- Cantor set C_{0}

- The Cantor set is
- the subset of $[0,1]$ of all numbers expressible in base 3 with digits 0 and $2 . \Rightarrow$ $\left(0 . a_{1} a_{2} \ldots\right)_{3}, a_{k} \in\{0,2\}$.
- what's left over after removal of a sequence of open subintervals of $[0,1]$. The algorithm is as follows: 1) Divide the remaining intervals each into three equal parts. 2) Remove the open middle interval. 3) Repeat 1).
- countable intersection of finite unions of closed intervals.
- closed (intersection of closed sets), non-empty, perfect
- Doesn't contain any interval.
- Has no isolated point.
- Has the same cardinality as $\mathbb{R} .\left(0 . a_{1} a_{2} \ldots\right)_{3} \xrightarrow[\text { onto }]{1: 1}\left(0 . b_{1} b_{2} \ldots\right)_{2}, b_{k}=\frac{a_{k}}{2} \in\{0,1\}$.

The Concept of Measure

Intervals

- I denotes an interval (a, b) or $[a, b]$, or $(a, b]$ or $[a, b)$, then length of $I=|I|=b-a$.
- If $a=-\infty$ or $b=+\infty$, then $|I|=+\infty$.
- $|I|$ is a non-negative extended real number.
- Additivity: $I=I_{1} \cup I_{2}, I_{1} \cap I_{2}=\varnothing$, the $|I|=\left|I_{1}\right| \cup\left|I_{2}\right|$.
- Finite additivity of length: If interval $I=\bigcup_{i=1}^{n} I_{i}$ is a disioint union of intervals, then $|I|=\sum_{i=1}^{n}\left|I_{i}\right|$.

Proof. Induction. Observe that it is possible to remove one of the intervals I_{k} (say the one containing an endpoint or a neighborhood of an endpoint if I is open) so that the union of the remaining intervals is still an interval.

- Subadditivity: interval $I \subset \bigcup_{i=1}^{n} I_{i} \Rightarrow|I| \leq \sum_{i=1}^{n}\left|I_{i}\right|$.

Proof. Shirk I_{j} to I_{j}^{\prime} so that I is the disjoint union $I=\bigcup_{i=1}^{n} I_{i}^{\prime}$.

- Monotonicity: $I \subset J \Rightarrow|I| \leq|J|$.
- Countable additivity / σ-additivity: If interval $I=\bigcup_{i=1}^{\infty} I_{i}$ is a disjoint union of intervals, then $|I|=\sum_{i=1}^{\infty}\left|I_{i}\right|$.
- If one side is $+\infty$, then so is the other.
- $\sum_{i=1}^{\infty}\left|I_{i}\right|$ can be $+\infty$ either because one of the summands is $+\infty$ or because the series diverges.

1) Proof for finite $|I| . " \geq$ "Consider $\bigcup_{i=1}^{n} I_{i} \subset I$. Rearrange $\left(I_{i}\right)=\left(I_{k}^{\prime}\right)$ so that I_{k-1}^{\prime} lies to the left of I_{k}^{\prime}. J_{i} 's fill the gaps. Disjoint I_{k}^{\prime} 's J_{i} 's. $I=\sum_{j=1}^{n}\left|I_{j}\right|+\sum_{j=1}^{n}\left|J_{k}\right|$. $I \geq \sum_{j=1}^{n}\left|I_{j}\right|$. Let $n \rightarrow \infty$. (limit exists because bounded and monotone increasing) " \leq " $\forall \varepsilon>0$, compact $I^{\prime}=\left[a+\frac{\varepsilon}{2}, b-\frac{\varepsilon}{2}\right] \subset I .\left|I^{\prime}\right|=I-\varepsilon$. open $I_{j}^{\prime}=\left(a-\frac{\varepsilon}{22^{j}}, b+\frac{\varepsilon}{22^{j}}\right) \supset I_{j} .\left|I_{j}^{\prime}\right|=\left|I_{j}\right|+\frac{\varepsilon}{2^{j}} . I^{\prime} \subset I=\bigcup_{i=1}^{\infty} I_{i} \subset \bigcup_{i=1}^{\infty} I_{i}^{\prime}$ open cover.
Heine-Borel theorem $\Rightarrow \exists N I^{\prime} \subset \bigcup_{i=1}^{N} I_{i}^{\prime} \Rightarrow\left|I^{\prime}\right| \leq \sum_{i=1}^{N}\left|I_{i}^{\prime}\right| . I-\varepsilon=\left|I^{\prime}\right| \leq \sum_{i=1}^{N}\left|I_{i}^{\prime}\right|$
$=\sum_{i=1}^{N}\left(\left|I_{j}\right|+\frac{\varepsilon}{2^{j}}\right) \leq \sum_{i=1}^{\infty}\left(\left|I_{j}\right|+\frac{\varepsilon}{2^{j}}\right)=\sum_{i=1}^{N}\left|I_{j}\right|+\varepsilon$.
2) Proof for $|I|=+\infty . \underset{\text { result is finite interval }}{I \cap[N, N]}=\bigcup_{i=1}^{\infty}\left(I_{i} \cap[N, N]\right)$. By case 1$)$,

$$
|I \cap[N, N]|=\bigcup_{i=1}^{\infty}\left|I_{i} \cap[N, N]\right| \leq \bigcup_{i=1}^{\infty}\left|I_{i}\right| \cdot \lim _{N \rightarrow \infty}|I \cap[N, N]|=|I|=+\infty .
$$

- $I \subset \bigcup_{j=1}^{\infty} I_{j} \Rightarrow|I| \leq \sum_{j=1}^{\infty}\left|I_{j}\right|$

Proof. Construct disjoint interval I_{j}^{\prime} by reducing $I_{j} . \bigcup_{j=1}^{\infty} I_{j}=\bigcup_{\substack{j=1 \\ \text { disjoint }}}^{\infty} I_{j}^{\prime} . I=\bigcup_{j=1}^{\infty}\left(I_{j}^{\prime} \cap I\right)$.

