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• Limits of functions  

• Def: Let X and Y be metric space; suppose D X⊂ , f : D → Y, and x0 is a limit point of 
D. We write ( )f x q→  as 0x x→ , or ( )

0

lim
x x

f x q
→

=  

•  if there is a point q Y∈  with the following property: 

0ε∀ > 0δ∃ >  such that x D∀ ∈ , ( )
0

00 ,X

x x
d x x δ

≠
< <  ⇒ ( )( ),Yd f x q ε<  

• x0 need not be in D. Even if 0x D∈ , we may have ( ) ( )
0

0 lim
x x

f x f x
→

≠ . 

≡ ( )lim nn
f x q

→∞
=  for every sequence { }nx  in D such that nx x≠ , and lim nn

x x
→∞

= . 

Proof. “⇒”: Given ε , can find δ  such that ( )
0

00 ,X

x x
d x x δ

≠
< <  ⇒ 

( )( ),Yd f x q ε< . Also, given ε δ′ = , can find N such that n N∀ ≥ , ( )0,X
nd x x  

< ε δ′ = , which implies ( )( ),Y
nd f x q ε< . “⇐”: Suppose ( )lim nn

f x q
→∞

≠ , then 

ε∃  
1
n

δ∀ = , ( )
0

00 ,X
n

x x
d x x δ

≠
< <  and ( )( ),Y

nd f x q ε> . The sequence 0nx x→  

but ( )nf x → q . 

• If f has a limit at p, this limit is unique. 
Proof. If two limits, then any sequence has to converge to both limits, which implies 
the limits are equal. 

• Let x0 be a limit point of D, nY ⊂ ¡ , ( )
0

1lim
x x

f x y
→

= , and ( )
0

2lim
x x

g x y
→

= , then (1) 

( ) ( )
0

1 2lim
x x

f g x y y
→

+ = + , and (2) ( )( )
0

1 2lim
x x

f g x y y
→

⋅ = ⋅ . 

Proof. Consider any sequence 0nx x→ . We have sequences in k¡  ( ) 1nf x y→  and 

( ) 2ng x y→ ; thus, ( ) ( ) 1 2n nf x g x y y+ → + , ( ) ( ) 1 2n nf x g x y y⋅ → ⋅ . 

• Let x0 be a limit point of D, nY ⊂ ¡ . ( ) ( ) ( )
0 0

lim lim k kx x x x
f x y f x y

→ →
= ⇔ = . 

Proof. “⇒” Consider any sequence 0nx x→ ; we have ( )lim nn
f x y

→∞
= . In n¡ , 

convergence means convergence for each component. So, ( ) ( )lim k n kn
f x y

→∞
= . This is 

true for any sequence 0nx x→ . “⇐”Consider any sequence 0nx x→ . For all k, 

( ) ( )
0

lim k kx x
f x y

→
= ; so, ( ) ( )lim k n kn

f x y
→∞

=  for all k. Thus, ( )lim nn
f x y

→∞
= . This is true 

for any sequence 0nx x→ . 



Alternative proof.  “⇒” ( )
0

lim
x x

f x y
→

=  means ε∀ δ∃  such that 
0

00
x x

x x δ
≠

< − <  ⇒ 

( )f x y ε− < . Hence we have ( )k kf x y− ≤  ( ) 2

1

n

k k
k

f x y
=

−∑ ( )f x y ε= − < . 

“⇐” ( )
0

lim k k
x x

f x y
→

=  means ε∀ δ∃  such that 
0

00
x x

x x δ
≠

< − <  ⇒ ( )k kf x y
n

ε
− < . 

Thus, ( )f x y− =  ( ) 2

1

n

k k
k

f x y ε
=

− <∑  

• Euclidean: Let x0 be a limit point of D, nY ⊂ ¡ . ( ) ( )
0 0

lim 0 lim 0
x x x x

f x f x
→ →

= ⇔ = . 

Proof. By def. The right hand side means 0ε∀ > 0δ∃ >  such that x D∀ ∈ , 

0
00

x x
x x δ

≠
< − <  ⇒ ( ) 0f x ε− < . The left hand side has ( )f x ε< ; same. 

Euclidean Space 
• x∀  0ax =  ⇔ 0a =  matrix. 

Proof. Choose ( )jx e= . Then, ax  is the jth column of A. 0ax =  implies the jth column of 
A is zero. 

• Let A be any m × n matrix, ( ) 1, ,
1, ,

i mij
j n

a =
=

…
…

, then nx∀ ∈¡  c∃  such that Ax c x≤ . 

• Take 2

1 1

m n

kj
k j

c a
= =

= ∑∑ . 

