• **Cantor set** C_0

- The Cantor set is
 - the subset of [0,1] of all numbers expressible in base 3 with digits 0 and 2. \Rightarrow $(0.a_1a_2...)_3, a_k \in \{0,2\}.$
 - what's left over after removal of a sequence of open subintervals of [0, 1]. The algorithm is as follows: 1) Divide the remaining intervals each into three equal parts.
 2) Remove the open middle interval. 3) Repeat 1).
- countable intersection of finite unions of closed intervals.
- closed (intersection of closed sets), non-empty, perfect
- Doesn't contain any interval.
- Has no isolated point.
- Has the same cardinality as \mathbb{R} . $(0.a_1a_2...)_3 \xrightarrow{1:1 \text{onto}} (0.b_1b_2...)_2, b_k = \frac{a_k}{2} \in \{0,1\}.$

The Concept of Measure

Intervals

- *I* denotes an interval (a,b) or [a,b], or (a,b] or [a,b), then length of I = |I| = b a.
 - If $a = -\infty$ or $b = +\infty$, then $|I| = +\infty$.
- *I* is a non-negative extended real number.
- Additivity: $I = I_1 \cup I_2$, $I_1 \cap I_2 = \emptyset$, then $|I| = |I_1| \cup |I_2|$.
- Finite additivity of length: If interval $I = \bigcup_{i=1}^{n} I_i$ is a <u>disjoint union</u> of intervals, then

$$\left|I\right| = \sum_{i=1}^{n} \left|I_{i}\right|$$

Proof. Induction. Observe that it is possible to remove one of the intervals I_k (say the one containing an endpoint or a neighborhood of an endpoint if I is open) so that the union of the remaining intervals is still an interval.

• Subadditivity: interval $I \subset \bigcup_{i=1}^{n} I_i \Longrightarrow |I| \le \sum_{i=1}^{n} |I_i|$.

Proof. Shirk I_j to I'_j so that I is the disjoint union $I = \bigcup_{i=1}^{n} I'_i$.

• Monotonicity: $I \subset J \Rightarrow |I| \leq |J|$.

• Countable additivity / *s*-additivity: If interval $I = \bigcup_{i=1}^{n} I_i$ is a disjoint union of intervals, then

$$\left|I\right| = \sum_{i=1}^{\infty} \left|I_i\right|.$$

- If one side is $+\infty$, then so is the other.
- ∑_{i=1} |I_i| can be +∞ either because one of the summands is +∞ or because the series diverges.

1) Proof for finite |I|. " \geq "Consider $\bigcup_{i=1}^{n} I_{i} \subset I$. Rearrange $(I_{i}) = (I'_{k})$ so that I'_{k-1} lies to the left of I'_{k} . J_{i} 's fill the gaps. Disjoint I'_{k} 's J_{i} 's. $I = \sum_{j=1}^{n} |I_{j}| + \sum_{j=1}^{n} |J_{k}|$. $I \geq \sum_{j=1}^{n} |I_{j}|$. Let $n \to \infty$. (limit exists because bounded and monotone increasing) " \leq " $\forall e > 0$, compact $I' = \left[a + \frac{e}{2}, b - \frac{e}{2}\right] \subset I \cdot |I'| = I - e$ open $I'_{j} = \left(a - \frac{e}{22^{j}}, b + \frac{e}{22^{j}}\right) \supset I_{j} \cdot |I'_{j}| = |I_{j}| + \frac{e}{2^{j}}$. $I' \subset I = \bigcup_{i=1}^{\infty} I_{i} \subset \bigcup_{i=1}^{\infty} I'_{i}$ open cover. Heine-Borel theorem $\Rightarrow \exists N \ I' \subset \bigcup_{i=1}^{N} I'_{i} \Rightarrow |I'| \leq \sum_{i=1}^{N} |I'_{i}|$. $I - e = |I'| \leq \sum_{i=1}^{N} |I'_{i}|$ $= \sum_{i=1}^{N} \left(|I_{i}| + \frac{e}{2^{j}} \right) \leq \sum_{i=1}^{\infty} \left(|I_{j}| + \frac{e}{2^{j}} \right) = \sum_{i=1}^{N} |I_{j}| + e$. 2) Proof for $|I| = +\infty$. $\prod_{\text{result is finite interval}} = \bigcup_{i=1}^{\infty} (I_{i} \cap [N, N])$. By case 1), $|I \cap [N, N]| = \bigcup_{i=1}^{\infty} |I_{i} \cap [N, N]| \leq \bigcup_{i=1}^{\infty} |I_{i}| \cdot \lim_{N \to \infty} |I \cap [N, N]| = |I| = +\infty$. • $I \subset \bigcup_{j=1}^{\infty} I_{j} \Rightarrow |I| \leq \sum_{j=1}^{\infty} |I_{j}|$

Proof. Construct disjoint interval I'_j by reducing I_j . $\bigcup_{j=1}^{\infty} I_j = \bigcup_{j=1}^{\infty} I'_j$. $I = \bigcup_{j=1}^{\infty} (I'_j \cap I)$.

$$|I| = \sum_{j=1}^{\infty} |I'_j \cap I| \cdot |I'_j \cap I| \le |I'_j| \le |I_j|.$$

•
$$|I| = \inf\left\{\sum_{j=1}^{\infty} |I_j| \colon I \subset \bigcup_{j=1}^{\infty} I_j\right\}$$

