Background

- $E[f(X)]=E_{p(x)}[f(X)]=E_{p(x, y)}[f(X)]$

$$
\text { Proof } \begin{aligned}
E_{p(x, y)}[f(X)] & =\sum_{x \in X} \sum_{y, y} p(x, y) f(x)=\sum_{x \in x} f(x) \sum_{y \in \mathcal{Y}} p(x, y) \\
& =\sum_{x \in X} f(x) p(x)=E_{p(x)}[f(X)]
\end{aligned}
$$

- $P_{X \mid X}(x \mid x)=1$.
- $p(x, x)=p(x \mid x) p(x)=1 p(x)=p(x)$
- Convention, based on continuity arguments: $0 \log 0=0,0 \log \frac{0}{q}=0,0 \log \frac{p}{0}=\infty$.
- Let $\{p(x)\}$ and $\{q(x)\}$ be the pmf for the same alphabet set \boldsymbol{X}. We say $p=q$ if $\forall x \in \mathcal{X}$ $p(x)=q(x)$.

- Convexity

- Def: A function $f(x)$ is said to be convex (convex \cup) over an interval (a, b) if $\forall x_{1} \forall x_{2} \in(a, b)$ and $0 \leq \lambda \leq 1, f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)$.
A function f is said to be strictly convex if equality holds only if $\lambda=0$ or $\lambda=1$.
- Ex. (strict) $x^{2},|x|, e^{x}, x \log x$ (for $x \geq 0$)
- Def: A function f is concave (convex \cap) if $-f$ is convex.
- Ex. (strict) $\log x, \sqrt{x}$ for $x \geq 0$.
- A function is convex if it always lies below any chord.

A function is concave if it always lies above any chord.

- If the function f has a second derivative which is non-negative (positive) everywhere, then the function is convex (strictly convex).

Proof. Let $f^{\prime \prime}(x)>0 \forall x$. By Taylor's Theorem and Lagrange Remainder Theorem, $f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x^{*}\right)}{2}\left(x-x_{0}\right)^{2}$ where x^{*} is between x_{0} and x. So, $\frac{f^{\prime \prime}\left(x^{*}\right)}{2}\left(x-x_{0}\right)^{2} \geq 0$ with equality iff $x=x_{0}$.
Thus, $f(x) \geq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ with equality iff $x=x_{0}$.

$$
\forall x_{1} \forall x_{2} \neq x_{1} \text {, let } x_{0}=\lambda x_{1}+(1-\lambda) x_{2} .
$$

Let $x=x_{1}$. Then, $f\left(x_{1}\right) \geq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)$

$$
=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)(1-\lambda)\left(x_{1}-x_{2}\right)
$$

with equality iff $\lambda=1$.

Thus, $\lambda f\left(x_{1}\right) \geq \lambda f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \lambda(1-\lambda)\left(x_{1}-x_{2}\right)$ iff $\lambda=1$ or $\lambda=0$
Similarly, let $x=x_{2}$, then

$$
\begin{aligned}
& (1-\lambda) f\left(x_{2}\right) \geq(1-\lambda) f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)(1-\lambda) \lambda\left(x_{1}-x_{2}\right) \text { with equality iff } \\
& \lambda=0 \text { or } \lambda=1 .
\end{aligned}
$$

So, $\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \geq f\left(x_{0}\right)$ with equality iff $\lambda=1$ or $\lambda=0$.

- Linear functions $a x+b$ are both convex and concave.
- Jensen's inequality

Let $E X=\sum_{x \in X} p(x) x$ in discrete case and $E X=\int x f(x) d x$ in the continuous case.
If f is a convex function and X is a random variable, then $E[f(X)] \geq f(E X)$.
Proof by induction.
f is convex \cup; so, $\alpha_{1} f\left(x_{1}\right)+\alpha_{2} f\left(x_{2}\right)$ where $\alpha_{1}+\alpha_{2}=1$. So, $E[f(X)] \geq f(E X)$ holds for $|x|=2$.
Assume it holds for $|X|=k-1$, i.e., $\sum_{i=1}^{k-1} \alpha_{i} f\left(x_{i}\right) \geq f\left(\sum_{i=1}^{k-1} \alpha_{i} x_{i}\right)$ where $\sum_{i=1}^{k-1} \alpha_{i}=1$.
Then,
If f is strictly convex, then $E[f(X)]=f(E X) \Rightarrow X=E X$ with probability 1, i.e., X is a constant.