• ( )lim 0
x y

A x y
→

− =  

Proof. c∃  such that ( )A x y c x y− ≤ − . 

• Little o 

• ( ) ( )( )f x o h x=  and ( ) ( )( )g x o h x=  as 0x x→ , then ( ) ( ) ( )( )f x g x o h x+ =  as 

0x x→ . 

• ( ) ( )( )f x o h x=  as 0x x→  

≡ 
( )
( )0

lim 0
x x

f x
h x→

=  (don’t care about ( ) ( )0 0,f x h x ) 

≡  0ε∀ > 0δ∃ >  such that x D∀ ∈  0x x δ− <  ⇒ ( ) ( )f x h x ε≤ . 

⇒ ( )0 0f x = . 

≡  ( ) ( )( )f x o h x=  as 0x x→  ⇔ k∀  ( ) ( )( )kf x o h x=  also as 0x x→ . 

Proof1. “⇒”: 0ε∀ > 0δ∃ >  such that x D∀ ∈  0x x δ− <  ⇒ ( ) ( )f x h x ε≤ . 



• ( ) ( )f x o x y= −  as x → y   

• iff 0ε∀ > 0δ∃ > such that x D∀ ∈ , x y δ− <  ( )f x x y ε⇒ ≤ − . 

≡ 
( )

lim 0
x y

f x
x y→

=
−

. 

≡  for all k, ( ) ( )kf x o x y= −  as x → y. 

Proof. Let ( ) ( )f x
g x

x y
=

−
. Then, ( ) ( ) ( )k

k

k

f x f x
g x

x y x y

 
= =  − − 

. 

( ) ( )lim 0 lim 0k
x y x y

g x g x
→ →

= ⇔ = . 

⇒ ( )lim 0
x y

f x
→

= . 

Proof. By def of ( ) ( )f x o x y= − , given ε, use { }min ,1δ δ′ = . Then x y δ ′− <  

still δ< ; thus, ( )f x x y ε ε≤ − < . 

⇒  ( ) 0f y =  if f(x) is continuous. 

⇒ If ( ) ( )f x a x y b= − + , then ( ) 0f x =  ∀x. 

Proof. ( ) 0f y =  ⇒ b = 0. We then have 
( )

lim
x y

a x y
x y→

−
−

= 0. This is true x y∀ → . 

So, consider x only of the form x y tw= +  where w ≠ 0. As 0t +→ , x y→ . 

( )
0

lim
t

a y tw y
y tw y+→

+ −
+ −

 
( )

0
lim
t

a tw
tw+→

=  
( )

lim
x y

a tw
t w→

=  
( )

0
lim
t

a w
w+→

=  ( ) 0a w= =  ⇒ a = 0. 

• For scalars a, ( )ao x y−  is still ( )o x y− . 

• For scalars a, b, ( ) ( )ao x y bo x y− + −  is still ( )o x y− . 

• : mf D → ¡ , :g D → ¡ . ( ) ( )f x o x y= −  and ( ) ( )g x o x y= −  implies ( )g f x⋅  is 

( )o x y− . 

Proof. This implies 
( ) ( )

lim 0k

x y

f x g x
x y x y→

=
− −

. Thus, 
( ) ( )

2
k

g f x

x y

⋅

−
 = ( )2

o x y−  and 

( ) ( )kg f x
o x y

x y
⋅

= −
−

. The later part implies 
( )

lim 0k

x y

g f x
x y→

⋅
=

−
. So, 

( ) ( )kg f x
o x y

x y
⋅

= −
−

. 



Differential Calculus in Euclidean Space 
• : n mf →¡ ¡  

• Limit of a function: ( )
0

lim
x x

f x
→

exists if y∃  ( )( )
0

lim
x x

f x
→

= , such that  

0ε∀ > 0δ∃ >  such that x D∀ ∈ , 0x x δ− <  and 0x x≠  ⇒ ( )f x y ε− < . 

The Differential 

• Convention: all vectors are considered as column vectors in any equation involving matrix 
multiplication. 

• a: m × n matrix (m rows and n columns) 

• Affine function: ( )
( )

( )

1

m

g x
g x ax b

g x

 
 

= + =  
 
 

M , ( )
1

n

k kj j k
j

g x a x b
=

= +∑ . 

• : mf D → ¡  with nD ⊆ ¡ . D is an open set. 

• ( ) ( ) ( )f x g x o x y= + −  as x → y. 

≡  
( ) ( )

lim 0 m

x y

f x g x
x y→

−
= ∈

−
¡  

≡  0ε∀ > 0δ∃ > such that x D∀ ∈ , x y δ− <  ( ) ( )f x g x x y ε⇒ − ≤ − . 