Proof. Let
$$C = \left\{ \sum_{j=1}^{\infty} \left| I_j \right| : I \subset \bigcup_{j=1}^{\infty} I_j \right\}$$
. " \geq " $\left| I \right| \in C$ because $I \subset I \cup \emptyset \cup \emptyset \cup \cdots$. " \leq "
 $\forall \bigcup_{j=1}^{\infty} I_j$, $I \subset \bigcup_{j=1}^{\infty} I_j \Rightarrow \left| I \right| \leq \sum_{j=1}^{\infty} \left| I_j \right|$. So, $\left| I \right|$ is a lower bound of C .

s-field

- Let X be a set (universal), and \mathcal{F} is a family of subsets of X. \mathcal{F} is called a <u>field</u> (or algebra of sets) provided that
 - 1) $\emptyset \in \mathcal{F}$
 - 2) $A \in \mathcal{F} \Rightarrow {}^{c}A \in \mathcal{F}.$
 - 3) $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$.
 - $\Rightarrow A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$

Proof. $A \cap B = {}^{c} ({}^{c}A \cup {}^{c}B)$

$$\Rightarrow A, B \in \mathcal{F} \Rightarrow A \setminus B \in \mathcal{F}$$

Proof. $A \setminus B = A \cap {}^c B$.

• A field forms a Boolean algebra under the operation $A + B = A\Delta B = (A \setminus B) \cup (B \setminus A)$ and $A \cdot B = A \cap B$.

Ex. Set of all subsets of *X*.

Ex. X = any fixed interval of \mathbb{R} . $\mathcal{F} = \{$ finite unions of intervals contained in $X \}$.

• A field \mathcal{F} (on X) is called a <u>s-field</u> provided that if A_1, A_2, \dots is a sequence of sets in \mathcal{F} , then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}.$

$$\Rightarrow \bigcap_{j=1}^{\infty} A_j \in \mathcal{F}.$$

Proof. $\bigcap_{j=1}^{\infty} A_j = \left(\bigcup_{j=1}^{\infty} {}^c A_j \right).$

Ex. Set of all subsets of X.

• Let \mathcal{F} be a field. \mathcal{F}_{s} = the <u>s-field generated by \mathcal{F} </u> is the intersection of all s-field containing $\mathcal{F} = \bigcap_{s \in \mathcal{F}} g_{s}$.

$$ar{F} = egin{pmatrix} & egin{array}{c} g \ g \ is \ a \ m{s} \ - {
m field} \ \mathcal{F} \subset g \ \end{array} egin{pmatrix} g \ g \ m{s} \ \mathcal{F} \$$

• Is a *s*-field

Proof. Let $A, B, A, A_2, \ldots \in \mathcal{F}_s$, then A, B, A, A_2, \ldots every g. All g is s-field; thus, 1) \varnothing in every g. 2) cA also in every g. 3) $A \cup B$ also in every g. 4) $\bigcup_{i=1}^{\infty} A_i$ also in every g.

- Is the smallest *s*-field containing *F*.
 If *H* is a *s*-field and *F*⊂*H*, then *F_s*⊂*H*.
 Proof. *H* is one of the g's.
- Let interval $X \subset \mathbb{R}$. $\mathcal{B}_X = s$ -field generated by the field of finite unions of subintervals of X.
 - Call \mathcal{B}_X the <u>s-field of Borel subsets</u> of X or s-field of Borel sets on X.
 - Call set $B \in \mathcal{B}_X$ **Borel set**.
 - Is the smallest *s*-field containing finite unions of subintervals of *X*.
- G_d set is a countable intersection of open sets
 - Ex. open sets, intervals, countable intersection of countable union of open sets.
 - \mathbb{Q} is not G_d .
 - G_d is not a field; thus, not a *s*-field.

Measure

• Let \mathcal{F} be a s-field and $m: \mathcal{F} \to [0, \infty]$. m is called a <u>measure</u> provided that

1)
$$\mathbf{m}(\emptyset) = 0$$

2) **s**-additivity: if
$$A = \bigcup_{j=1}^{\infty} A_j$$
 with A_j disjoint, then $|A| = \sum_{j=1}^{\infty} |A_j|$.

• **Finite additivity**: if $A = \bigcup_{j=1}^{n} A_j$ with A_j disjoint, then $|A| = \sum_{j=1}^{n} |A_j|$.

Proof. From *s*-additivity, let $A_j = \emptyset \quad \forall j \ge n+1$.

- Members of \mathcal{F} is called **measurable sets**
- Monotonicity: $A, B \in \mathcal{F}, A \subset B \Rightarrow |A| \leq |B|$.

Proof. $|B| = |A| + |B \setminus A|$.

• Continuity from below: If $A_1 \subset A_2 \subset A_3 \subset \cdots$ is an increasing sequence of measurable sets and, then $\left| \bigcup_{j=1}^{\infty} A_j \right| = \lim_{j \to \infty} |A_j|$.

Proof. Let $A = \bigcup_{j=1}^{\infty} A_j$, $B_1 = A_1$, and $B_k = A_k \setminus A_{k-1}$. Then B_k 's are disjoint. $A_n = \bigcup_{i=1}^{n} B_i \Rightarrow |A_n| = \sum_{i=1}^{n} B_i \cdot A = \bigcup_{i=1}^{\infty} B_i \Rightarrow |A| = \sum_{i=1}^{\infty} B_i$.

- Conditional continuity from above. If $B_1 \supset B_2 \supset B_3 \supset \cdots$ is a decreasing sequence of measurable sets, and $|B_i|$ are finite $\forall i$, then $\left|\bigcap_{i=1}^{\infty} B_i\right| = \lim_{j \to \infty} |B_j|$.
 - Let $B = \bigcap_{i=1}^{\infty} B_i$. Then |B| is finite because $B \subset B_i$.