$$
|I|=\sum_{j=1}^{\infty}\left|I_{j}^{\prime} \cap I\right| \cdot\left|I_{j}^{\prime} \cap I\right| \leq\left|I_{j}^{\prime}\right| \leq\left|I_{j}\right|
$$

- $|I|=\inf \left\{\sum_{j=1}^{\infty}\left|I_{j}\right|: I \subset \bigcup_{j=1}^{\infty} I_{j}\right\}$

Proof. Let $C=\left\{\sum_{j=1}^{\infty}\left|I_{j}\right|: I \subset \bigcup_{j=1}^{\infty} I_{j}\right\} . " \geq "|I| \in C$ because $I \subset I \cup \varnothing \cup \varnothing \cup \cdots . " \leq "$
$\forall \bigcup_{j=1}^{\infty} I_{j}, I \subset \bigcup_{j=1}^{\infty} I_{j} \Rightarrow|I| \leq \sum_{j=1}^{\infty}\left|I_{j}\right|$. So, $|I|$ is a lower bound of C.

σ-field

- Let X be a set (universal), and \mathscr{F} is a family of subsets of $X . \mathscr{F}$ is called a field (or algebra of sets) provided that

1) $\varnothing \in \mathcal{F}$
2) $A \in \mathcal{F} \Rightarrow{ }^{c} A \in \mathcal{F}$.
3) $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$.
$\Rightarrow A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$
Proof. $A \cap B={ }^{c}\left({ }^{c} A \cup{ }^{c} B\right)$
$\Rightarrow A, B \in \mathcal{F} \Rightarrow A \backslash B \in \mathcal{F}$
Proof. $A \backslash B=A \cap{ }^{c} B$.

- A field forms a Boolean algebra under the operation $A+B=A \Delta B=(A \backslash B) \cup(B \backslash A)$ and $A \cdot B=A \cap B$.
Ex. Set of all subsets of X.
Ex. $X=$ any fixed interval of $\mathbb{R} . \mathcal{F}=\{$ finite unions of intervals contained in $X\}$.

$$
\begin{aligned}
& \bigcup_{j=1}^{\infty} A_{j} \in \mathcal{F} \\
& \Rightarrow \bigcap_{j=1}^{\infty} A_{j} \in \mathcal{F}
\end{aligned}
$$

Proof. $\bigcap_{j=1}^{\infty} A_{j}=\left(\bigcup_{j=1}^{\infty} A_{j}\right)$.
Ex. Set of all subsets of X.

- Let \mathcal{F} be a field. $\mathscr{F}_{\sigma}=$ the σ-field generated by \mathcal{F} is the intersection of all σ-field containing $\mathcal{F}=\bigcap_{\substack{g \text { is } a \sigma-\text { field } \\ \mathcal{F} \subset g}} g$.
- Is a σ-field

Proof. Let $A, B, A, A_{2}, \ldots \in \mathcal{F}_{\sigma}$, then A, B, A, A_{2}, \ldots every g. All g is σ-field; thus, 1) \varnothing in every g. 2) ${ }^{c} A$ also in every g. 3) $A \cup B$ also in every g. 4) $\bigcup_{j=1}^{\infty} A_{j}$ also in every g.

- Is the smallest σ-field containing \mathcal{F}.

If \mathscr{H} is a σ-field and $\mathscr{F} \subset \mathscr{H}$, then $\mathscr{F} \subset \mathscr{H}$.
Proof. \mathscr{H} is one of the g 's.

- Let interval $X \subset \mathbb{R} . \mathscr{B}_{X}=\sigma$-field generated by the field of finite unions of subintervals of X.
- Call \mathscr{B}_{X} the σ-field of Borel subsets of X or σ-field of Borel sets on X.
- Call set $B \in \mathscr{B}_{X}$ Borel set.
- Is the smallest σ-field containing finite unions of subintervals of X.
- G_{δ} set is a countable intersection of open sets
- Ex. open sets, intervals, countable intersection of countable union of open sets.
- \mathbb{Q} is not G_{δ}.
- G_{δ} is not a field; thus, not a σ-field.

Measure

- Let \mathcal{F} be a σ-field and $\mu: \mathcal{F} \rightarrow[0, \infty] . \mu$ is called a measure provided that

1) $\mu(\varnothing)=0$
2) σ-additivity: if $A=\bigcup_{j=1}^{\infty} A_{j}$ with A_{j} disjoint, then $|A|=\sum_{j=1}^{\infty}\left|A_{j}\right|$.

- Finite additivity: if $A=\bigcup_{j=1}^{n} A_{j}$ with A_{j} disjoint, then $|A|=\sum_{j=1}^{n}\left|A_{j}\right|$.

Proof. From σ-additivity, let $A_{j}=\varnothing \quad \forall j \geq n+1$.

- Members of \mathcal{F} is called measurable sets
- Monotonicity: $A, B \in \mathcal{F}, A \subset B \Rightarrow|A| \leq|B|$.

Proof. $|B|=|A|+\mid B \underset{\geq 0}{\mid B \backslash} A$.

- Continuity from below. If $A_{1} \subset A_{2} \subset A_{3} \subset \cdots$ is an increasing sequence of measurable sets and, then $\left|\bigcup_{j=1}^{\infty} A_{j}\right|=\lim _{j \rightarrow \infty}\left|A_{j}\right|$.

Proof. Let $A=\bigcup_{j=1}^{\infty} A_{j}, B_{1}=A_{1}$, and $B_{k}=A_{k} \backslash A_{k-1}$. Then B_{k} 's are disjoint. $A_{n}=\bigcup_{i=1}^{n} B_{i} \Rightarrow$ $\left|A_{n}\right|=\sum_{i=1}^{n} B_{i} . A=\bigcup_{i=1}^{\infty} B_{i} \Rightarrow|A|=\sum_{i=1}^{\infty} B_{i}$.