• If there exists an affine function g(x) such that ( ) ( ) ( )f x g x o x y= + −  as x → y, then it is 

unique. 

• Zero is the only affine function such that ( ) ( )g x o x y= −  as x → y. 

• Def: : mf D → ¡ , y D∈ . ( )g x ax b= +  is a best affine approximation of f at y provide that 

( ) ( ) ( )f x g x o x y= + −  as x → y. 

• ⇒ ( )b f y= . 

• Def: : mf D → ¡  is differentiable at y D∈   

• if there exists an m × n matrix ( )df y , called the differential of f at y, such that  

• ( ) ( ) ( )( ) ( )f x f y df y x y o x y= + − + −  as x → y. 

≡ 
( ) ( ) ( )( )

lim 0
x y

f x f y df y x y
x y→

− − −
=

−
 

≡ 
( ) ( ) ( ) ( )

lim 0
x y

f x f y df y x y

x y→

− − −
=

−
 



≡  0ε∀ > 0δ∃ > such that ( ) ( ) ( )( )x y f x f y df y x y x yδ ε− < ⇒ − − − ≤ − . 

≡ each of the coordinate function :kf D → ¡  is differentiable at y. 

• Differentiability ⇒ continuity 

Proof. ( ) ( ) ( ) ( ) ( )( ) ( )lim lim
x y x y

f x f y df y x y o x y f y
→ →

= + − + − = . 

• If f is real valued, then ( )df y  is 1 n×  (row vector). It is sometimes called the gradient of f 

and written ( )f y∇ . 

• Def: If f is differentiable at every point of D, we say f is differentiable on D.  

We can regard the differential ( )df y  as a function of y, taking values in the space of m×n 

matrices m n×¡ .  

If : m ndf D ×→ ¡  is continuous, we say f is continuously differentiable or f is C1. 

• Differentiability and differential are linear. If both : mf D → ¡  and : mg D → ¡  are 
differentiable at y, then so is af bg+  for scalars a, b and ( )d af bg adf bdg+ = + . 

• If : mf D → ¡  and :g D → ¡  are differentiable at y, then so is g f⋅ , and 

( )( ) ( ) ( ) ( ) ( )d g f y g y df y f y dg y⋅ = + . 

• The partial derivative k

j

f
x

∂
∈

∂
¡  is said to exist at a point y  

• Def: if ( ) ( ) ( ) ( )k
k j k

j

f
f y te f y y t o t

x
∂

+ = + +
∂

 as t → 0. 

≡ ( ) ( ) ( ) ( )k
k j k

j

f
f y te f y y t o t

x
∂

+ = + +
∂

 as t → 0. 

≡  ( )k jf y te+  as a function of t is differentiable at t = 0 with derivative ( )
kj

df y   . 

= 
( ) ( )

0
lim k j k

t

f y te f y

t→

+ −
. 

• Obtained by  keeping all the variables x1, …, xn except xj fixed and differentiating fk as a 
function of xj. 

• Def: the partial derivative of f with respect to xj:  

( ) ( ) ( ) ( )
0

lim :
j

j m
e

t
j

f y te f yf
y d f y D

x t→

+ −∂
= = →

∂
¡  

• If nonzero nu ∈¡ , the directional derivative m
ud f ∈¡  is said to exist at a point y  

• Def: if ( ) ( ) ( ) ( )uf y tu f y d f y t o t+ = + +  as t → 0. 



=  
( ) ( )

0
lim
t

f y tu f y
t→

+ −
. 

• If u = 0, then 0ud f = . 

• Def: ( ) ( )u k u k
d f y d f y=     = the kth component of ( )ud f y . 

• If f is differentiable at y, then all partial and directiona l derivative exists at y 

( )
( )

( )

( ) ( )

( ) ( )

( ) ( )

1 1

11

1

1

, ,
n

n
m m m

n

f f
y y

x xf y
f f

df y y y
x x

f y f f
y y

x x

∂ ∂ 
 ∂ ∂∇     ∂ ∂   = = =    ∂ ∂    ∇ ∂ ∂   
 ∂ ∂ 

L

M M O M …
L

 

( ) ( ) ( ) ( )th the  column of 
je j

j

f
y d f y df y e j df y

x
∂

= = =
∂

 

( ) ( )
j

k
ekj k

j

f
df y d f y

x
∂  = =    ∂

 

( ) ( ) ( ) ( ) ( )
1 1 1

n n n

u j j j j j
j j j j

f
d f y df y u df y u e u df y e u y

x= = =

  ∂
= = = = 

∂ 
∑ ∑ ∑ . 