Ex.
$$B_n = (n, \infty)$$
. Then $\bigcap_{i=1}^{\infty} B_i = \emptyset$. $\lim_{n \to \infty} |B_n| = +\infty$.

Proof. Let
$$A_k = B_k \setminus B_{k+1}$$
. Then 1) $B_1 = B \cup \bigcup_{j=1}^{\infty} A_j$, disjoint union $\Rightarrow |B_1| = |B| + \sum_{j=1}^{\infty} A_j$. $|B|$
is finite $(|B_1| - |B| \text{ is not } \infty - \infty)$; so, $|B_1| - |B| = \sum_{j=1}^{\infty} |A_j|$. 2) $B_1 = B_n \cup \bigcup_{j=1}^{n-1} |A_j|$, disjoint
union $\Rightarrow |B_1| = |B_n| + \sum_{j=1}^{n-1} |A_j|$. $|B_n|$ finite; so, $|B_1| - |B_n| = \sum_{j=1}^{n-1} |A_j|$. From 1) and 2),
 $\lim_{n \to \infty} (|B_1| - |B_n|) \stackrel{\text{so}}{=} \sum_{j=1}^{\infty} |A_j| \stackrel{\text{so}}{=} |B_1| - |B|$.

• **Subadditivity**: If $A_1, ..., A_n$ are measurable sets, not necessarily disjoint, then $\left| \bigcup_{i=1}^n A_i \right| \le \sum_{i=1}^n |A_i|$.

Proof. Let
$$B_1 = A_1$$
. $B_i = A_i \setminus \bigcup_{j=1}^{n-1} A_j$. Then, B_i 's are disjoint, $\bigcup_{i=1}^n A_i = \bigcup_{i=1}^n B_i$, and $B_i \subset A_i$.
Thus, $\left| \bigcup_{i=1}^n A_i \right| = \left| \bigcup_{i=1}^n B_i \right| = \sum_{i=1}^n |B_i| \le \sum_{i=1}^n |A_i|$.

• **s**-subadditivity: If A_1, A_2, \ldots is a sequence of measurable sets, not necessarily disjoint, then $\left| \bigcup_{i=1}^{\infty} A_i \right| \le \sum_{i=1}^{\infty} |A_i|.$

Proof. Let
$$B_1 = A_1$$
. $B_i = A_i \setminus \bigcup_{j=1}^{n-1} A_j$. Then, B_i 's are disjoint, $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$, and $B_i \subset A_i$.
$$\left| \bigcup_{i=1}^{\infty} A_i \right| = \left| \bigcup_{i=1}^{\infty} B_i \right| = \sum_{i=1}^{\infty} |B_i| \le \sum_{i=1}^{\infty} |A_i|.$$
$$B \subset \begin{bmatrix} n \\ i \end{bmatrix} A_i$$
, then $|B| \le \sum_{i=1}^{n} |A_i|.$

• If $B \subset \bigcup_{i=1}^{n} A_i$, then $|B| \leq \sum_{i=1}^{n} |A_i|$

Proof. By monotonicity, and subadditivity.

• If $B \subset \bigcup_{i=1}^{\infty} A_i$, then $|B| \leq \sum_{i=1}^{\infty} |A_i|$.

Proof. By monotonicity, and \boldsymbol{s} -subadditivity.

- If B_1, B_2, \dots is a sequence of measurable sets, and $\forall i | B_i | = 0$. Then, $\left| \bigcup_{i=1}^{\infty} B_i \right| = 0$. Proof. By **s**-subadditivity.
- <u>Outer regularity</u>: Let *B* be a Borel set. Then, $|B| = \inf \{ |A| : B \subset A, A \text{ open} \}$.
- <u>Inner regularity</u>: Let *B* be a Borel set. Then, $|B| = \sup\{|F|: F \subset B, F \text{ closed}\}$.

Lebesgue measure

- Lebesgue measure on \mathbb{R} : $\boldsymbol{m}: \boldsymbol{\mathcal{B}}_{\mathbb{R}} \to [0, +\infty]$. $B \in \boldsymbol{\mathcal{B}}_{\mathbb{R}}$. $\boldsymbol{m}(B) = \inf \left\{ \sum_{j=1}^{\infty} |I_j|; B \subset \bigcup_{j=1}^{\infty} I_j, I_j \text{ intervals} \right\}.$
 - Is a measure.

•
$$\mathbf{m}(B) = \inf \left\{ \sum_{j=1}^{\infty} |I_j|; B \subset \bigcup_{j=1}^{\infty} I_j, I_j \text{ disjoint intervals} \right\}$$

- Outer regularity of the Lebesgue measure: Let $B \in \mathcal{B}_{\mathbb{R}}$, then $m(B) = \inf \{ |A| : B \subset A, A \text{ open} \}.$
- Let $B \in \mathcal{B}_{\mathbb{R}}$, assume $\mathbf{m}(B) < \infty$. Then, $\exists A \subset G_d$ such that $A \subset B$ and $\mathbf{m}(A \setminus B) = 0$ $(\mathbf{m}(A) = \mathbf{m}(B))$.

Measurable function

- Let $(X, \mathcal{F}, \mathbf{m})$ be a measure space.
 - \mathcal{F} is a \boldsymbol{s} field on X.
 - Note that $\emptyset \in \mathcal{F} \Rightarrow X \in \mathcal{F}$.
- Let $\mathcal{M} = \{ S \subset \mathbb{R} : f^{-1}(S) \in \mathcal{F} \}$, then \mathcal{M} is a s field on \mathbb{R} .

