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Limits of functions
Def: Let X and Y be metric space; suppose DI X ,f: D® Y, and Xo isalimit point of
D. Wewrite f (x)® g as x® x,,0r limf(x)=q

X® Xo
if thereisapoint g1 Y with the following property:

"e>08d >0 suchthat " xi D, 0 <d*(xx)<d b d*(f(x),q)<e
XX

Xo need not bein D. Even if x,1 D, we may have f (%) limf(x).

® X

° limf (x,) = q for every sequence { x,} in D suchthat x,* x, and limx, = x.

n® ¥

Proof. “P ": Given e, canfind d suchthat 0 <d*(x,x)<d b

Xt %
d"(f(x),q) <e.Also, given e¢=d, canfind N suchthat " n3 N, d* (x,,%,)
< e¢=d, which implies dY(f(x]),q) <e."“U ”: Suppose lim f (%,)* g, then

$e "d=1, 0 <d* (%, %) <d and d¥(f(x,),q) >e. Thesequence x, ® X,
n’'x%

but f(x,)®q.
If f has alimit at p, this limit is unique.

Proof. If two limits, then any sequence has to converge to both limits, which implies
the limits are equal.

Letxo bealimitpointof D, Y1 R", lim f(x)=y,,and limg(x)=y,, then (1)
X® Xg X® X
lim(f+g)(x)=y,+Y,,and(2) lg@rg(f xg)(X) = ¥y XY, -

X® Xy

Proof. Consider any sequence x, ® X, . We have sequencesin R* f (x,)® vy, and
(%) ® y,ithus, f(x,)+9(x)® yi+y,. f(x)g(x)® yxy,.
Let xo bealimit pointof D, Y1 R". lim f(x)=yU Xlgrxl f (X)=(Y),-

X® Xg
Proof. “p " Consider any sequence x, ® x,; we have lim f (%)=y.InR",
convergence means convergence for each component. So, lim f, (%) =(y),. Thisis

true for any sequence x, ® x,.“U ”Consider any sequence x, ® x,.Forall kK,
lim f, (x) = (), so. lim f (%) =(y), foral k. Thus, lim f (%,)=y. Thisistrue

X® Xg

for any sequence x, ® X, .



Alternative proof. “p " I(i@mf(x):y means " e $d suchthat O <|x- x0|<d b
X® X P

|f(x)- y|<e.Hencewehave |f,(X)- y,|£ \/én_|fk(x)- yk|2 =[1(x)- y|<e.
k=1

“O” limf, (x)=y, means " e $d suchthat 0 <|x- x|<d P |fk(X)' yk|< -
X1 %

X® Xg

Thus, | (x)- y|= \/

Euclidean: Let xo bealimit pointof D, Y1 R". lim|f(x)|=00 lim f (x)=0.

X® Xo X® Xg

|fk(x)- yk|2 <e

Qo>

=
1l

1

Proof. By def. The right hand sidemeans " e >0 $d >0 suchthat " x1 D,
0 <|x- x|<d P |f(x)- 0<e.Theleft hand side has | f (x)| <e; same.
Xt

Euclidean Space
"x ax=0U0 a=0 matrix.

Proof. Choose x =€), Then, ax isthej™ columnof A. ax =0 impliesthej™ column of
A is zero.

Let Abeany m” n matrix, (aﬁ)i:lp_qm,then "x1 R" $c suchthat |AX| £ c|X|.
j=1...,n

Take c=_[a & a; .
k=1 j=1
le®r73/A(x- y)=0

Proof. $¢ suchthat |A(x- y)| £¢[x- y|.
Littleo
f(x)=0(h(x)) and g(x)=o(h(x)) as x® x,,then f(x)+g(x)=0(h(x)) as
X® X,.
f(x)=o(h(x)) as x® x,

x®% h(x)

=0 (don't care about f (x,),h(x,))

(]

"e>0%d >0 suchthat " xI D |x- x| <d P |f (x)|£]|h(X)|e.
p f(x)=0.
f(x)=o(h(x)) asx® % 0 "k f,(x)=0(h(x)) dsoas x® x,.
Proofl. “P ":" @>0$d >0 suchthat " xI D |x- x| <d b |f(x)|£]h(x)|e.

o



f(x)=0o(|x- y|) asx® y
iff "e>0%d >0suchthat " x1 D, |x- y|<d P |f(x)|£]x- ye.