• ( )
2 2

,
xy

f x y
x y

=
+

 has directional derivatives in all directions at all points in the plane but 

is not differentiable at the origin. 

• Let : mf D → ¡  with nD ⊂ ¡  have partial derivatives : m

j

f
D

x
∂

→
∂

¡  for j = 1, …, n that are 

continuous in a neighborhood of y. Then, f is differentiable at y. 

• Let : mf D → ¡  with nD ⊂ ¡  open, y ∈ D. If  k j∀ ∀  partial derivatives k

j

f
x

∂
∂

 exists in a 

neighborhood of y and continuous at y, then f is differentiable at y. And df is continuous at y. 

• A function : mf D → ¡  with nD ⊂ ¡  open is C1 iff the partial derivatives 

:  for 1, ,m

j

f
D j n

x

 ∂
→ =  ∂ 

¡ …  exist and are continuous on D. 

• Note 

• : mf D → ¡  is differentiable at a point ( )( ) existsdf y  if and only if each of the 

coordinate functions :kf D → ¡  is differentiable at that point ( ) ( )
1

 existsk k
n

df y f y
×

 = ∇ 
 

. 

• : mf D → ¡  is continuous if and only if all the :kf D → ¡  are continuous. 



• : mf D → ¡  , open nD ⊂ ¡  is C1 iff all :kf D → ¡   are C1. 

Proof. “⇒” df exists and continuous ⇒ x k j∀ ∀ ∀  ( )k

j

f
x

x
∂
∂

 exists and continuous ⇒ for 

each k, x j∀ ∀  ( )k

j

f
x

x
∂
∂

 exists and continuous.  Hence, dfk exists and continuous. 

• : m

j

f
D

x
∂

→
∂

¡  exists  ⇔ k

j

f
x

∂
∂

 exists 1, ,k m∀ = … . 

( )

1

j

j
m

j

f
x

f
y

x
f
x

∂ 
 ∂ ∂  =
 ∂

∂ 
 ∂ 

M  (always, need not assume continuity.) 

Proof. Let ( ) ( ) ( )jf y te f y
g t

t

+ −
= . Then,  

( )
j

f
y

x
∂

=
∂

 
( ) ( )

0
lim j

t

f y te f y

t→

+ −
=  ( )

0
lim
t

g t
→

, and 

( ) ( ) ( )
( )

0 0
lim limk j kk

k
t t

j

f y te f yf
y g t

x t→ →

+ −∂
= =

∂
. 

Then, use ( ) ( )
0 0

lim lim k kt t
g t w g t w

→ →
= ⇔ = . 

• : m

j

f
D

x
∂

→
∂

¡  exists and is continuous if and only if k

j

f
x

∂
∂

 is exists and is continuous 

1, ,k m∀ = … . 

Proof. Existence relationship follows from above. Continuity relationship follows 

because k

j

f
x

∂
∂

 is the kth component of 
j

f
x

∂
∂

 by the formula given above. 

• Thus, theorem(s) using existence or continuity of 
j

f
x

∂
∂

 is equivalent to theorem using 

existence or continuity of df 1, ,k m∀ = … . 

• Pointwise Lipschitz condition: If f is differentiable at y, then 0δ∃ >  and constant yM  

(depending on y) such that ( ) ( ) yx y f x f y M x yδ− < ⇒ − ≤ − . 



Proof. ( ) ( )f x f y− = ( ) ( ) ( )df y x y o x y− + − ( )( ) ( )df y x y o x y≤ − + −  

c x y x y≤ − + − . The inequality of the second part of the sum requires that x and y are 
close enough. 

• Let : mf D → ¡  with nD ⊆ ¡  and : pg A → ¡  with ( ) mf D A⊂ ⊂ ¡ .  

: pg f D →o ¡  is defined by ( ) ( )( )g f x g f x=o  for x ∈ D. 

• Recall, ( ) :g t →¡ ¡ . ( )0g t′  exists. ( )g t  attains its max or min at t = t0, then ( )0 0g t′ = . 

Proof. Assume max. ( ) ( ) ( )
0

0
0

0

lim
t t

g t g t
g t

t t→

−
′ =

−
 exists. 

( ) ( )
{0

0

0

0

0

lim 0
t t

g t g t
t t+

≤

→

>

−
≤

−

64748
, and 

( ) ( )
{0

0

0

0

0

lim 0
t t

g t g t
t t−

≤

→

<

−
≥

−

64748
. Hence, 

( ) ( )
0

0

0

lim 0
t t

g t g t
t t→

−
=

−
. 

• Let :f D → ¡  for nD ⊆ ¡ , and let y be a point in the interior of D. 