Proof. 1) \mathcal{F} is a field; hence, $\emptyset \in \mathcal{F}$. $\emptyset \subset \mathbb{R}$ and $f^{-1}(\emptyset) = \emptyset \in \mathcal{F}$; hence, $\emptyset \in \mathcal{M}$. 2) Let $S \in \mathcal{F}$. Then $f^{-1}(S) \in \mathcal{F}$. $f^{-1}(\mathbb{R} \setminus S) = \underset{e \in \mathcal{F}}{X} \setminus f^{-1}(S)$. \mathcal{F} is a field; hence

$$f^{-1}(\mathbb{R} \setminus S) \in \mathcal{F}$$
. Thus, $\mathbb{R} \setminus S \in \mathcal{M}$. 3) Let $S_1, S_2, \dots \in \mathcal{M}$, $f^{-1}(\bigcup_{i=1}^{n} S_i) = \bigcup_{i=1}^{n} \underbrace{f^{-1}(S_i)}_{\in \mathcal{F}}$. \mathcal{F} is a

 \boldsymbol{s} field; hence, $f^{-1}\left(\bigcup_{i=1}^{\infty}S_i\right) \in \boldsymbol{\mathcal{F}}$, and $\bigcup_{i=1}^{\infty}S_i \in \boldsymbol{\mathcal{M}}$.

• Let $f: X \to \mathbb{R}$, then f is measurable

$$\equiv \text{ Def: } \forall B \in \mathcal{B}_{\mathbb{R}} \ f^{-1}(B) \in \mathcal{F}$$

 $\equiv 1) \forall I \subset \mathbb{R} \text{ interval } f^{-1}(I) \in \mathcal{F}$

- $\equiv 2) \ \forall I \subset \mathbb{R} \text{ of the form } (a,\infty) \ f^{-1}(I) \in \mathcal{F}$
- $= 3) \ \forall a \in \mathbb{R} \ \left\{ x \in X ; f(x) > a \right\} \in \mathcal{F}$

Proof 1) " \Rightarrow " Trivial because $\forall I \subset \mathbb{R}$ $I \in \mathcal{B}_{\mathbb{R}}$. " \Leftarrow " We have the set $\mathcal{J} =$

{finite unions of intervals in \mathbb{R} } $\subset \mathcal{M}$. Note that $\mathcal{B}_{\mathbb{R}}$ is the smallest s field on \mathbb{R} that contains \mathcal{J} . \mathcal{M} is a s field on \mathbb{R} ; hence $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}$.

Proof 2) " \Rightarrow " trivial because (a,∞) is an interval. " \Leftarrow "We have the set $\mathcal{I}' = \{$ finite unions of intervals of the form (a,∞) in $\mathbb{R}\} \subset \mathcal{M}$. \mathcal{M} is a s field on \mathbb{R} ; hence \mathcal{M} contains $\mathbb{R} \setminus (a,\infty) = (-\infty,a], (a,\infty) \setminus (b,\infty) = (a,b], \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, \infty\right) = [a,\infty)$ etc. $\forall a, b \in \mathbb{R}$. (We can get any kind of intervals from elementary set operations of sets of the

form (a,∞) .) • $f, f_n : X \to \mathbb{R}$, then

- $f^{-1}(\mathbb{R} \setminus S) = X \setminus f^{-1}(S)$. Proof. $x \in f^{-1}(\mathbb{R} \setminus S) \Leftrightarrow f(x) \in \mathbb{R} \setminus S \Leftrightarrow f(x) \notin S \Leftrightarrow x \notin f^{-1}(S)$ $\Leftrightarrow x \in X \setminus f^{-1}(S)$.
- $f^{-1}\left(\bigcup_{i=1}^{\infty}S_{i}\right) = \bigcup_{i=1}^{\infty}f^{-1}(S_{i})$ Proof. 1) $x \in f^{-1}\left(\bigcup_{i=1}^{\infty}S_{i}\right) \Rightarrow f(x) \in \bigcup_{i=1}^{\infty}S_{i} \Rightarrow \exists i_{0} \ f(x) \in S_{i_{0}} \Rightarrow x \in f^{-1}(S_{i_{0}}) \Rightarrow$ $x \in \bigcup_{i=1}^{\infty}f^{-1}(S_{i}) \cdot 2) \ x \in \bigcup_{i=1}^{\infty}f^{-1}(S_{i}) \Rightarrow \exists i_{0} \ x \in f^{-1}(S_{i_{0}}) \Rightarrow f(x) \in S_{i_{0}} \Rightarrow f(x) \in \bigcup_{i=1}^{\infty}S_{i}$ $\Rightarrow x \in f^{-1}\left(\bigcup_{i=1}^{\infty}S_{i}\right).$ $(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A)).$ Proof. $x \in (g \circ f)^{-1}(A) \Leftrightarrow g(f(x)) \in A \Leftrightarrow f(x) \in g^{-1}(A) \Leftrightarrow x \in f^{-1}(g^{-1}(A)).$ $\left\{x \in X : \sup_{n} f_{n} > a\right\} = \bigcup_{k=1}^{\infty} \{x \in X : f_{k}(x) > a\}$ Proof. " \supset " $x \in \bigcup_{k=1}^{\infty} \{x \in X : f_{k}(x) > a\} \Rightarrow \exists k_{0} \ f_{k_{0}}(x) > a.$ But $\sup_{n} f_{n}(x) \ge f_{k_{0}}(x).$

Hence, $\sup_{n} f_n(x) > a$, and therefore, $x \in \left\{x \in X : \sup_{n} f_n > a\right\}$. " \subset " Let

$$x \in \left\{x \in X : \sup_{n} f_{n} > a\right\}$$
. Assume $\forall k \in \mathbb{N}$, $f_{k_{0}}(x) \leq a$. Then $\sup_{n} f_{n}(x) \leq a \Rightarrow$ contradiction.