- Conditional continuity from above. If $B_{1} \supset B_{2} \supset B_{3} \supset \cdots$ is a decreasing sequence of measurable sets, and $\left|B_{i}\right|$ are finite $\forall i$, then $\left|\bigcap_{i=1}^{\infty} B_{i}\right|=\lim _{j \rightarrow \infty}\left|B_{j}\right|$.
- Let $B=\bigcap_{i=1}^{\infty} B_{i}$. Then $|B|$ is finite because $B \subset B_{i}$.

Ex. $B_{n}=(n, \infty)$. Then $\bigcap_{i=1}^{\infty} B_{i}=\varnothing . \lim _{n \rightarrow \infty}\left|B_{n}\right|=+\infty$.
Proof. Let $A_{k}=B_{k} \backslash B_{k+1}$. Then 1) $B_{1}=B \cup \bigcup_{j=1}^{\infty} A_{j}$, disjoint union $\Rightarrow\left|B_{1}\right|=|B|+\sum_{j=1}^{\infty} A_{j} \cdot|B|$ is finite $\left(\left|B_{1}\right|-|B|\right.$ is not $\left.\infty-\infty\right)$; so, $\left.\left|B_{1}\right|-|B|=\sum_{j=1}^{\infty}\left|A_{j}\right| .2\right) B_{1}=B_{n} \cup \bigcup_{j=1}^{n-1}\left|A_{j}\right|$, disjoint union $\Rightarrow\left|B_{1}\right|=\left|B_{n}\right|+\sum_{j=1}^{n-1}\left|A_{j}\right| \cdot\left|B_{n}\right|$ finite; so, $\left|B_{1}\right|-\left|B_{n}\right|=\sum_{j=1}^{n-1}\left|A_{j}\right|$. From 1) and 2), $\lim _{n \rightarrow \infty}\left(\left|B_{1}\right|-\left|B_{n}\right|\right)^{1)}=\sum_{j=1}^{\infty}\left|A_{j}\right|^{2)}=\left|B_{1}\right|-|B|$.

- Subadditivity: If A_{1}, \ldots, A_{n} are measurable sets, not necessarily disjoint, then $\left|\bigcup_{i=1}^{n} A_{i}\right| \leq \sum_{i=1}^{n}\left|A_{i}\right|$. Proof. Let $B_{1}=A_{1} . B_{i}=A_{i} \backslash \bigcup_{j=1}^{n-1} A_{j}$. Then, B_{i} 's are disjoint, $\bigcup_{i=1}^{n} A_{i}=\bigcup_{i=1}^{n} B_{i}$, and $B_{i} \subset A_{i}$. Thus, $\left|\bigcup_{i=1}^{n} A_{i}\right|=\left|\bigcup_{i=1}^{n} B_{i}\right|=\sum_{i=1}^{n}\left|B_{i}\right| \leq \sum_{i=1}^{n}\left|A_{i}\right|$.
- σ-subadditivity: If A_{1}, A_{2}, \ldots is a sequence of measurable sets, not necessarily disjoint, then $\left|\bigcup_{i=1}^{\infty} A_{i}\right| \leq \sum_{i=1}^{\infty}\left|A_{i}\right|$.

Proof. Let $B_{1}=A_{1} . B_{i}=A_{i} \backslash \bigcup_{j=1}^{n-1} A_{j}$. Then, B_{i} 's are disjoint, $\bigcup_{i=1}^{\infty} A_{i}=\bigcup_{i=1}^{\infty} B_{i}$, and $B_{i} \subset A_{i}$.

$$
\left|\bigcup_{i=1}^{\infty} A_{i}\right|=\left|\bigcup_{i=1}^{\infty} B_{i}\right|=\sum_{i=1}^{\infty}\left|B_{i}\right| \leq \sum_{i=1}^{\infty}\left|A_{i}\right| .
$$

- If $B \subset \bigcup_{i=1}^{n} A_{i}$, then $|B| \leq \sum_{i=1}^{n}\left|A_{i}\right|$.

Proof. By monotonicity, and subadditivity.

- If $B \subset \bigcup_{i=1}^{\infty} A_{i}$, then $|B| \leq \sum_{i=1}^{\infty}\left|A_{i}\right|$.

Proof. By monotonicity, and σ-subadditivity.

- If B_{1}, B_{2}, \ldots is a sequence of measurable sets, and $\forall i\left|B_{i}\right|=0$. Then, $\left|\bigcup_{i=1}^{\infty} B_{i}\right|=0$.

Proof. By σ-subadditivity.

- Outer regularity: Let B be a Borel set. Then, $|B|=\inf \{|A|: B \subset A, A$ open $\}$.
- Inner regularity: Let B be a Borel set. Then, $|B|=\sup \{|F|: F \subset B, F$ closed $\}$.

Lebesgue measure

- Lebesgue measure on $\mathbb{R}: \mu: \mathscr{B}_{\mathbb{R}} \rightarrow[0,+\infty] . B \in \mathscr{B}_{\mathbb{R}}$.

$$
\mu(B)=\inf \left\{\sum_{j=1}^{\infty}\left|I_{j}\right| ; B \subset \bigcup_{j=1}^{\infty} I_{j}, I_{j} \text { intervals }\right\} .
$$

- Is a measure.
- $\mu(B)=\inf \left\{\sum_{j=1}^{\infty}\left|I_{j}\right| ; B \subset \bigcup_{j=1}^{\infty} I_{j}, I_{j}\right.$ disjoint intervals $\}$
- Outer regularity of the Lebesgue measure: Let $B \in \mathscr{B}_{\mathbb{R}}$, then
$\mu(B)=\inf \{|A|: B \subset A, A$ open $\}$.
- Let $B \in \mathscr{B}_{\mathbb{R}}$, assume $\mu(B)<\infty$. Then, $\exists A \subset G_{\delta}$ such that $A \subset B$ and $\mu(A \backslash B)=0$ $(\mu(A)=\mu(B))$.