If f assumes its maximum or minimum value at y and f is differentiable at y, then 

( ) ( ) 0df y f y= ∇ =  ( ) 0 1, ,
k

f
y k n

x
 ∂

= ∀ = ∂ 
… . 

Proof. ( ) ( )jg t f y te= +  is differentiable at 0 because ( )0g′ =  
( ) ( )

0

0
lim
t

g t g
t→

−
=  

( ) ( )
0

lim j

t

f y te f y

t→

+ −
 = ( )

jed f y , and f is differentiable at y. Also, ( ) ( )
je

j

f
d f y y

x
∂

=
∂

. 

Because ( )g t  attains its max or min at t = 0, ( )0 0g′ = . 

• Let ( )f x Ax b= + , then ( )df x A= .  

Proof. 
( ) ( ) ( )

0

0 0

0

lim
x x

f x f x A x x
x x→

− − −
−

 = 
( )

0

0 0

0

lim
x x

Ax b Ax b A x x
x x→

+ − − − −
−

 = 
0 0

0
lim
x x x x→ −

 

= 0. 

• If : mf D → ¡  with nD ⊂ ¡  is differentiable, then we regard df as a function 
: m ndf D ×→ ¡  taking values in the space of m n×  matrices. 

 

• f is differentiable at y. ( ) ( ),h w z o w z= −  as w z→ .  

Then, ( ) ( )( ) ( ),h f x f y o x y= −  as x → y. 



Proof. By the differentiability at y, ( ) ( ) yx y f x f y M x yδ− < ⇒ − ≤ − . From def, 

( ) ( )( ) ( ) ( )( ),h f x f y o f x f y= −  as ( ) ( )f x f y→ . By continuity of f, x y→  implies 

( ) ( )f x f y→ . So, 
( ) ( )( )

( ) ( )
,

lim
x y

h f x f y

f x f y→
=

−
 

( ) ( )

( ) ( )( )
( ) ( )

,
lim 0

f x f y

h f x f y

f x f y→
=

−
. Thus, 

( ) ( )( ),
lim
x y

h f x f y

x y→ −
 

( ) ( )( ),
lim
x y

h f x f y

x y→
=

−
 = 

( ) ( )( )
( ) ( )

( ) ( )

bounded for ,  close enough0

,
lim
x y

x y

f x f yh f x f y

x yf x f y→

→

−

−− 14424431442443
. = 0. 

• Chain rule : If f is differentiable at y and g is differentiable at ( )z f y= , then g fo  is 

differentiable at y and ( )( ) ( ) ( )
p n p m m n

d g f y dg z df y
× × ×

=o  (matrix multiplication.) 

• If g is real-valued, then  

( )( ) ( ) ( )
1 1n m m n

d g f y dg z df y
× × ×

=o  

( )( ) ( ) ( )
1

m
k

kj k j

g f
g f y z y

x z x=

∂ ∂ ∂
=

∂ ∂ ∂∑o . 

• Ex. : nf →¡ ¡ , ( )df y  exists, ( ) ( )( ) :jg t f y te= + →¡ ¡ , then, 

( ) ( )( ) ( ) ( )( )j j j

j

f
dg t df y te e y te

x
∂

= + = +
∂

. Hence, ( ) ( ) ( ) ( )0 j

j

f
dg df y e y

x
∂

= =
∂

. 

Alternatively, can have ( )
( )( ) ( )( )

0

0
0 lim

j j

s

f y se f y e
g

s→

+ − +
′ =  = 

( )( ) ( )
0

lim
j

s

f y se f y

s→

+ −
 = 

( )
j

f
y

x
∂
∂

 (by definition of partial derivative); exists because ( )df y  exists. 

• If f and g are differentiable (respectively C1) on their domains, then so is g fo . 

• If f and g are differentiable on their domains, g fo  is differentiable on its domain. 

• If dg and df are continuous, ( )d g fo  is continuous. 

• MVT0: Mean Value theorem: 

Let open nΩ ⊂ ¡ , :f Ω → ¡  differentiable. 

[ ],a b ⊂ Ω  ⇒ ( ),c a b∃ ∈  such that ( ) ( ) ( )( ) ( ) ( )f b f a df c b a f c b a− = − = ∇ ⋅ − . 

Proof. Let u b a= − . Define a real-valued function ( ) ( )g t f a tu= + . Then, by chain 

rule, ( )g t′  ( )df a tu u= + , exists. This is true [ ]0,1t∀ ∈ .  



By the mean value theorem, ( )0 0,1t∃ ∈  such that ( ) ( ) ( ) ( ) ( )0

1 0
1 0

g g
g t f b f a

−
′ = = −

−
. 