- Let (ℝ, 𝔅_ℝ, 𝑘) be a measure space, and g : ℝ → ℝ continuous. Then g is measurable.
 Proof. We know that the inverse image of open set is open. ∀a ∈ ℝ (a,∞) is open; hence, g⁻¹((a,∞)) is open. g⁻¹((a,∞)) is in 𝔅_ℝ because, by structure theorem, g⁻¹((a,∞)) is a (disjoint) union of at most countable number of open intervals.
- Let $(X, \mathcal{F}, \mathbf{m})$ be a measure space, then $f(x) \equiv c, c \in \mathbb{R}$ is measurable.

Proof.
$$F_a = \{x \in X : f(x) > a\} = \begin{cases} \emptyset, & a \ge c \\ X, & a < c \end{cases}$$
. Both $\emptyset, X \in \mathcal{F}$

Let (X, 𝔅) be a measurable space and f: X → ℝ measurable. Also, let (ℝ, 𝔅_ℝ) be a measure space, and g: ℝ → ℝ measurable, then h(x) = g ∘ f(x) = g(f(x)): X → ℝ is measurable.

Proof. $H_a = h^{-1}((a,\infty)) = f^{-1}(g^{-1}((a,\infty)))$. Because g is measurable, $g^{-1}((a,\infty)) \in \mathcal{B}_{\mathbb{R}}$. Also, because f is measurable, $\forall B \in \mathcal{B}_{\mathbb{R}} f^{-1}(B) \in \mathcal{F}$.

- Let (X, \mathcal{F}) be a measurable space, and $f, g: X \to \mathbb{R}$ be measurable functions. Then
 - I) $h(x) = f(x) + g(x) : X \to \mathbb{R}$ is measurable. Proof. $H_a = \bigcup_{b \in \mathbb{Q}} F_b \cap G_{a-b}$. $\forall a, b \in \mathbb{R}$ $F_b, G_{a-b} \in \mathcal{F}$. \mathcal{F} is a \mathcal{S} field; hence, $H_a = \bigcup_{b \in \mathbb{Q}} F_b \cap G_{a-b} \in \mathcal{F}$.

II) f^2 , |f|, cf for $c \in \mathbb{R}$ are measurable.

Proof. x^2 , |x|, cx are continuous function.

III) If
$$\forall x \in X$$
 $f(x) \neq 0$, then $h(x) = \frac{1}{f(x)}$ is measurable.

Proof. For a > 0, we have

$$H_{a} = \left\{ x \in X : h(x) > a \right\} = \left\{ x \in X : \frac{1}{f(x)} > a \right\}$$
$$= \left\{ x \in X : f(x) > 0, f(x) < \frac{1}{a} \right\} \cup \left\{ x \in X : f(x) < 0, f(x) > \frac{1}{a} \right\}$$
$$= \left(f^{-1}((0,\infty)) \cap f^{-1}(\left(-\infty, \frac{1}{a}\right)) \right) \cup \left(f^{-1}((-\infty, 0)) \cap f^{-1}(\left(\frac{1}{a}, \infty\right)) \right)$$

Similarly, for a < 0, we have

$$\begin{split} H_{a} &= \left\{ x \in X : f(x) > 0, f(x) > \frac{1}{a} \right\} \cup \left\{ x \in X : f(x) < 0, f(x) < \frac{1}{a} \right\} \\ &= \left(f^{-1} \left((0, \infty) \right) \cap f^{-1} \left(\left(\frac{1}{a}, \infty \right) \right) \right) \cup \left(f^{-1} \left((-\infty, 0) \right) \cap f^{-1} \left(\left(-\infty, \frac{1}{a} \right) \right) \right) \end{split}$$

For $a = 0$, we have $H_{a} = \left\{ x \in X : \frac{1}{f(x)} > 0 \right\} = \left\{ x \in X : f(x) > 0 \right\} = f^{-1} \left((0, \infty) \right).$

Because for any interval I, $f^{-1}(I) \in \mathcal{F}$ and \mathcal{F} is a s field, we have $H_a \in \mathcal{F}$ since it is a union and/or intersection of sets in \mathcal{F} .

IV) If $a, b \in \mathbb{R}$, then $af + bg : X \to \mathbb{R}$ is measurable.

Proof. af, bg are measurable. Thus, af + bg is measurable.

V) $f - g : X \to \mathbb{R}$ is measurable.

Proof. From (IV), let a = 1, b = -1.

VI) $f \cdot g : X \to \mathbb{R}$ is measurable

Proof. $f \cdot g = \frac{1}{4} \left(\left(f + g \right)^2 - \left(f - g \right)^2 \right)$. From (I) and (V) we have f + g and f - g measurable. By (II), we have $\left(f + g \right)^2$ and $\left(f - g \right)^2$ measurable. By V) we have $\left(f + g \right)^2 - \left(f - g \right)^2$. By (II), we finally have $\frac{1}{4} \left(\left(f + g \right)^2 - \left(f - g \right)^2 \right)$ measurable.