Measurable function

- Let (X, \mathcal{F}, μ) be a measure space.
- \mathcal{F} is a σ field on X.
- Note that $\varnothing \in \mathcal{F} \Rightarrow X \in \mathcal{F}$.
- Let $\mathcal{M}=\left\{S \subset \mathbb{R}: f^{-1}(S) \in \mathscr{F}\right\}$, then \mathcal{M} is a σ field on \mathbb{R}.

Proof. 1) \mathcal{F} is a field; hence, $\varnothing \in \mathcal{F} . \varnothing \subset \mathbb{R}$ and $f^{-1}(\varnothing)=\varnothing \in \mathcal{F}$; hence, $\varnothing \in \mathcal{M}$. 2)
Let $S \in \mathscr{F}$. Then $f^{-1}(S) \in \mathcal{F} . f^{-1}(\mathbb{R} \backslash S)=\underset{\in \mathcal{F}}{X \backslash} f_{\in \mathcal{F}}^{-1}(S) . \mathscr{F}$ is a field; hence
$f^{-1}(\mathbb{R} \backslash S) \in \mathcal{F}$. Thus, $\left.\mathbb{R} \backslash S \in \mathcal{M} .3\right)$ Let $S_{1}, S_{2}, \ldots \in \mathcal{M}, f^{-1}\left(\bigcup_{i=1}^{\infty} S_{i}\right)=\bigcup_{i=1}^{\infty} \underbrace{f^{-1}\left(S_{i}\right)}_{\in \mathcal{F}} . \mathscr{F}$ is a σ field; hence, $f^{-1}\left(\bigcup_{i=1}^{\infty} S_{i}\right) \in \mathcal{F}$, and $\bigcup_{i=1}^{\infty} S_{i} \in \mathcal{M}$.

- Let $f: X \rightarrow \mathbb{R}$, then f is measurable

$$
\begin{aligned}
& \equiv \text { Def: } \forall B \in \mathscr{B}_{\mathbb{R}} f^{-1}(B) \in \mathcal{F} \\
& \equiv \text { 1) } \forall I \subset \mathbb{R} \text { interval } f^{-1}(I) \in \mathcal{F}
\end{aligned}
$$

$\equiv 2) \forall I \subset \mathbb{R}$ of the form $(a, \infty) f^{-1}(I) \in \mathcal{F}$
三 3) $\forall a \in \mathbb{R}\{x \in X ; f(x)>a\} \in \mathcal{F}$
Proof 1) " \Rightarrow " Trivial because $\forall I \subset \mathbb{R} I \in \mathscr{B}_{\mathbb{R}}$. " \Leftarrow " We have the set $\mathcal{J}=$ $\{$ finite unions of intervals in $\mathbb{R}\} \subset \mathcal{M}$. Note that $\mathscr{B}_{\mathbb{R}}$ is the smallest σ field on \mathbb{R} that contains $\mathcal{J} . \boldsymbol{\mathcal { M }}$ is a σ field on \mathbb{R}; hence $\mathscr{B}_{\mathbb{R}} \subset \boldsymbol{\mathcal { M }}$.

Proof 2) " \Rightarrow " trivial because (a, ∞) is an interval. " \Leftarrow "We have the set $\mathfrak{J}^{\prime}=$ $\{$ finite unions of intervals of the form (a, ∞) in $\mathbb{R}\} \subset \mathcal{M} . \mathcal{M}$ is a σ field on \mathbb{R}; hence $\boldsymbol{\mathcal { M }}$ contains $\mathbb{R} \backslash(a, \infty)=(-\infty, a],(a, \infty) \backslash(b, \infty)=(a, b], \bigcap_{n=1}^{\infty}\left(a-\frac{1}{n}, \infty\right]=[a, \infty)$ etc.
$\forall a, b \in \mathbb{R}$. (We can get any kind of intervals from elementary set operations of sets of the form (a, ∞))

- $f, f_{n}: X \rightarrow \mathbb{R}$, then
- $f^{-1}(\mathbb{R} \backslash S)=X \backslash f^{-1}(S)$.

Proof. $x \in f^{-1}(\mathbb{R} \backslash S) \Leftrightarrow f(x) \in \mathbb{R} \backslash S \Leftrightarrow f(x) \notin S \Leftrightarrow x \notin f^{-1}(S)$
$\Leftrightarrow x \in X \backslash f^{-1}(S)$.

- $f^{-1}\left(\bigcup_{i=1}^{\infty} S_{i}\right)=\bigcup_{i=1}^{\infty} f^{-1}\left(S_{i}\right)$

Proof. 1) $x \in f^{-1}\left(\bigcup_{i=1}^{\infty} S_{i}\right) \Rightarrow f(x) \in \bigcup_{i=1}^{\infty} S_{i} \Rightarrow \exists i_{0} f(x) \in S_{i_{0}} \Rightarrow x \in f^{-1}\left(S_{i_{0}}\right) \Rightarrow$ $\left.x \in \bigcup_{i=1}^{\infty} f^{-1}\left(S_{i}\right) .2\right) x \in \bigcup_{i=1}^{\infty} f^{-1}\left(S_{i}\right) \Rightarrow \exists i_{0} x \in f^{-1}\left(S_{i_{0}}\right) \Rightarrow f(x) \in S_{i_{0}} \Rightarrow f(x) \in \bigcup_{i=1}^{\infty} S_{i}$ $\Rightarrow x \in f^{-1}\left(\bigcup_{i=1}^{\infty} S_{i}\right)$.

- $\quad(g \circ f)^{-1}(A)=f^{-1}\left(g^{-1}(A)\right)$.

Proof. $x \in(g \circ f)^{-1}(A) \Leftrightarrow g(f(x)) \in A \Leftrightarrow f(x) \in g^{-1}(A) \Leftrightarrow x \in f^{-1}\left(g^{-1}(A)\right)$.