- $\log (E X) \geq E[\log (X)]$
- Fundamental inequality: $1-\frac{1}{x} \leq \ln (x) \leq x-1$ with equality iff $x=1$

Intro

- Axiomatic Derivation of Information Measure:

Four Postulate
A) Bayesianness: There's a function $f(\alpha, \beta)$ such that $i(x, y)=\left.f(\alpha, \beta)\right|_{\substack{\alpha=p(x) \\ \beta=p(x y)}}$.
B) Smoothness: $f_{1}(\alpha, \beta)=\frac{\partial}{\partial \alpha} f(\alpha, \beta)$ and $f_{2}(\alpha, \beta)=\frac{\partial}{\partial \beta} f(\alpha, \beta)$ exist.
C) Successive Revelation: $f(\alpha, \gamma)=f(\alpha, \beta)+f(\beta, \gamma), 0 \leq \alpha, \beta, \gamma \leq 1$.

Justification:

The information you get about X by observing (W, Z) have occurred is that provided by observation that $W=w$ plus that subsequently provided by later learning that $Z=z$.

$$
\begin{aligned}
& i(x,(w, z))=i(x, w)+i(x \mid w, z) . \\
& f(\underbrace{p(x)}_{\alpha}, \underbrace{p(x \mid w, z)}_{\gamma})=f(\underbrace{p(x)}_{\alpha}, \underbrace{p(x \mid w)}_{\beta})+f(\underbrace{p(x \mid w)}_{\beta}, \underbrace{p(x \mid w, z)}_{\gamma}) .
\end{aligned}
$$

D) Additivity over (independent experiment): $f(\alpha \gamma, \beta \delta)=f(\alpha, \beta)+f(\gamma, \delta)$, $0 \leq \alpha, \beta, \gamma, \delta \leq 1$.

Justification:
Consider 2 independent experiments:

$$
\begin{aligned}
& X \rightarrow \square \rightarrow Y \\
& U \rightarrow \square \rightarrow V \\
& p(x, u)=p(x) p(u)
\end{aligned}
$$

Then, $p(y, v \mid x, u)=p(y \mid x, u) p(v \mid y, x, u)=p(y \mid x) p(v \mid u)$.

$$
i((y, v),(x, u)) \text { should }=i(x, y)+i(u, v)
$$

$$
i((y, v),(x, u))=f(p(y, v), p(y, v \mid x, u))
$$

$$
=f(p(y) p(v), p(y \mid x) p(v \mid u))
$$

$$
f(\underbrace{p(y)}_{\alpha} \underbrace{p(v)}_{\beta}, \underbrace{p(y \mid x)}_{\gamma} \underbrace{p(v \mid u)}_{\delta})=f(p(y), p(y \mid x))+f(p(v), p(v \mid u))
$$

$A)-D) \Rightarrow i(x, y)=k \log \frac{p(x, y)}{p(x)}$

Entropy

- Entropy of a random variable X
- A measure of the uncertainty of the random variable
- A measure of the amount of information required on the average to describe the random variable.
- Average self information of X.
- Minimum of yes-no questions to get the value of X exactly.
- $0_{\text {deterninistic }}^{0} \leq H(X)=H(\{p(x)\})=-E[\log p(X)] \leq \underset{\text { uniform }}{\log |X|}$

$$
\begin{aligned}
H(X) & =-\sum_{x \in x} p(x) \log p(x)=-E_{p}[\log p(X)] \\
& =E[i(X)]
\end{aligned}
$$

≥ 0 with equality iff $\exists x \in \mathcal{X} p(x)=1$

$$
\leq \log |X| \text { with equality iff } \forall x \in X \quad p(x)=\frac{1}{|X|}
$$

Proof $H(X) \geq 0$ with equality iff $\exists x \in \mathcal{X} p(x)=1$.
$\forall x p(x)$ and $-\log p(x) \geq 0$. Thus, $\forall x-p(x) \log p(x) \geq 0$.
Hence, $-\sum_{x \in x} p(x) \log p(x) \geq 0$.
$H(X)=0 \Leftrightarrow \forall x-p(x) \log p(x)=0$.
But $p(x) \log p(x)=0$ if and only if $\forall x \quad p(x)=0$ or 1 .
$\forall x p(x)=0$ or 1 iff $\exists x p(x)=0$.