VII) If $\forall x \in X \ g(x) \neq 0$, then $f/g: X \to \mathbb{R}$ is measurable.

Proof. Because $\forall x \in X \ g(x) \neq 0$, from (II), $\frac{1}{g(x)}$ is measurable. Because f(x) and $\frac{1}{g(x)}$ are measurable, form (VI), we conclude that $f(x)\frac{1}{g(x)}$ is measurable.

VIII) $\max(f,g): X \to \mathbb{R}$ is measurable

Proof. First, note that $\max(f,g) = \frac{f+g}{2} + \left|\frac{f-g}{2}\right|$. Because measurability is preserved under addition, subtraction, $|\cdot|$, and scalar scaling, we conclude that $\frac{f+g}{2} + \left|\frac{f-g}{2}\right|$ is measurable.

• Let $h(x) = f(x) + g(x) : X \to \mathbb{R}$, $F_a = \{x \in X : f(x) > a\}$, $G_a = \{x \in X : g(x) > a\}$, $H_a = \{x \in X : h(x) > a\} = \{x \in X : f(x) + g(x) > a\}$, then $H_a = \bigcup_{b \in \mathbb{Q}} F_b \cap G_{a-b}$.

Proof. We want to show that $\bigcup_{c \in \mathbb{R}} F_c \cap G_{a-c} = \bigcup_{b \in \mathbb{Q}} F_b \cap G_{a-b}$. " \supset " $x \in \bigcup_{b \in \mathbb{Q}} F_b \cap G_{a-b} \Rightarrow$ $\exists b_0 \in \mathbb{Q} f(x) > b_0 \text{ and } g(x) > a - b_0 \Rightarrow h(x) = f(x) + g(x) > b_0 + a - b_0 = a \Rightarrow x \in H_a.$ "⊂"Let $x \in H_a$. Note that because \mathbb{Q} is dense in \mathbb{R} and $f(x) \in \mathbb{R}$, \exists sequence (b_n) monotonically increasing, $\lim_{n\to\infty} b_n = f(x)$. Because $b_n < f(x)$, $x \in F_{b_n}$. Then $\exists n_0$ such that $x \in G_{a-b_n}$.

Otherwise, we have $\forall n \ g(x) \le a - b_n$. Take $n \to \infty$ and we have $g(x) \le a - f(x)$ which implies $h(x) = g(x) + f(x) \le a$ which contradict the assumption that $x \in H_a$.

Hence,
$$x \in F_{b_{n_0}} \cap G_{a-b_{n_0}} \subset \bigcup_{b \in \mathbb{Q}} F_b \cap G_{a-b}$$
.

- Let (X, \mathcal{F}) be a measurable space and $\forall n \in \mathbb{N}$ $f_n : X \to \mathbb{R}$ measurable. Then
 - $\sup_{n} f_n$ is measurable

Proof.
$$\left\{x \in X : \sup_{n} f_{n} > a\right\} = \bigcup_{k=1}^{\infty} \left\{x \in X : f_{k}(x) > a\right\}$$

- $\inf f_n$ is measurable
- limsup f_n is measurable

Proof. limsup
$$f_n = \inf_n \left(\sup_{k \ge n} f_k(x) \right)$$
. $\sup_{k \ge n} f_k(x)$'s are measurable.

- liminf f_n is measurable
- If f_n converges pointwise to some function, then $\lim_{n\to\infty} f_n$ is measurable.

Proof. $\forall x \lim_{n \to \infty} f_n(x) = \text{limsup } f_n(x) = \text{liminf } f_n(x)$.

- Let (X, \mathcal{F}) be a measurable space, $E \subset X$. Then $c_E(x) = \begin{cases} 1, & x \in E \\ 0, & x \notin E \end{cases}$ is the characteristic function of E.
 - c_E is measurable iff E is measurable $(E \in \mathcal{F})$.

Proof. "
$$\Rightarrow$$
" $\{1\} = [1,1] \in \mathcal{B}_{\mathbb{R}}$. c_E is measurable. Thus, $c^{-1}(\{1\}) \in \mathcal{F}$. $c^{-1}(\{1\}) = E$
" \Leftarrow " $c^{-1}((a,\infty)) = \begin{cases} \emptyset, a \ge 1 \\ X, a < 0 \\ E, 0 \le a < 1 \end{cases}$. And we know that $\emptyset, X, E \in \mathcal{F}$.

- Let (X, \mathcal{F}) be a measurable space. $f : X \to \mathbb{R}$ is a simple function
 - $\equiv \text{ (Def) } f = \sum_{i=1}^{N} a_i \boldsymbol{c}_{E_i} \text{ where } E_i \subset X, \in \boldsymbol{\mathcal{F}}, \text{ and disjoint, } a_i \neq 0.$
 - Class of simple functions = Class of measurable function that take finitely many values

Proof. "⊂"
$$f(x) = \begin{cases} a_i, \exists i \in \{1,...,N\} x \in E_i \\ 0, x \notin \bigcup_{i=1}^N E_i \end{cases}$$
. "⊃" $\forall x \in X \ f(x) \in \{v_1,...,v_N\}.$

Assume that v_i 's are distinct. Then $f = \sum_{i=1}^{N} v_i \boldsymbol{c}_{f^{-1}(\{v_i\})}$. Note that $\{v_i\} = [v_i, v_i] \in \boldsymbol{\mathcal{B}}_{\mathbb{R}}$. f is measurable; hence, $f^{-1}\left(\{v_i\}_{\in \boldsymbol{\mathcal{B}}_{\mathbb{R}}}\right) \in \boldsymbol{\mathcal{F}}$. Because v_i 's are distinct, $f^{-1}\left(\{v_i\}_{\in \boldsymbol{\mathcal{B}}_{\mathbb{R}}}\right)$'s are disjoint.