- $\left\{x \in X: \sup _{n} f_{n}>a\right\}=\bigcup_{k=1}^{\infty}\left\{x \in X: f_{k}(x)>a\right\}$

Proof. " \supset " $x \in \bigcup_{k=1}^{\infty}\left\{x \in X: f_{k}(x)>a\right\} \Rightarrow \exists k_{0} f_{k_{0}}(x)>a$. But $\sup _{n} f_{n}(x) \geq f_{k_{0}}(x)$.
Hence, $\sup _{n} f_{n}(x)>a$, and therefore, $x \in\left\{x \in X: \sup _{n} f_{n}>a\right\}$. " \subset " Let
$x \in\left\{x \in X: \sup _{n} f_{n}>a\right\}$. Assume $\forall k \in \mathbb{N}, f_{k_{0}}(x) \leq a$. Then $\sup _{n} f_{n}(x) \leq a \Rightarrow$ contradiction.

- Let $\left(\mathbb{R}, \boldsymbol{B}_{\mathbb{R}}, \mu\right)$ be a measure space, and $g: \mathbb{R} \rightarrow \mathbb{R}$ continuous. Then g is measurable.

Proof. We know that the inverse image of open set is open. $\forall a \in \mathbb{R}(a, \infty)$ is open; hence, $g^{-1}((a, \infty))$ is open. $g^{-1}((a, \infty))$ is in $\boldsymbol{B}_{\mathbb{R}}$ because, by structure theorem, $g^{-1}((a, \infty))$ is a (disjoint) union of at most countable number of open intervals.

- Let (X, \mathcal{F}, μ) be a measure space, then $f(x) \equiv c, c \in \mathbb{R}$ is measurable.

Proof. $F_{a}=\{x \in X: f(x)>a\}=\left\{\begin{array}{ll}\varnothing, & a \geq c \\ X, & a<c\end{array}\right.$. Both $\varnothing, X \in \mathcal{F}$.

- Let (X, \mathcal{F}) be a measurable space and $f: X \rightarrow \mathbb{R}$ measurable. Also, let $\left(\mathbb{R}, \boldsymbol{B}_{\mathbb{R}}\right)$ be a measure space, and $g: \mathbb{R} \rightarrow \mathbb{R}$ measurable, then $h(x)=g \circ f(x)=g(f(x)): X \rightarrow \mathbb{R}$ is measurable.

Proof. $H_{a}=h^{-1}((a, \infty))=f^{-1}\left(g^{-1}((a, \infty))\right)$. Because g is measurable, $g^{-1}((a, \infty)) \in \mathscr{B}_{\mathbb{R}}$.
Also, because f is measurable, $\forall B \in \mathscr{B}_{\mathbb{R}} f^{-1}(B) \in \mathcal{F}$.

- Let (X, \mathcal{F}) be a measurable space, and $f, g: X \rightarrow \mathbb{R}$ be measurable functions. Then
I) $h(x)=f(x)+g(x): X \rightarrow \mathbb{R}$ is measurable.

Proof. $H_{a}=\bigcup_{b \in \mathbb{Q}} F_{b} \cap G_{a-b} . \forall a, b \in \mathbb{R} \quad F_{b}, G_{a-b} \in \mathcal{F} . \mathcal{F}$ is a σ field; hence,
$H_{a}=\bigcup_{b \in \mathbb{Q}} F_{b} \cap G_{a-b} \in \mathcal{F}$.
II) $f^{2},|f|, c f$ for $c \in \mathbb{R}$ are measurable.

Proof. $x^{2},|x|, c x$ are continuous function.
III) If $\forall x \in X \quad f(x) \neq 0$, then $h(x)=\frac{1}{f(x)}$ is measurable.

Proof. For $a>0$, we have

$$
\begin{aligned}
H_{a} & =\{x \in X: h(x)>a\}=\left\{x \in X: \frac{1}{f(x)}>a\right\} \\
& =\left\{x \in X: f(x)>0, f(x)<\frac{1}{a}\right\} \cup\left\{x \in X: f(x)<0, f(x)>\frac{1}{a}\right\} \\
& =\left(f^{-1}((0, \infty)) \cap f^{-1}\left(\left(-\infty, \frac{1}{a}\right)\right)\right) \cup\left(f^{-1}((-\infty, 0)) \cap f^{-1}\left(\left(\frac{1}{a}, \infty\right)\right)\right)
\end{aligned}
$$

Similarly, for $a<0$, we have

$$
\begin{aligned}
H_{a} & =\left\{x \in X: f(x)>0, f(x)>\frac{1}{a}\right\} \cup\left\{x \in X: f(x)<0, f(x)<\frac{1}{a}\right\} \\
& =\left(f^{-1}((0, \infty)) \cap f^{-1}\left(\left(\frac{1}{a}, \infty\right)\right)\right) \cup\left(f^{-1}((-\infty, 0)) \cap f^{-1}\left(\left(-\infty, \frac{1}{a}\right)\right)\right)
\end{aligned}
$$

For $a=0$, we have $H_{a}=\left\{x \in X: \frac{1}{f(x)}>0\right\}=\{x \in X: f(x)>0\}=f^{-1}((0, \infty))$.
Because for any interval $I, f^{-1}(I) \in \mathcal{F}$ and \mathcal{F} is a σ field, we have $H_{a} \in \mathcal{F}$ since it is a union and/or intersection of sets in \mathcal{F}.
IV) If $a, b \in \mathbb{R}$, then $a f+b g: X \rightarrow \mathbb{R}$ is measurable.

Proof. $a f, b g$ are measurable. Thus, $a f+b g$ is measurable.
V) $f-g: X \rightarrow \mathbb{R}$ is measurable.

Proof. From (IV), let $a=1, b=-1$.
VI) $f \cdot g: X \rightarrow \mathbb{R}$ is measurable

Proof. $f \cdot g=\frac{1}{4}\left((f+g)^{2}-(f-g)^{2}\right)$. From (I) and (V) we have $f+g$ and $f-g$ measurable. By (II), we have $(f+g)^{2}$ and $(f-g)^{2}$ measurable. By V) we have $(f+g)^{2}-(f-g)^{2}$. By (II), we finally have $\frac{1}{4}\left((f+g)^{2}-(f-g)^{2}\right)$ measurable.
VII) If $\forall x \in X g(x) \neq 0$, then $f / g: X \rightarrow \mathbb{R}$ is measurable.