Let ( )0 0c a t b a a t u= + − = + . Note that ( ),c a b∈  because ( )0 0,1t ∈ . Hence, ( ),c a b∃ ∈  

such that ( ) ( )( ) ( ) ( )0g t df c b a f b f a′ = − = − . 

• Let : n mf →¡ ¡ , then 

1) 0df ≡  iff f is constant 

2) df is constant if and only if f is an affine function ( )Ax b+ . 

Proof 1): “⇐” fk is constant. x k j∀ ∀ ∀  ( ) 0k

j

f
x

x
∂

=
∂

, continuous.  “⇒” Consider g(x) = 

fk(x). f is differentiable ⇒ fk is differentiable ⇒ g is differentiable, ( ) ( ) 0kdg x df x= =  

x∀ . Consider any ,x y ∈ Ω , x y≠ . Then, by MVT0, ( )0 ,z x y∃ ∈  

( ) ( ) ( ) ( )
0

0

0 for any 

0
z

f y f x df z y x− = − =123 . Hence, fk is constant. This is true k∀ . 

Proof 2): “⇐” Let ( )f x Ax b= + , then ( )df x A=  constant. “⇒” Let ( )0f b= . 

Consider g(x) = fk(x). So, ( )0 kg b= . ( ) ( ) ( )k
kdg x df x a= = , the kth row of A. By MVT0, 

( )0 0,z x∃ ∈  ( ) ( ) ( )
( )

( ) ( )

0

0

 for any 

0 0
k

k

a z

g x g dg z x a x− = − =123 . Therefore, ( ) ( ) ( )k
k kf x g x a x b= = + . 

• Let [ ]: , mf a b → ¡  be continuous. Also, ( ),t a b∀ ∈  ( )
1

0
m

df t
×

= . Then, ( ) ( )f a f b= . 

Proof. Let ( ) ( )z f b f a= − , and ( ) ( ) ( ) [ ]
1

: 0,1
m

i i
i

g t z f t z f t
=

= ⋅ = →∑ ¡ . Because ( )f t  is 

continuous on in [a,b], g(t) is also continuous on [a,b]. Also, because ( ),t a b∀ ∈  

( ) 0df t = , we also have ( ) ( ) 0i
i

f
t f t

t
∂ ′= =
∂

. Thus, ( ) ( )
1

0
m

i i
i

g t z f t
=

′ ′= =∑  ( ),t a b∀ ∈ . By 

the mean value theorem, ( )0 ,t a b∃ ∈  such that 
( ) ( ) ( )0 0

g b g a
g t

a b
−

′= =
−

. Hence, 

( ) ( ) 0g b g a− = . Note that  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( ) 2

g b g a f b f a f b f b f a f a

f b f a f b f a f b f a

− = − ⋅ − − ⋅

= − ⋅ − = −

 

Thus, ( ) ( )f b f a= . 

• Def: Let ( ),a b  denote the line segment joining a and b. The points on this line segment can 

be expressed as ( ) ( )1v t a tb a t b a= − + = + − , [ ]0,1t ∈ . 



• Def: We say a set nB ⊂ ¡  is convex if ,x y B∀ ∈ [ ]0,1λ∀ ∈  we have ( )1x y Bλ λ+ − ∈ . 

• Open balls are convex. Consider ( )0rB B x= . Then ,x y B∀ ∈  [ ]0,1λ∀ ∈  

( ) ( ) ( )( )
( ) ( )

0 0 0

0 0

1 1

1 1

x y x x x y x

x x y x r r r

λ λ λ λ

λ λ λ λ

+ − − = − + − −

≤ − + − − < + − =

 

• Let : mf D → ¡  where nD ⊂ ¡  is open and convex. Then,  

( ) 0df x x D= ∀ ∈ ⇒  f is constant. 

Proof. Let x be any point in D. Let ( )f x a= . Consider any y in D. 

Define ( ) ( ) [ ]1 : 0,1 ng t t x ty= − + → ¡ . Because D is convex, [ ]0,1t∀ ∈ , ( )g t D∈ .  Let 

( ) ( )( ) [ ]: 0,1 mh t f g t= → ¡ . Then, [ ]0,1t∀ ∈  ( ) ( )( ) ( )
1

0
m

dh t df g t dg t
×

= =  because 

( )( )df g t  = 0. This implies ( ) ( )0 1h h= , or equivalently, ( ) ( )f x f y= . 

Proof. Let x be any point in D. Let ( )f x a= . Consider any y in D.  Because D is convex, 
D contains the line segment joining x and y.  