Proof $H(X) \leq \log |X|$ with equality iff $\forall x \in X \quad p(x)=\frac{1}{|X|}$

$$
\begin{aligned}
H(X)-\log |X| & =E[-\log p(X)]-E[|X|]=E\left[\log \frac{1}{|X| p(X)}\right] \\
& \leq E\left[\frac{1}{|X| p(X)}-1\right]=\sum_{x \in X} p(x)\left(\frac{1}{|X| p(X)}\right)-1 \\
& =\sum_{x \in X} \frac{1}{|X|}-1=\frac{|X|}{|X|}-1=0 \\
H(X)=\log |X| & \Leftrightarrow \forall x \frac{1}{|X| p(x)}=1 .
\end{aligned}
$$

- If the base of the logarithm is b, denote the entropy as $H_{b}(X)$.
- [bits] if using $\log _{2}(\cdot)$. [nats] if using $\log _{e}(\cdot)$.
- A functional of the distribution of X.
- Not depend on the actual value taken by the random variable X.
- $H(X) \geq 0$
- $\quad H_{b}(X)=\left(\log _{b} a\right) H_{a}(X)$.
- Ex. entropy of a fair coin toss is $-\frac{1}{2} \log \frac{1}{2}-\frac{1}{2} \log \frac{1}{2}=-\log \frac{1}{2}=1$.
- $H(X)$ is a function of $\left\{p_{X}(x) ; x \in \mathcal{X}\right\}$. Hence, should be written as $H\left(\left\{p_{X}(x)\right\}\right)$.
- $H(\{p(x)\})$ is concave (convex \cap) in $\{p(x)\}$
$\forall \lambda \in[0,1]$ and any two $\operatorname{pmf}\left\{p_{1}(x), x \in \mathcal{X}\right\}$ and $\left\{p_{2}(x), x \in \mathcal{X}\right\}$, $H\left(p^{*}\right) \geq \lambda H\left(p_{1}\right)+\lambda H\left(p_{2}\right)$ where $p^{*}(x)=\lambda p_{1}(x)+(1-\lambda) p_{2}(x) \forall x \in \mathcal{X}$.

Proof

$$
\begin{aligned}
H\left(p^{*}\right) & -\lambda H\left(p_{1}\right)-(1-\lambda) H\left(p_{2}\right) \\
= & -\sum_{x \in X} p^{*}(x) \log p(x) \\
& +\lambda \sum_{x \in X} p_{1}(x) \log p(x)+(1-\lambda) \sum_{x \in X} p_{2}(x) \log p(x) \\
= & -\sum_{x \in X}\left(\lambda p_{1}(x)+(1-\lambda) p_{2}(x)\right) \log p^{*}(x) \\
& +\lambda \sum_{x \in X} p_{1}(x) \log p_{1}(x)+(1-\lambda) \sum_{x \in X} p_{2}(x) \log p_{2}(x) \\
= & \lambda\left(\sum_{x \in X} p_{1}(x) \log \frac{p_{1}(x)}{p^{*}(x)}\right)+(1-\lambda)\left(\sum_{x \in X} p_{2}(x) \log \frac{p_{2}(x)}{p^{*}(x)}\right) \\
\geq & \lambda\left(\sum_{x \in x} p_{1}(x)\left(1-\frac{p^{*}(x)}{p_{1}(x)}\right)\right)+(1-\lambda)\left(\sum_{x \in X} p_{2}(x)\left(1-\frac{p^{*}(x)}{p_{1}(x)}\right)\right) \\
= & \lambda\left(\sum_{x \in X}\left(p_{1}(x)-p^{*}(x)\right)\right)+(1-\lambda)\left(\sum_{x \in X}\left(p_{2}(x)-p^{*}(x)\right)\right) \\
= & \lambda(1-1)+(1-\lambda)(1-1)=0
\end{aligned}
$$

- $H(g(X)) \leq H(X)$ with equality iff g is one-to-one.