Proof. Because $\forall x \in X g(x) \neq 0$, from (II), $\frac{1}{g(x)}$ is measurable. Because $f(x)$ and
$\frac{1}{g(x)}$ are measurable, form (VI), we conclude that $f(x) \frac{1}{g(x)}$ is measurable.
VIII) $\max (f, g): X \rightarrow \mathbb{R}$ is measurable

Proof. First, note that $\max (f, g)=\frac{f+g}{2}+\left|\frac{f-g}{2}\right|$. Because measurability is preserved under addition, subtraction, $|\cdot|$, and scalar scaling, we conclude that $\frac{f+g}{2}+\left|\frac{f-g}{2}\right|$ is measurable.

- Let $h(x)=f(x)+g(x): X \rightarrow \mathbb{R}, F_{a}=\{x \in X: f(x)>a\}, G_{a}=\{x \in X: g(x)>a\}$, $H_{a}=\{x \in X: h(x)>a\}=\{x \in X: f(x)+g(x)>a\}$, then $H_{a}=\bigcup_{b \in \mathbb{Q}} F_{b} \cap G_{a-b}$.

Proof. We want to show that $\bigcup_{c \in \mathbb{R}} F_{c} \cap G_{a-c}=\bigcup_{b \in \mathbb{Q}} F_{b} \cap G_{a-b}$." $\supset " x \in \bigcup_{b \in \mathbb{Q}} F_{b} \cap G_{a-b} \Rightarrow$ $\exists b_{0} \in \mathbb{Q} f(x)>b_{0}$ and $g(x)>a-b_{0} \Rightarrow h(x)=f(x)+g(x)>b_{0}+a-b_{0}=a \Rightarrow x \in H_{a}$.
$" \subset "$ Let $x \in H_{a}$. Note that because \mathbb{Q} is dense in \mathbb{R} and $f(x) \in \mathbb{R}, \exists$ sequence $\left(b_{n}\right)$ monotonically increasing, $\lim _{n \rightarrow \infty} b_{n}=f(x)$. Because $b_{n}<f(x), x \in F_{b_{n}}$. Then $\exists n_{0}$ such that $x \in G_{a-b_{n}}$.

Otherwise, we have $\forall n g(x) \leq a-b_{n}$. Take $n \rightarrow \infty$ and we have $g(x) \leq a-f(x)$ which implies $h(x)=g(x)+f(x) \leq a$ which contradict the assumption that $x \in H_{a}$. Hence, $x \in F_{b_{n 0}} \cap G_{a-b_{n 0}} \subset \bigcup_{b \in \mathbb{Q}} F_{b} \cap G_{a-b}$.

- Let (X, \mathcal{F}) be a measurable space and $\forall n \in \mathbb{N} f_{n}: X \rightarrow \mathbb{R}$ measurable. Then
- $\sup f_{n}$ is measurable

Proof. $\left\{x \in X: \sup _{n} f_{n}>a\right\}=\bigcup_{k=1}^{\infty}\left\{x \in X: \underset{\in \mathcal{F}}{f_{k}}(x)>a\right\}$

- $\inf _{n} f_{n}$ is measurable
- $\limsup f_{n}$ is measurable

Proof. $\limsup f_{n}=\inf _{n}\left(\sup _{k \geq n} f_{k}(x)\right) . \sup _{k \geq n} f_{k}(x)$'s are measurable.

- $\quad \liminf f_{n}$ is measurable
- If f_{n} converges pointwise to some function, then $\lim _{n \rightarrow \infty} f_{n}$ is measurable.

Proof. $\forall x \lim _{n \rightarrow \infty} f_{n}(x)=\limsup f_{n}(x)=\liminf f_{n}(x)$.

- Let (X, \mathcal{F}) be a measurable space, $E \subset X$. Then $\chi_{E}(x)=\left\{\begin{array}{ll}1, & x \in E \\ 0, & x \notin E\end{array}\right.$ is the characteristic function of E.
- $\quad \chi_{E}$ is measurable iff E is measurable $(E \in \mathcal{F})$.

Proof. " $\Rightarrow "\{1\}=[1,1] \in \mathscr{B}_{\mathbb{R}} \cdot \chi_{E}$ is measurable. Thus, $\chi^{-1}(\{1\}) \in \mathcal{F} . \chi^{-1}(\{1\})=E$. $" \Leftarrow " \chi^{-1}((a, \infty))=\left\{\begin{array}{ll}\varnothing, & a \geq 1 \\ X, & a<0 \\ E, & 0 \leq a<1\end{array}\right.$. And we know that $\varnothing, X, E \in \mathcal{F}$.

- Let (X, \mathscr{F}) be a measurable space. $f: X \rightarrow \mathbb{R}$ is a simple function
\equiv (Def) $f=\sum_{i=1}^{N} a_{i} \chi_{E_{i}}$ where $E_{i} \subset X, \in \mathcal{F}$, and disjoint, $a_{i} \neq 0$.
- Class of simple functions $=$ Class of measurable function that take finitely many values

Proof. " $\subset " f(x)=\left\{\begin{array}{ll}a_{i}, & \exists i \in\{1, \ldots, N\} x \in E_{i} \\ 0, & x \notin \bigcup_{i=1}^{N} E_{i}\end{array} . " \supset " \forall x \in X \quad f(x) \in\left\{v_{1}, \ldots, v_{N}\right\}\right.$.
Assume that v_{i} 's are distinct. Then $f=\sum_{i=1}^{N} v_{i} \chi_{f^{-1}\left(\left\{v_{i}\right\}\right)}$. Note that $\left\{v_{i}\right\}=\left[v_{i}, v_{i}\right] \in \mathscr{B}_{\mathbb{R}} \cdot f$ is measurable; hence, $f^{-1}\binom{\left\{v_{i}\right\}}{\in \mathscr{\mathcal { R }}_{\mathbb{R}}} \in \mathcal{F}$. Because v_{i} 's are distinct, $f^{-1}\binom{\left\{v_{i}\right\}}{\in \mathcal{B}_{\mathbb{R}}}$,s are disjoint.
$\Rightarrow f$ is measurable.