For each k in { }1, ,m… , consider :kf D → ¡ . ( ) 0df x x D= ∀ ∈ ⇒  

( )
1

0 0k k
k

n

f f
f

x x
 ∂ ∂

∇ = = ∂ ∂ 
L L . So, kf  is C1, and z∃  on the line joining x and y 

such that ( ) ( ) ( ) ( )k kf x f y f z y x= + ∇ ⋅ − . For any value of z on the line segment, ( )f z∇  

= 0. So, ( ) ( )k kf x f y= . This is true for all k, so ( ) ( )f x f y= . 

• Let : mf D → ¡  where nD ⊂ ¡  is open and connected (so arcwise-connected). Then, 

( ) 0df x x D= ∀ ∈ ⇒  f is constant. 

Let x be any point in D. Let ( )f x a= . Consider any y in D. 

Let [ ] ( )( ){ }0,1 ;A t f g t a= ∈ = , and 0 supt A= .  

00 1t≤ ≤  because 0 A∈  ( )( ) ( )( )0f g f x a= = , and 1 is an upper bound of A. Claim: 

( )( )0f g t a= .  

Because t0 is the sup of [ ]0,1A ⊂ , ∃  sequence { }nt  in [ ]0,1A ⊂  converging to t0. 
Because f and g are continuous, f go  is continuous. Thus, 

( ) ( ) ( ) ( )( )0 0lim limn nn n
f g t f g t f g t f g t

→∞ →∞
= = =o o o . Because 

( ) ( )( ) ( )( )lim lim 0 0nn n
f g t f g f g a

→∞ →∞
= = =o , we conclude that ( )( )0f g t a= . 

Claim: 0 1t = .  



Assume 00 1t≤ < , then because D is an open set in n¡ , r∃ such that ( )( )0rB g t D⊂ . 

(If ( )0r y g t> − , set ( )0r y g t= − , and ( )( )0rB g t D⊂ , still.) Because ( )( )0rB g t  

is convex, and ( )( )0rx B g t∀ ∈ , ( ) 0df x = , we conclude that ( )( )0rx B g t∀ ∈ , 

( ) ( )( )0f x f g t a= = . By continuity of g, δ∃  such that 

[ ] ( ) ( )0 00,1t t t g t g t rδ∀ ∈ − < ⇒ − < . Hence, [ ]0,1t′∃ ∈ , 0t t′ > , 

( ) ( )( )0rg t B g t′ ∈ , which implies ( )( )f g t a′ = ; so, 0t t A′ > ∈ . This contradict the 

assumption that 0 supt A= . 

We have shown that ( )( )0f g t a= . Because  0 1t = , ( )( ) ( )1f g f y a= = . 

• If D is not connected, then f may not be constant. Ex. Let ( ) ( )0,1 2,3D = ∪ , not 

connected because it is not an interval. Let ( ) ( )
( )

0 0,1
:

1 2,3
x

f x D
x

∈
= → ∈

¡ . Then, 

( ) 0f x′ =  x D∀ ∈ , but f(x) is not constant. 

Differentiating a general function defined by an integral 

• If 2:g →¡ ¡  is continuous, then ( ) ( ),
b

a

G x g x y dy= ∫  is continuous. 

Proof. Consider at x0. g is continuous; thus, uniformly continuous on compact 
[ ] [ ]0 0, ,x x a bδ δ′ ′− + × . Thus, given 0ε > , 0δ∃ >  such that [ ]0 0,x x xδ δ′ ′∀ ∈ − +  

[ ],y a b∀ ∈  0x x δ− <  ⇒ ( ) ( )0, ,x y x y δ− <  ⇒ ( ) ( )0, ,g x y g x y ε− < . So, 

( ) ( )0
1 1

, ,
n n

j j j j
j j

g x y y g x y y
= =

∆ − ∆∑ ∑  ( ) ( )0
1

, ,
n

j j j
j

g x y g x y y
=

≤ − ∆∑  
1

n

j
j

yε
=

≤ ∆∑  = ( )b aε − . 

Taking the limit as the max interval length of the partition goes to zero, the sum become 
integrals, and ( ) ( ) ( )0G x G x b aε− ≤ − . 

• 2:g →¡ ¡  is C1. Let 0nh → . 0x∀  ( ) ( ) ( )0 0
0

, ,
, n

n
n

g x h y g x y
G x y

h
+ −

= . Then, 

( ) ( )uniformly
0 0, ,n

g
G x y x y

x
∂

→
∂

 over [ ],y a b∈ . Hence, 
( ) ( ), ,

lim
b

n

n
na

g x h y g x y
dy

h→∞

+ −
∫  = 

( ),
b

a

g
x y dy

x
∂
∂∫ . 