 \Rightarrow *f* is measurable.

Proof.
$$E_i \in \mathcal{F} \Rightarrow \mathbf{c}_{E_i}$$
 measurable $\Rightarrow f = \sum_{i=1}^N a_i \mathbf{c}_{E_i}$ measurable.

- Not require a_i 's to be distinct.
- *f* does not have a unique representation.
- Let $f: X \to \mathbb{R}$ measurable, $f \ge 0$. Then $\exists s_n : X \to \mathbb{R}$ $s_n \ge 0$ simple function such that $s_n \nearrow f$ (s_n converges pointwise to f in a monotonic increasing manner.)

$$s_n(x) = \sum_{k=0}^{2^{2n}-1} \frac{k}{2^n} c_{f^{-1}\left(\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]\right)} + 2^n c_{f^{-1}\left(\left[2^n, \infty\right]\right)}$$

• Let $f: X \to \mathbb{R}$ measurable, then $\exists s_n : X \to \mathbb{R}$ simple function such that $\forall x \in X$ $s_n(x) \to f(x)$.

•
$$f(x) = \underbrace{\max(f,0)}_{f^+} - \underbrace{\max(-f,0)}_{f^-}$$

•
$$f^+, f^- \ge 0$$

$\int f dm$ for simple functions

• Let $(X, \mathcal{F}, \mathbf{m})$ be a measure space, $f: X \to \mathbb{R}$ is a simple function. Then

$$\int f d \mathbf{m} = \sum_{i=1}^{N} a_i \mathbf{m}(E_i).$$

• $\int f d\mathbf{m}$ does not depend on the representation.

$$f = \sum_{i=1}^{N} a_i \mathbf{c}_{E_i} = \sum_{i=1}^{M} b_i \mathbf{c}_{F_i} \quad E_i \subset X , \in \mathcal{F}, \text{ and disjoint, } F_i \subset X , \in \mathcal{F}, \text{ and disjoint, } a_i, b_i \neq 0$$

$$\Rightarrow \int f d \mathbf{m} = \sum_{i=1}^{N} a_i \mathbf{m}(E_i) = \sum_{j=1}^{M} b_j \mathbf{m}(F_j).$$

• Let $f,g: X \to \mathbb{R}$, simple, $f \ge g \ge 0$, then $\int f d\mathbf{m} \ge \int g d\mathbf{m}$

- Let (X, \mathcal{F}) be a measurable space. $f: X \to \mathbb{R}$ is a simple function. Then,
 - |f| is a simple function.

Proof.
$$f = \sum_{i=1}^{N} a_i \mathbf{c}_{E_i}$$
 where $E_i \subset X$, $\in \mathcal{F}$, and disjoint, $a_i \neq 0$. Let $g = |f|$.

Then, g can be written as $g = \sum_{i=1}^{N} b_i c_{E_i}$ where $b_i = |a_i|$. $a_i \neq 0 \Rightarrow b_i = |a_i| \neq 0$. Also, we already have $E_i \subset X$, $\in \mathcal{F}$, and disjoint because f is a simple function.

•
$$\left|\int f d\mathbf{m}\right| \leq \int |f| d\mathbf{m}$$

Proof. $f = \sum_{i=1}^{N} a_i \mathbf{c}_{E_i} \Rightarrow \int f d\mathbf{m} = \sum_{i=1}^{N} a_i \mathbf{m}(E_i)$, and $|f| = \sum_{i=1}^{N} |a_i| \mathbf{c}_{E_i} \Rightarrow \int |f| d\mathbf{m} = \sum_{i=1}^{N} |a_i| \mathbf{m}(E_i)$. By triangle inequality, $\left|\sum_{i=1}^{N} a_i \mathbf{m}(E_i)\right| \leq \sum_{i=1}^{N} |a_i| \mathbf{m}(E_i)|$. Also, because $\mathbf{m}(E_i) \geq 0$, $|a_i \mathbf{m}(E_i)| = |a_i| \mathbf{m}(E_i)$.

 $\int f d\mathbf{m}$

• Lebesgue approximate sums: Let
$$f: X \to \mathbb{R}$$
 measurable, $f \ge 0$, partition
 $\mathscr{P}_n = \left\{ \left[0, \frac{1}{2^n} \right], \left[\frac{1}{2^n}, \frac{2}{2^n} \right], \dots, \left[2^n - \frac{1}{2^n}, 2^n \right], \left[2^n, \infty \right] \right\}$. Then
 $L(f, \mathscr{P}_n) = \sum_{k=0}^{2^{2n}-1} \frac{k}{2^n} n \left(f^{-1} \left(\left[\left[\frac{k}{2^n}, \frac{k+1}{2^n} \right] \right] \right) \right) + 2^n n \left(f^{-1} \left(\left[2^n, \infty \right] \right) \right)$
• $L(f, \mathscr{P}_n) = \int s_n d \mathbf{m}$ where $s_n(x) = \sum_{k=0}^{2^{2n}-1} \frac{k}{2^n} \mathbf{c}_{f^{-1} \left(\left[\frac{k}{2^n}, \frac{k+1}{2^n} \right] \right) } + 2^n \mathbf{c}_{f^{-1} \left(\left[2^n, \infty \right] \right)}$ simple, ≥ 0 .
• $s_n \nearrow f$.
• Let $I_k = \left[\frac{k}{2^n}, \frac{k+1}{2^n} \right]$ for $k = 0, \dots, 2^{2n-1}$. $I_{2^{2n}} = \left[2^n, \infty \right]$. Then
• $s_n(x) = \sum_{k=0}^{2^{2n}} \inf (I_k) \mathbf{c}_{f^{-1}(I_k)}$.
• $L(f, \mathscr{P}_n) = \sum_{k=0}^{2^{2n}} \inf (I_k) \mathbf{m} (f^{-1}(I_k))$.
• $\inf (I_k) = \frac{k}{2^n}$