Proof (1) $H(X, g(X))=H(X)+H(g(X) \mid X)$ by chain rule.
But $H(g(X) \mid X)=0$; so, $H(X, g(X))=H(X)$.
(2) Also, by chain rule, $H(X, g(X))=H(g(X))+H(X \mid g(X))$.

Because $H(X \mid g(X)) \geq 0$ with equality iff g is one-to-one, we have $H(X, g(X)) \geq H(g(X))$.
Combining part (1) and (2), we have $H(X) \geq H(g(X))$.

- For two random variables X and Y with a joint $\operatorname{pmf} p(x, y)$ and marginal pmf $p(x)$ and $p(y)$.
- $H(Y \mid X=x)=-\sum_{y \in \mathcal{Y}} p(y \mid x) \log p(y \mid x)$.
- Joint entropy : $H(X, Y)=-E[\log p(X, Y)]=-\sum_{x \in X} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x, y)$
- Conditional entropy $\underset{X=f(X)}{0} \leq H(Y \mid X)=-E[\log p(Y \mid X)] \leq \underset{X, Y \text { independent }}{H(Y)}$

$$
\begin{aligned}
H(Y \mid X) & =\sum_{x \in x} p(x) H(Y \mid X=x) \\
& =-\sum_{x \in X} \sum_{y \in \mathcal{Y}} p(x, y) \log p(y \mid x) \\
& =-E_{p(x, y)}[\log p(Y \mid X)] \\
& \geq 0
\end{aligned}
$$

- Conditioning can only decrease entropy: $H(Y \mid X) \leq H(Y)$

Proof. $I(X ; Y)=H(Y)-H(Y \mid X) \geq 0$.

- $H(X \mid X)=0$

$$
\begin{aligned}
& \text { Proof } \begin{array}{c}
p(X=y \mid X=x)= \begin{cases}1 & , y=x \\
0 & , y \neq x\end{cases} \\
\left.\begin{array}{rl}
p(X=y, X=x)=\left\{\begin{array}{cc}
p(x) & , y=x \\
0 & , y \neq x
\end{array}\right. \\
H(X \mid X) & =-\sum_{x \in x} \sum_{y \in x} p(x, y) \log p(y \mid x) \\
& =-\sum_{x \in x}\left(p(x, x) \log p(x \mid x)+\sum_{\substack{y \in x \\
y \neq x}} p(x, y) \log p(y \mid x)\right) \\
& =-\sum_{x \in x}\left(p(x) \log 1+\sum_{\substack{y \in x}}^{\substack{x}} 0\right.
\end{array}\right)=0
\end{array}
\end{aligned}
$$

- $H(g(X) \mid X)=0$

$$
\text { Proof } \begin{aligned}
& p(g(X)=y \mid X=x)=\left\{\begin{array}{cc}
1 & , y=g(x) \\
0 & , y \neq g(x)
\end{array}\right. \\
& p(g(X)=y, X=x)=\left\{\begin{array}{cc}
p(x) & , y=g(x) \\
0 & , y \neq g(x)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& H(g(X) \mid X)=-\sum_{x \in \mathcal{X}} \sum_{\substack{x \in g(x)}} p_{X, g(X)}(x, y) \log p_{g(X) \mid X}(y \mid x) \\
&=-\sum_{\substack{x \in x}}\left(\sum_{\substack{y \in g(x) \\
y=g(x)}} p_{X, g(X)}(x, y) \log p(y \mid x)+\right. \\
&\left.\sum_{\substack{x \in g \in(x) \\
y \neq g)}} p(x, y) \log p_{g(x) \mid x}(y \mid x)\right) \\
&=-\sum_{\substack{x \in x}}\left(\sum_{\substack{y \in g=(x) \\
y=g(x)}} p(x) \log 1+\sum_{\substack{y \in g(x) \\
y \neq g)}} 0 \log 0\right) \\
&=0
\end{aligned}
$$