$$
\text { Proof. } E_{i} \in \mathcal{F} \Rightarrow \chi_{E_{i}} \text { measurable } \Rightarrow f=\sum_{i=1}^{N} a_{i} \chi_{E_{i}} \text { measurable. }
$$

- Not require a_{i} 's to be distinct.
- f does not have a unique representation.
- Let $f: X \rightarrow \mathbb{R}$ measurable, $f \geq 0$. Then $\exists s_{n}: X \rightarrow \mathbb{R} s_{n} \geq 0$ simple function such that $s_{n} \nearrow f$ (s_{n} converges pointwise to f in a monotonic increasing manner.)
$s_{n}(x)=\sum_{k=0}^{2^{2 n}-1} \frac{k}{2^{n}} \chi_{f^{-1}\left(\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)\right)}+2^{n} \chi_{f^{-1}\left(\left[2^{n}, \infty\right)\right)}$
- Let $f: X \rightarrow \mathbb{R}$ measurable, then $\exists s_{n}: X \rightarrow \mathbb{R}$ simple function such that $\forall x \in X$ $s_{n}(x) \rightarrow f(x)$.
- $f(x)=\underbrace{\max (f, 0)}_{f^{+}}-\underbrace{\max (-f, 0)}_{f^{-}}$
- $f^{+}, f^{-} \geq 0$

$\int f d \mu$ for simple functions

- Let (X, \mathcal{F}, μ) be a measure space, $f: X \rightarrow \mathbb{R}$ is a simple function. Then
$\int f d \mu=\sum_{i=1}^{N} a_{i} \mu\left(E_{i}\right)$.
- $\int f d \mu$ does not depend on the representation.

$$
\begin{aligned}
& f=\sum_{i=1}^{N} a_{i} \chi_{E_{i}}=\sum_{i=1}^{M} b_{i} \chi_{F_{i}} \quad E_{i} \subset X, \in \mathcal{F}, \text { and disjoint, } F_{i} \subset X, \in \mathcal{F}, \text { and disjoint, } a_{i}, b_{i} \neq 0 \\
& \Rightarrow \int f d \mu=\sum_{i=1}^{N} a_{i} \mu\left(E_{i}\right)=\sum_{j=1}^{M} b_{j} \mu\left(F_{j}\right) .
\end{aligned}
$$

- Let $f, g: X \rightarrow \mathbb{R}$, simple, $f \geq g \geq 0$, then $\int f d \mu \geq \int g d \mu$
- Let (X, \mathscr{F}) be a measurable space. $f: X \rightarrow \mathbb{R}$ is a simple function. Then,
- $|f|$ is a simple function.

Proof. $f=\sum_{i=1}^{N} a_{i} \chi_{E_{i}}$ where $E_{i} \subset X, \in \mathcal{F}$, and disjoint, $a_{i} \neq 0$. Let $g=|f|$.
Then, g can be written as $g=\sum_{i=1}^{N} b_{i} \chi_{E_{i}}$ where $b_{i}=\left|a_{i}\right| . a_{i} \neq 0 \Rightarrow b_{i}=\left|a_{i}\right| \neq 0$. Also, we already have $E_{i} \subset X, \in \mathcal{F}$, and disjoint because f is a simple function.

- $\left|\int f d \mu\right| \leq \int|f| d \mu$

Proof. $f=\sum_{i=1}^{N} a_{i} \chi_{E_{i}} \Rightarrow \int f d \mu=\sum_{i=1}^{N} a_{i} \mu\left(E_{i}\right)$, and $|f|=\sum_{i=1}^{N}\left|a_{i}\right| \chi_{E_{i}} \Rightarrow \int|f| d \mu=$ $\sum_{i=1}^{N}\left|a_{i}\right| \mu\left(E_{i}\right)$. By triangle inequality, $\left|\sum_{i=1}^{N} a_{i} \mu\left(E_{i}\right)\right| \leq \sum_{i=1}^{N}\left|a_{i} \mu\left(E_{i}\right)\right|$. Also, because $\mu\left(E_{i}\right) \geq 0,\left|a_{i} \mu\left(E_{i}\right)\right|=\left|a_{i}\right| \mu\left(E_{i}\right)$.

$\int f d \mu$

- Lebesgue approximate sums: Let $f: X \rightarrow \mathbb{R}$ measurable, $f \geq 0$, partition

$$
\begin{aligned}
& \mathscr{P}_{n}=\left\{\left[0, \frac{1}{2^{n}}\right),\left[\frac{1}{2^{n}}, \frac{2}{2^{n}}\right), \ldots,\left[2^{n}-\frac{1}{2^{n}}, 2^{n}\right),\left[2^{n}, \infty\right)\right\} . \text { Then } \\
& L\left(f, \mathscr{P}_{n}\right)=\sum_{k=0}^{2^{2 n}-1} \frac{k}{2^{n}} \mu\left(f^{-1}\left(\left[\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)\right)\right)\right)+2^{n} \mu\left(f^{-1}\left(\left[2^{n}, \infty\right)\right)\right)
\end{aligned}
$$