Proof. For a given x0, let ( ) ( )0 ,n nH y G x y= . Then, for uniform convergence of ( )nH y  

to ( )0 ,
g

x y
x

∂
∂

 over [ ],y a b∈ , need ε∀ > 0 N∃ ∈¥  [ ],y a b∀ ∈  ( ) ( )0 ,n

g
H y x y

x
ε

∂
− ≤

∂
. 



g is C1. By the mean value theorem, y n∀ ∀ ,n yz∃ 0 , 0n yx z x h< < +  

( ) ( ) ( ) ( )0 0
0 ,

, ,
, ,n

n n y
n

g x h y g x y g
G x y z y

h x
+ − ∂

= =
∂

.  

Given 0ε > . Note that ( ) ( ) ( ) ( )0 , 0, , ,n n y

g g g
H y x y z y x y

x x x
∂ ∂ ∂

− = −
∂ ∂ ∂

. By the uniform 

continuity of ( ),
g

x y
x

∂
∂

 on compact [ ] [ ]0 0, ,x x a bδ δ′ ′− + × , 0δ∃ >  [ ],y a b∀ ∈  

( ) ( ), 0, ,n yz y x y−  < δ ⇒ ( ) ( ), 0, ,n y

g g
z y x y

x x
ε

∂ ∂
− <

∂ ∂
. Note that , 0n y nz x h− < , and 

0nh → ; thus, N∃ ∈¥ , n N∀ ≥  , 0n yz x δ− < . 

• Recall:  

• ( )nf x  uniformly→  f(x) iff ε∀ > 0 N∃ ∈¥  x D∀ ∈  k N∀ ≥  ( ) ( )kf x f x ε− ≤ . 

• ( )nf x  uniformly→  f(x) on [a,b] ⇒ ( ) ( )lim
b b

nn
a a

f x dx f x dx
→∞

=∫ ∫ . 

• If 2:g →¡ ¡  is C1, then ( ) ( ),
b

a

F x g x y dy= ∫  is C1 with ( ) ( ),
b

a

g
F x x y dy

x
∂′ =
∂∫ . 

Proof. ( ) ( ) ( )
0

lim
h

F x h F x
F x

h→

+ −
′ =  = ( ) ( )

0

1
lim , ,

b b

h
a a

g x h y dy g x y dy
h→

 
+ − 

 
∫ ∫  = 

( ) ( )
0

, ,
lim

b

h
a

g x h y g x y
dy

h→

+ −
∫ . By above, we have any sequence 0nh →  

( ) ( ), ,
lim

b
n

n
na

g x h y g x y
dy

h→∞

+ −
∫  = ( ),

b

a

g
x y dy

x
∂
∂∫ . Hence, ( )F x′  = ( ),

b

a

g
x y dy

x
∂
∂∫ .  

Because ( ),
g

x y
x

∂
∂

 is continuous, ( ),
b

a

g
x y dy

x
∂
∂∫  is continuous. 

• Let 2:g →¡ ¡ , :a →¡ ¡ , and :b →¡ ¡  be C1. Then ( ) ( )
( )

( )

,
b x

a x

f x g x y dy= ∫  is C1 and 

( ) ( ) ( )( ) ( ) ( )( ) ( )
( )

( )

, , ,
b x

a x

g
f x b x g x b x a x g x a x x y dy

x
∂′ ′ ′= − +
∂∫ . 

Proof. Consider ( ) ( )
( )

( )1

2

1 2 3 3, , ,
b x

a x

F x x x g x y dy= ∫ . Then, by the 1-D chain rule and the 

fundamental theorem of the calculus (differentiation of the integral) 

( ) ( )( ) ( )3 1 1
1

,F x g x b x b x
x
∂ ′=

∂
v  and ( ) ( )( ) ( )3 2 2

2

,F x g x a x a x
x
∂ ′= −

∂
v . 



Note that both are continuous. Also,  

( ) ( )
( )

( )

( )
( )

( )1 1

2 2

3
3 3

, ,
b x b x

a x a x

F x g x y dy g x y dy
x x x
∂ ∂ ∂

= =
∂ ∂ ∂∫ ∫

v , continuous. 

Let ( )
x

h x x
x

 
 =  
 
 

 ⇒ ( )
1

1
1

dh x
 
 =  
 
 

 

Thus, ( ) ( )( ) ( ), ,f x F h x F x x x= =  ⇒  

( ) ( )( ) ( ) ( )( ) ( )
3 3

1 1

, ,
i ii i

df x dF h x dh x F h x F x x x
x x= =

∂ ∂
= = =

∂ ∂∑ ∑ . 

 

 
 