° “mf(x) =0
x®y|x y| )

o foralk, f,(x)=0o(]x-y|) asx®y.

Proof. Let g(x )__f(x) Then, g, (X aef( )¢ _ (Y
-y 28 v e
limg(x)=0U Ixi®ny19k(x):

X® y

P limf(x)=0.

X® y

Proof. By def of f(x)=o0(|x- y|),givene, use d¢=min{d, . Then |x- y|<d¢
gl <d;thus, | (X)|£[x- yle<e.

f (y) =0 if f(x) is continuous.
P If f(x)=a(x-y)+b,then f(x)=0"x.

Proof. f(y)=0 P b=0. Wethen hae 'X'”}a|(xx_ >|’)

0. Thisistrue " x® vy.

So, consider x only of theform x=y +tw wherew?! 0. Ast® 0", x® .
im AW Y) a3 a0k azo
t® 0* |y+tvv y| t® o' |tw| X®y|t||w| t® o' |v\,1

For scllarsa, ao(|x- y|) isstill of|x- y|).
For scalars a, b, ao(|x- y|) +bo(|x- y]) isstill o(|x- y]).
f:D® R™, g:D® R. f(x)=0o(x- y|) and g(x) =

of[x- ¥])-

f
Proof. Thisimplies I|mf () 9(x) =0. Thus, w = o(|x- y|2)
)%=yl |x- Y [x-

o(|x- y]) implies g xf (x) is

91 () _ of|x- y|). Thelater parUmph%hmng( J =0. So,
x- Y] v [x-
g > (%)

o|x- y])-

- Y|



Differential Calculusin Euclidean Space
f:R"® R"

Limit of afunction: lim f (x) existsif $y (: lim f (x)) , such that
X® %,

X® Xy

"e>0%d >0 suchthat " xT D, [x- x|<d and x* x, b |f(x)- y|<e.

TheDifferential

Convention: al vectors are considered as column vectors in any equation involving matrix
multiplication.

am’” nmatrix (mrowsand n columns)

aegl(x)é N
Affine function: g(x) = ax+b:g bl (X =8 ax +h.
80, (95

f:D® R™with DI R".Disanopen set.
f(x)=g(x)+o(]x- y|) asx®v.
o im0 90) _ g
wy o x-y
° "e>08%d>0suchthat " xI D, [x- y|<d P |f(x)- g(x) £[x- yle.
If there exists an affine function g(x) such that f (x) =g(x) +o(|x- y|) asx® y, thenitis
unique.
Zerois the only affine function such that g(x) = o(|x- y|) asx® .
Def: f:D® R"™, yl D. g(x)=ax+b isabest affine approximation of f a y provide that
f(x)=g(x)+o(]x- y|) asx®v.
P b=f(y).
Def: f:D® R™ isdifferentiablea yi D
if thereexistsan m” nmatrix df (y), called the differential of f a y, such that

F(x)=f(y)*df ((x y)+o(x- ) sx@y.

f(q- 1(y)-dN*xY_,
[x-y]

[F()- f(y)- df (5)(x y)

[x- ¥

=0




° "e>08%d>0suchthat |x- yj<d b |f(x)- f(y)-df(y)(x y)£|x- Y.
© each of the coordinate function f, :D ® R isdifferentiable at y.
Differentiability P continuity

Proof. lim f (x):lim(f (y) +df (y)(x- y)+o(|x- y|)): f(y).

X® y X® y
If  is real valued, then df (y) is 1" n (row vector). It is sometimes called the gradient of f
and written Nf (y).
Def: If f isdifferentiable at every point of D, we say f isdifferentiable on D.
We can regard the differential df (y) as afunction of y, taking values in the space of m" n
matrices R™ ".
If df :D® R™ " iscontinuous, we say f is continuously differentiable or f is C*.
Differentiability and differential arelinear. If both f :D® R™and g:D® R™ are
differentiable at y, then sois af +bg for scalarsa, band d(af +bg) =adf +bdg .
If f:D® R"and g:D® R aredifferentiableat y, then sois g xf , and
d(gxf)(y)=g(y)df (y)+f(y)dg(y).

The partial derivative jnﬂi R issaid to exist at apointy
X.
]

Def: if fk(y+tej): fk(y)+ﬂ—fk(y)t+o(t) ast® 0.

1

¢
o f,(y+tg)= fk(y)+27k(y)t+o(|t|) ast® 0.