• Let $(X, \mathcal{F}, \mathbf{m})$ be a measure space, $f: X \to \mathbb{R}$ measurable, $f \ge 0$, define

$\int f d\mathbf{m} = \lim_{n \to \infty} L(f, \mathcal{F}_n) \in [0, \infty]$

- $\lim_{n \to \infty} L(f, \mathscr{P}_n)$ exists (allow $+\infty$) Proof. $L(f, \mathscr{P}_n) = \int s_n d\mathbf{m}$. Because $s_n \nearrow f$, and $s_n \ge 0$, we have $\int s_n d\mathbf{m} \le \int s_{n+1} d\mathbf{m}$. Thus, the sequence $\left(\int s_n d\mathbf{m}\right)_{n=1}^{\infty}$ is a monotone increasing sequence of real number.
- Let $f: X \to \mathbb{R}$ simple $f \ge 0$. Then, $\lim_{n \to \infty} L(f, \mathcal{P}_n) = \int f d\mathbf{m}$.
 - Let $f = \sum_{i=1}^{N} a_i \mathbf{c}_{E_i}$ where $E_i \subset X$, $\in \mathcal{F}$, and disjoint, $a_i > 0$, then $\lim_{n \to \infty} L(f, \mathcal{P}_n) = \int f d\mathbf{m} = \sum_{i=1}^{N} a_i \mathbf{m}(E_i).$
- Let $f, g : X \to \mathbb{R}$ measurable, $\forall x \in X \ 0 \le f \le g$, then

• For
$$s_n^{(f)}(x) = \sum_{k=0}^{2^{2n}} \inf (I_k) \mathbf{c}_{f^{-1}(I_k)}, \ s_n^{(g)}(x) = \sum_{k=0}^{2^{2n}} \inf (I_k) \mathbf{c}_{g^{-1}(I_k)}, \text{ we have } \forall x \in X$$

 $s_n^{(f)}(x) \ge s_n^{(g)}(x)$

Proof. Consider any $x \in X$. Then $\exists k_0 \ f(x) \in I_{k_0} \Rightarrow s_n^{(f)}(x) = \inf(I_{k_0})$, and $\exists k_1$ $g(x) \in I_{k_1} \Rightarrow s_n^{(g)}(x) = \inf(I_{k_1})$. Because $f \leq g$, $k_0 \leq k_1 \Rightarrow \inf(I_{k_0}) \leq \inf(I_{k_1})$. Hence, $s_n^{(f)}(x) = \inf(I_{k_0}) \leq \inf(I_{k_1}) = s_n^{(g)}(x)$.

• $\int fd\mathbf{m} \leq \int gd\mathbf{m}$.

Proof.
$$\forall x \in X \ 0 \le s_n^{(f)}(x) \le s_n^{(g)}(x) \Rightarrow L(f, \mathcal{P}_n) = \int s_n^{(f)} d\mathbf{m} \le \int s_n^{(g)} d\mathbf{m} = L(g, \mathcal{P}_n).$$

Take lim $n \to \infty$.

- Let $f_k: X \to \mathbb{R}$ measurable, $0 \le f_1 \le f_2 \le \cdots$
 - Let $g: X \to \mathbb{R}$ simple function, $\forall x \in X \lim_{k \to \infty} f_k(x) \ge g(x) \ge 0$, then $\lim_{k \to \infty} \int f_k d\mathbf{m} \ge \int g d\mathbf{m}$.
 - Let $\forall x \in X \lim_{k \to \infty} f_k(x) \ge b \mathbf{c}_B, b > 0, B \in \mathcal{F}$, then $\lim_{k \to \infty} \int f_k d\mathbf{m} \ge b \mathbf{m}(B)$.
- <u>The monotone convergence theorem</u>: Let $0 \le f_1 \le f_2 \le \cdots$, $f_k : X \to \mathbb{R}$ measurable, $\forall x \in X \lim_{k \to \infty} f_k(x) = f(x) (f_k \nearrow f \text{ pointwise})$, then $\lim_{k \to \infty} \int f_k d\mathbf{m} = \int f d\mathbf{m}$

Proof. Because f_k 's are measurable, $f = \lim_{k \to \infty} f_k$ is measurable. 1) $\lim_{k \to \infty} \int f_k d\mathbf{m} \le \int f d\mathbf{m}$: Because f_k , f measurable, $\forall x \in X$ $0 \le f_k \le f$, we have $\int f_k d\mathbf{m} \le \int f d\mathbf{m}$. Take lim as k

$$\rightarrow \infty. 2) \lim_{k \to \infty} \int f_k d\mathbf{m} \ge \int f d\mathbf{m}: \ s_n \nearrow f; \text{ so } \lim_{k \to \infty} f_k(x) = f(x) \ge s_n(x) \Rightarrow \\ \lim_{k \to \infty} \int f_k d\mathbf{m} \ge \int s_n d\mathbf{m} = L(f, \mathcal{P}_n). \text{ Take lime } n \to \infty.$$