- $L\left(f, \mathscr{P}_{n}\right)=\int s_{n} d \mu$ where $s_{n}(x)=\sum_{k=0}^{2^{2 n}-1} \frac{k}{2^{n}} \chi_{f^{-1}\left(\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)\right)}+2^{n} \chi_{f^{-1}\left(\left[2^{n}, \infty\right)\right)}$ simple, ≥ 0.
- $s_{n} \nearrow f$.
- Let $I_{k}=\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)$ for $k=0, \ldots, 2^{2 n-1} \cdot I_{2^{2 n}}=\left[2^{n}, \infty\right)$. Then
- $s_{n}(x)=\sum_{k=0}^{2^{2 n}} \inf \left(I_{k}\right) \chi_{f^{-1}\left(I_{k}\right)}$.
- $\quad L\left(f, \mathscr{P}_{n}\right)=\sum_{k=0}^{2^{2 n}} \inf \left(I_{k}\right) \mu\left(f^{-1}\left(I_{k}\right)\right)$.
- $\quad \inf \left(I_{k}\right)=\frac{k}{2^{n}}$
- Let (X, \mathcal{F}, μ) be a measure space, $f: X \rightarrow \mathbb{R}$ measurable, $f \geq 0$, define

$$
\int f d \mu=\lim _{n \rightarrow \infty} L\left(f, \mathscr{P}_{n}\right) \in[0, \infty]
$$

- $\lim _{n \rightarrow \infty} L\left(f, \mathscr{P}_{n}\right)$ exists (allow $+\infty$)

Proof. $L\left(f, \mathscr{P}_{n}\right)=\int s_{n} d \mu$. Because $s_{n} \nearrow f$, and $s_{n} \geq 0$, we have $\int s_{n} d \mu \leq \int s_{n+1} d \mu$.
Thus, the sequence $\left(\int s_{n} d \mu\right)_{n=1}^{\infty}$ is a monotone increasing sequence of real number.

- Let $f: X \rightarrow \mathbb{R}$ simple $f \geq 0$. Then, $\lim _{n \rightarrow \infty} L\left(f, \mathscr{P}_{n}\right)=\int f d \mu$.
- Let $f=\sum_{i=1}^{N} a_{i} \chi_{E_{i}}$ where $E_{i} \subset X, \in \mathcal{F}$, and disjoint, $a_{i}>0$, then

$$
\lim _{n \rightarrow \infty} L\left(f, \mathscr{P}_{n}\right)=\int f d \mu=\sum_{i=1}^{N} a_{i} \mu\left(E_{i}\right)
$$

- Let $f, g: X \rightarrow \mathbb{R}$ measurable, $\forall x \in X \quad 0 \leq f \leq g$, then
- For $s_{n}^{(f)}(x)=\sum_{k=0}^{2^{2 n}} \inf \left(I_{k}\right) \chi_{f^{-1}\left(I_{k}\right)}, s_{n}^{(g)}(x)=\sum_{k=0}^{2^{2 n}} \inf \left(I_{k}\right) \chi_{g^{-1}\left(I_{k}\right)}$, we have $\forall x \in X$ $s_{n}^{(f)}(x) \geq s_{n}^{(g)}(x)$

Proof. Consider any $x \in X$. Then $\exists k_{0} f(x) \in I_{k_{0}} \Rightarrow s_{n}^{(f)}(x)=\inf \left(I_{k_{0}}\right)$, and $\exists k_{1}$ $g(x) \in I_{k_{1}} \Rightarrow s_{n}^{(g)}(x)=\inf \left(I_{k_{1}}\right)$. Because $f \leq g, k_{0} \leq k_{1} \Rightarrow \inf \left(I_{k_{0}}\right) \leq \inf \left(I_{k_{1}}\right)$.
Hence, $s_{n}^{(f)}(x)=\inf \left(I_{k_{0}}\right) \leq \inf \left(I_{k_{1}}\right)=s_{n}^{(g)}(x)$.

- $\int f d \mu \leq \int g d \mu$.

Proof. $\forall x \in X \quad 0 \leq s_{n}^{(f)}(x) \leq s_{n}^{(g)}(x) \Rightarrow L\left(f, \mathscr{P}_{n}\right)=\int s_{n}^{(f)} d \mu \leq \int s_{n}^{(g)} d \mu=L\left(g, \mathscr{P}_{n}\right)$.
Take $\lim n \rightarrow \infty$.

- Let $f_{k}: X \rightarrow \mathbb{R}$ measurable, $0 \leq f_{1} \leq f_{2} \leq \cdots$
- Let $g: X \rightarrow \mathbb{R}$ simple function, $\forall x \in X \lim _{k \rightarrow \infty} f_{k}(x) \geq g(x) \geq 0$, then $\lim _{k \rightarrow \infty} \int f_{k} d \mu \geq \int g d \mu$.
- Let $\forall x \in X \lim _{k \rightarrow \infty} f_{k}(x) \geq b \chi_{B}, b>0, B \in \mathcal{F}$, then $\lim _{k \rightarrow \infty} \int_{k} d \mu \geq b \mu(B)$.
- The monotone convergence theorem: Let $0 \leq f_{1} \leq f_{2} \leq \cdots, f_{k}: X \rightarrow \mathbb{R}$ measurable, $\forall x \in X \lim _{k \rightarrow \infty} f_{k}(x)=f(x)\left(f_{k} \nearrow f\right.$ pointwise $)$, then $\lim _{k \rightarrow \infty} \int f_{k} d \mu=\int f d \mu$

Proof. Because f_{k} 's are measurable, $f=\lim _{k \rightarrow \infty} f_{k}$ is measurable. 1) $\lim _{k \rightarrow \infty} \int f_{k} d \mu \leq \int f d \mu$: Because f_{k}, f measurable, $\forall x \in X \quad 0 \leq f_{k} \leq f$, we have $\int f_{k} d \mu \leq \int f d \mu$. Take lim as k
$\rightarrow \infty$. 2) $\lim _{k \rightarrow \infty} \int f_{k} d \mu \geq \int f d \mu: s_{n} \nearrow f$; so $\lim _{k \rightarrow \infty} f_{k}(x)=f(x) \geq s_{n}(x) \Rightarrow$ $\lim _{k \rightarrow \infty} \int f_{k} d \mu \geq \int s_{n} d \mu=L\left(f, \mathscr{P}_{n}\right)$. Take lime $n \rightarrow \infty$.