J

° f,(y+te) asafunctionof t is differentiable at t = 0 with derivative gdf (y)g, -

= lim fy+te)- f(y).

t®0 t

Obtained by keeping all the variables x, ..., X, except x; fixed and differentiating fx as a
function of x;.

Def: the partial derivative of f with respect to x;:

i ' f(y+tej)- f(y)
—(y)=d,_f =lim
ﬂXJ_(y) , F(y)=lim t

If nonzero ul R", the directional derivative d, f T R™ issaid to exist at apoint y
Def: if f(y+tu)="f(y)+d,f(y)t+o(t) ast® O.

:D® R"




= lim f(y+tu)- f(y) |

t®0 t

Ifu=0,then d,f =0.
Def: d, f, () =gd, f(¥)g, = the k™ component of d,f ().

If f isdifferentiable at y, then all partial and directional derivative existsat y

&, Tf, (1O
~ . ceo\Y) y
af, (y)o gﬂxl( ) ﬂxn( ) )
_Cc . = . . _ o af 0
df (y)—g~ : ?—Q : . : | gﬂ() K(Y)+
&NfL (y) g '"f_m(y) m(y)?
% ™ g
%(y)—de f(y) =df (y)e = thej” column of df ()
j
. _ o
ﬂ—xkj—@df() =g f (V)
0 3 f
d, f(y)=df (y)u=df (v)eR ue <= Ay df (y)e =4 u2—(y).
=1 @ a1 = 9
f(x ) =% __ hasdirectiona derivativesin al directions at all pointsin the plane but

is not differentiable at the origin.
qf

Let f:D® R™with DI R" have partial derivatives ﬂ—: D® R™ forj =1, ..., nthat are
X.
J
continuous in a neighborhood of y. Then, f is differentiable at .
Let f:D® R™with DI R" open,yl D.If "Kk"| partia derivatives 1?—" existsin a
X

j
neighborhood of y and continuous at y, then f is differentiable at y. And df is continuous &t y.

A function f : D® R™with DI R" openisC! iff the partial derivatives

5
é_: D® R™ forj =1,....n% exist and are continuous on D.
' o]

Note

f:D® R™ isdifferentiable at apoint (df (y) exists) if and only if each of the

coordinate functions f, :D ® R isdifferentiable at that point g%fk(y) Nf.(y) exists..
Tn 2

f:D® R" iscontinuousif and only if al the f, :D ® R are continuous.




f:D® R™,open DI R"isChiffal f,:D® R areC.

Proof. “p " df existsand continuousbP " x" k" j :TL(X) exists and continuous b for
X.
I

eachk, " X" | :TL(X) exists and continuous. Hence, dfy exists and continuous.
X.
J

ﬂ: D® R™ exists U T exists " k=1,...,m.

ﬂXj ﬂxj
o, 6
X, -
i ¢ '~ L
ﬂ_(y) =C¢ : = (aways, need not assume continuity.)
X. c.. =
G
&% 5
f te ]- f
Proof. Let g(t) = v+ ejt) ) . Then,
i o fly+te)- f(y)
g (V)= lim ( ’t) = limo(t). and
T\, fk(y"'tej)' f(y)
ﬁ(y) =lim " =lima ().

Then, wse It|®rrolg(t) =wU !E@rggk(t) =W,.

f, . . . ,
ALY is exists and is continuous

it :D® R™ exists and is continuous if and only if .
X

"k=1,..,m.
Proof. Existence relationship follows from above. Continuity relationship follows

because T is the k™ component of s by the formula given above.

1, X;

i

Thus, theorem(s) using existence or continuity of —%Tf Is equivalent to theorem using
X.
]

existence or continuity of df " k=1,...,m.

Pointwise Lipschitz condition: If f is differentiable at y, then $d >0 and constant M,

(depending on'y) suchthat |x- y|<d P |f (x)- f(y)|£ M, |x Y.




Proof. | (x)- f ()] = [df (y)(x- y)+o(jx- V)| £]df (¥)(x- ¥)] +[o(}x- ¥])
£ c|x- y|+|x- y|. The inequality of the second part of the sum requires that x and y are
close enough.

Let f:D® R™with Di R"and g: A® R” with f (D)1 Al R".

gof :D® RP isdefinedby gof (x):g(f(x)) forx1 D.

