forall k \ge N \ \left| f_k(x) - f(x) \right| \le \boldsymbol{e}$$

• $f_n(x) \xrightarrow{\text{uniformly}} f(x) \text{ on } [a,b] \Rightarrow \lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx.$

• If
$$g: \mathbb{R}^2 \to \mathbb{R}$$
 is C^1 , then $F(x) = \int_a^b g(x, y) dy$ is C^1 with $F'(x) = \int_a^b \frac{\partial g}{\partial x}(x, y) dy$.
Proof. $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{1}{h} \left(\int_a^b g(x+h, y) dy - \int_a^b g(x, y) dy \right) =$
 $\lim_{h \to 0} \int_a^b \frac{g(x+h, y) - g(x, y)}{h} dy$. By above, we have any sequence $h_n \to 0$
 $\lim_{n \to \infty} \int_a^b \frac{g(x+h_n, y) - g(x, y)}{h_n} dy = \int_a^b \frac{\partial g}{\partial x}(x, y) dy$. Hence, $F'(x) = \int_a^b \frac{\partial g}{\partial x}(x, y) dy$.
Because $\frac{\partial g}{\partial x}(x, y)$ is continuous, $\int_a^b \frac{\partial g}{\partial x}(x, y) dy$ is continuous.

$$f'(x) = b'(x)g(x,b(x)) - a'(x)g(x,a(x)) + \int_{a(x)}^{b(x)} \frac{\partial g}{\partial x}(x,y)dy$$

Proof. Consider $F(x_1, x_2, x_3) = \int_{a(x_2)}^{b(x_1)} g(x_3, y) dy$. Then, by the 1-D chain rule and the fundamental theorem of the calculus (differentiation of the integral)

$$\frac{\partial}{\partial x_1}F(\bar{x}) = g(x_3, b(x_1))b'(x_1) \text{ and } \frac{\partial}{\partial x_2}F(\bar{x}) = -g(x_3, a(x_2))a'(x_2).$$

Note that both are continuous. Also,

$$\frac{\partial}{\partial x_3} F\left(\bar{x}\right) = \int_{a(x_2)}^{b(x_1)} \frac{\partial}{\partial x_3} g\left(x_3, y\right) dy = \int_{a(x_2)}^{b(x_1)} \frac{\partial}{\partial x} g\left(x, y\right) dy, \text{ continuous.}$$
Let $h(x) = \begin{pmatrix} x \\ x \\ x \end{pmatrix} \Rightarrow dh(x) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
Thus, $f(x) = F(h(x)) = F(x, x, x) \Rightarrow$
 $df(x) = dF(h(x)) dh(x) = \sum_{i=1}^{3} \frac{\partial}{\partial x_i} F(h(x)) = \sum_{i=1}^{3} \frac{\partial}{\partial x_i} F(x, x, x).$