Recal, g(t):R® R. gqt,) exists. g(t) attainsits max or min at t = to, then g{t,) =0.

o(1)- alt,) g

—
Proof. Assume max. g{t,) =lim=—-~,—2-2~ exists. lim 2 9(t)- ot )£O,and
®h -1, @y t-

g
to

f—/%

Iim (t) g( )3 0. Hence, Iim (t)
@ty t- tO ® t-

<0

9(t) _,
ty

Let f:D® R for DI R", and lety be apoint in the interior of D.

If f assumes its maximum or minimum value a y and f is differentiable at y, then

. f 6
df (y) =Nf (y)=0 g?—(y)=0" k=1,...,ns.
e %

2
Proof. g(t) = f(y+te].) is differentiable at 0 because g¢{0) = |ti®r99(t) 't 9(0) —
f te |- f
lim (y+ e,t) (y) _ d, f(y),andf is differentiable at y. Also, d, f (y)=1?_f(y)_
i J Xj
Because g(t) attainsitsmax or minatt =0, g¢0) =
Let f(x)=Ax+b,then df (x)=A.

Proof. lim () T00)- Alx- %) lim 22Xt D= A% - b Alx- %) _ lim—>

X® %o |X- X0| X® Xo |X- X0| x®x0|x_ X0|

=0.
If f:D® R™with DI R" isdifferentiable, then we regard df as a function
df :D® R™" taking valuesin the space of m" n matrices.

fisdifferentiableaty. h(w,z) = o|jw- 7) s w® z.

Then, h(f(x), f(y))=o(x- y|) asx®y.




Proof. By the differentiability at y, |x- y|<d P |f (x)- f(y)|£ M, |x- y|. From def,

h(f(x),f(y)):o(|f(x)- f(y)|)as f(x)® f(y). Bycontlnwtyoff X® vy implies
X imh(f(x)’f(y)) i h(F(x). 7 (v)) _ us,

0 1000 iper g = AT o) o ™

) () rr () 1t

T T e ) e

Chain rule: If f is differentiable at y and g is differentiableat z= f (y), then go f is
differentiableat y and d(go f)(y)=dg(z)df (y) (matrix multiplication.)

p'n p’'m mn

If g is real-valued, then
d(ge f)(y)=dg(z)df (¥)

1'n m'n

1 g g 1f
—_— of = —_— _— .
(@0 DY) =4 12D T)

Ex. f:R"® R, df (y) exists, g(t) = f(y+te“)):R® R, then,

dg (t) = of (y+td") el %Tfj(yﬂe( ). Hence, dg(O):df(y)e(”z%T—:;(y).

f(y+se“))- f(y+0e“)) f(y+se(j))- f(y)
s s

Alternatively, can have g¢0) =

%(y) (by definition of partial derivative); exists because df (y) exists.
j

If f and g are differentiable (respectively C*) on their domains, then sois go f .

£

If f and g are differentiable on their domains, go f isdifferentiable on its domain.

If dg and df are continuous, d( ge f) iscontinuous.

MVTO: Mean Value theorem:
Letopen Wi R", f :W® R differentiable.

[ab]l WP $cl (a,b) suchthat f(b)- f(a)=df (c)(b- a)=Nf(c)b- a).

Proof. Let u=b - a. Define areal-valued function g(t) = f (a+tu). Then, by chain
rule, g§t) =df (a+tu)u, exists. Thisistrue "t [0,1].




By the mean value theorem, $t,1 (0,1) such that gqto):%g(o): f(b)- f(a).

Let c=a+t,(b- a) =a+t,u. Notethat cl (a,b) because t,1 (0,1). Hence, $ci (a,b)
suchthat g4{t,) =df (c)(b- a)=f (b)- f(a).

Let f:R"® R™, then
1) df © 0 iff f is constant

2) df isconstant if and only if f is an affine function (Ax+b).

Proof 1): “U ” fx is constant. " x" K" %(x) =0, continuous. “P ” Consider g(x) =
X.

J
fi(x). f isdifferentiable P fi is differentiable P g is differentiable, dg(x) =df, (x) =0
" x.Consider any x,yl W, x* y. Then, by MVTO, $z,1 (xy)
f(y)- f(x)=df (z)(y- x)=0.Hence, f is constant. Thisistrue " k.
%f_/

Oforany z

Proof 2): “U " Let f (x)=Ax+b,then df (x) = A constant. “p " Let f (0)=b.

Consider g(x) = fi(x). So, g(0) =b, . dg(x) =df, (x) = a | the k™ row of A. By MVTO,

$2,1 (0,x) g(x)- g(0)= dg(z) (x- 0)=a¥x. Therefore, f,(x)=g(x)=a®x+h,.
a(k) for any z4

Let f:[a,b] ® R™ becontinuous. Also, " tT (a,b) df (t)=0.Then, f(a)="f(b).

mil

Proof. Let z= f(b)- f(a),and g(t) = zxf (t)=ém zf (t):[0]® R.Because f(t) is
i=1

continuous on in [a,b], g(t) is also continuous on [a,b]. Also, because " t1 (a,b)

df (t) =0, weaso have %(t): f.§t) =0. Thus, gqt) :ém zf¢t)=0 "tl (ab).By
i=1

the mean value theorem, $t,1 (a,b) such that % =gqt,) =0. Hence,
g(b)- g(a)=0. Note that
9(b)- 9(a) =(f (b)- f(a))xf (b)- (f(b)- f(a))xf(a)
=(f(b)- f(a))x(f(b)- f(a)}=|f(b)- f
Thus, f(b)=f(a).
Def: Let (a,b) denote the line segment joining a and b. The points on this line segment can
be expressed as v=(1- t)a+th=a+t(b- a), tT [0].




Def: Wesay aset BI R" isconvexif " x,yl B" 11 [0,1] wehave | x+(1- 1 )yl B.
Open balls are convex. Consider B =B, (x,).Then " x,yi B "1 T [0,]
[Fx+ (11 )y = g =] (x= %)+ (- 1)(y- %)
E1]x- %[+ (1-1)]y- %<l r+(-1)r=
Let f:D® R™where DI R" isopen and convex. Then,
df (x)=0"xI DP fisconstant.
Proof. Let x beany pointinD. Let f (x) =a. Consider any yin D.
Defineg(t) =(1- t)x+ty:[0,] ® R". Because D isconvex, " tT [0,4], g(t)T D. Let
h(t)=f(g(t)):[0] ® R™. Then, " tT [0,1] dn(t)=df (g(t))dg(t) = O because
m1

df (g (t)) =0. Thisimplies h(0) = h(1), or equivalently, f(x)=f(y).

Proof. Let x beany pointinD. Let f (x) =a. Congider any yin D. Because D is convex,

D contains the line segment joining x and y.
Foreachkin {1...,n}, consider f,:D® R. df (x)=0"x1 DP

Nf :gaﬂ '”—9:(0 -+ 0). S0, f, isC', and $z on thelinejoining x andy
efx T o
suchthat f,(x) = f,(y)+Nf(z)y- x). For any value of zon the line segment, Nf (2)

=0. S0, f(x)= k( y). Thisistruefor al k, so f (x) = f(y).

Let f:D® R™where DI R" isopen and connected (so arcwise-connected). Then,
df (x)=0"x1 DP fisconstant.

Letx beany pointin D. Let f (x)=a. Consider any yin D.
Let A={tT [0,1]; F(g(t))=4},and t, =supA.

0£t, £1 because 01 A (f(g(O)) = f(x) :a), and 1 is an upper bound of A. Claim:
f(g(to)):a.

Becauseto isthesup of Al [0,4], $ sequence {t,} in Al [0,1] converging to to.
Becausef and g are continuous, f o g iscontinuous. Thus,

limfog(t)="f og(!]i(@rgtn): fog(t,)=f(g(t,)). Because

r|®r:f a(t,) = er(g(O)):f(g(O)):a,weconcIudethat f(g(to)):a.

li
n® ¥ n®

Clam: t,=1.




Assume O £1t, <1, then because D is an open set in R", $r such that B, (g(t,))1 D.
(f r>|y- g(t,) . set r =|y- g(t,)|,and B, (g(t,))1 D, stll.) BecauseB, (gt ))
is convex, and " x1 B, (g(t,)), df (x) =0, we conclude that " xT B, (g(t,)),
f(x)=f (g (to)) =a. By continuity of g, $d such that
"tT [0,4]|t- t,|<d P |g(t) -g(t)| <r.Hence, $td [0,1], te>t,,
g(tdi Br(g(to)),whichimplies f(g (tﬂ)):a;so, t¢> T A. This contradict the
assumption that t, =supA.

We have shown that f (g(t,)) =a. Because t,=1, f(g(1))=f(y)=a.

If D is not connected, then f may not be constant. Ex. Let D =(0,1) E(2,3), not

10 xi (02

connected because it is not an interval. Let f (x) = - :D® R.Then,
i1 xI (2,3

N—

fqx)=0 " xI D, butf(x) is not constant.

Differentiating a general function defined by an integral
b

If g:R*® R iscontinuous, then G(x) = dg(x,y)dy is continuous.

Proof. Consider at Xo. g is continuous; thus, uniformly continuous on compact
[%,- d¢x, +dq" [a,b]. Thus, given >0, $d >0 suchthat " xT [x, - d¢x, +d{

"yT [ab] [x- x| <d P |(xy)- (x,¥)[<d P |g(x.y)- 9(.Y)|<e. S0,
%g(xiyj)Wj' éri-g()%’yj)Wj Eér;‘g(X,yj)- g()%’yj)‘Q/j E%ewi :e(b' a)'

Taking the limit as the max interval length of the partition goes to zero, the sum become
integrals, and |G(x)- G(x,)|£e(b- a).

)_g(xo+hn,y)- g(%,y)_Then,

g:R?’® R isCh.Let h,® 0. "%, G,(X,,y)=
hn
X+h, X,
G, (%o, y)%@ﬁ"?‘%i (%, y) over yT [a,b]. Hence, LI@FQO 9 )f/l)] 9 y)dy =
b
q%(x,y)dy.

G, (Xo,Y) - Then, for uniform convergence of H,(y)
19
el

Proof. For agiven Xo, let H,(y) =

to 111_9(% y) over yi [a,b],need "e>0$NT N "yT [ab] |H %) Ee.



gisC". By the mean value theorem, " y" n$z, X, <z,, <X +h
+h,y)-
G, (%,.y) = 9(%+h.y)- 9(% ) 19

w(FyY):

h, ix
Gi fg 19 19 :
iven > 0. Notethat [H (y)- ™ —= (%, Y)| = ™ —(z,,.v)- ™ — (%, )| - By the uniform
continuity of 11119(x y) on compact [x,- d¢x, +d4" [ab], $d >0 " yT [a,b]

(Z0y) - (%6,¥)| <d P %(zn,y,y) 11119(&) y)

h,® O;thus SNT N, "n3 N |z, - x|<d.
Recall:
f.(x) %%%® f(x)iff "e>0$NT N "xT D "k3 N |[f (x)- f(x)|£e.

<e. Notethat |z x0|<hn,and

b b
f,(x) %%%B T onfabl b lim &, (xjdx= §f (x)dx.

a

o

If g:R?® R isC', then F(x) = ¢p(x,y)dy isC'with F(I(x)—(‘)‘l%—g(x y)dy.

Q

b .
Proof. F(I(x):limF(XJrh)_ F) Iimlgé?(‘g(x+h,y)dy- (‘p(x,y)dygz
h heo hea a 1]

h® 0

I|m g(x*hy)- o(x.y )d By above, we have an uence h,® 0
h@OO : y . By y seq

: b\g(x+hn,y)- g(x.y) . _ g Jg

L|®rr;9 - dy = W(X y)dy . Hence, Fq{x) = ST_X(X’y)dy'
Because 1111—?((x y) is continuous, (‘)11112 X,y )dy is continuous.

b(x)
Let g:R°® R, a:R® R,and b:R® R beC". Then f(x)= ¢g(x, y)dy isC'and

a(x)

£4(x) =bt(x) g (xb(x)) - adx)g(x ax))+ o“g( X y)dy .

‘ﬂx

b(xl)
Proof. Consider F (%, %,,%)= () 9(%.y)dy. Then, by the 1-D chein rule and the
a(x,)

fundamental theorem of the calculus (differentiation of the integral)

(9= 00 0))0x) and - (x) =~ g (x,.2(x)) ).




Note that both are continuous. Also,

q ()b(xl)ﬂ ( ) b(xl)ﬂ( )
—F(X)= 0—09(x%,y)Jdy= ©—9a(x,y )dy, continuous.
T O (O X
X0 ét‘_j
Let h(x)=¥x_ b dh(x)=4_
éXB 2
Thus, f(x):F(h(x)):F(x X,X) b
s 1 s 1
df (x)=dF (h(x))dh(x)=q —F =q —F (X,x,X
() =0F (1(x))en(x) =& £-F (n(x)) =& £ -F ().