- $H(g(\vec{X}) \mid \vec{X})=0$

$$
\begin{aligned}
& \text { Proof } H(g(\vec{X}) \mid \vec{X}=x)=-\sum_{\bar{y}} p_{g(X) \mid X}(\bar{y} \mid \bar{x}) \log p_{g(X) \mid X}(\bar{y} \mid \bar{x}) \\
& =-\sum_{\bar{y}=(\bar{x})} p_{g(\bar{X}) \mid \bar{x}}(\bar{y} \mid \bar{x}) \log p_{g(\bar{X}) \mid \bar{x}}(\bar{y} \mid \bar{x}) \\
& -\sum_{\bar{y} \neq(\bar{x})} p_{g(X) \|^{x}}(\bar{y} \mid \bar{x}) \log p_{g(x) \mid x}(\bar{y} \mid \bar{x}) \\
& =-p_{g(\bar{x} \mid \bar{x}}(g(\bar{x}) \mid \bar{x}) \log p_{g(\bar{x}) \mid \bar{X}}(g(\bar{x}) \mid \bar{x})-\sum_{\bar{y} \neq g^{(x)}} 0 \log 0 \\
& =-1 \log 1+0=0 \\
& H(g(\vec{X}) \mid \bar{X})=\sum_{\bar{X}} p_{\bar{X}}(\bar{x}) H(g(\vec{X}) \mid \vec{X}=x)=\sum_{\bar{x}} p_{\bar{X}}(\bar{x}) 0=0 .
\end{aligned}
$$

- Chain rule: $H(X, Y)=H(X)+H(Y \mid X)$.

Proof $p(x, y)=p(x) p(y \mid x)$

- $H(X, Y \mid Z)=H(X \mid Z)+H(Y \mid X, Z)$.

Proof $p(x, y \mid z)=p(x \mid z) p(y \mid x, z)$.

- In general $H(Y \mid X) \neq H(X \mid Y)$
- $H(Y)-H(Y \mid X)=H(X)-H(X \mid Y)$

$$
\text { Proof } p(x, y)=p(x) p(y \mid x)=p(y) p(x \mid y)
$$

- $H(\{p(x) p(y)\})=H(\{p(y)\})+H(\{p(x)\})$.
- Def: $H(p)=-p \log p-(1-p) \log (1-p)$

- Entropy of a collection of random variables.
- Let X_{1}^{n} represents $X_{1}, X_{2}, \ldots, X_{n}$.
- Let $X_{1}, X_{2}, \ldots, X_{n}$ be drawn according to $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
- Joint entropy: $H\left(X_{1}^{n}\right)=-E\left[\log p\left(X_{1}^{n}\right)\right]$

$$
\begin{aligned}
H\left(X_{1}, X_{2}, \ldots, X_{n}\right) & =-\sum_{x_{1} \in x_{1}} \sum_{x_{2} \in x_{2}} \cdots \sum_{x_{n} \in X_{n}} p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \log p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =-E\left[\log p\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]
\end{aligned}
$$

- $H\left(X_{1}^{n}, Y\right)=H\left(X_{1}^{n}\right)+H\left(Y \mid X_{1}^{n}\right)$

$$
\text { Proof } p\left(x_{1}^{n}, y\right)=p\left(x_{1}^{n}\right) p\left(y \mid x_{1}^{n}\right) .
$$

- Chain rule for entropy: $H\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)$.

$$
\begin{aligned}
& H\left(X_{1}^{n}\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X_{1}^{i-1}\right) . \\
& \quad \text { Proof } \quad p\left(x_{1}^{n}\right)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{1}^{i-1}\right) .
\end{aligned}
$$

- $H\left(X_{1}^{n}\right)=-E\left[\log p\left(X_{1}^{n}\right)\right]=\sum_{i=1}^{n} H\left(X_{i} \mid X_{1}^{i-1}\right) \leq \sum_{\substack{i=1 \\ X_{i} \text { s are independent }}}^{n} H\left(X_{i}\right)$
- $\quad H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)$
- $H\left(X_{1}^{n} \mid Y\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X_{1}^{i-1}, Y\right)$
- $H(X, Y \mid Z)=H(X \mid Z)+H(Y \mid X, Z)=H(Y \mid Z)+H(X \mid Y, Z)$
- $H(X) \leq \log |X|$, where $|X|$ denotes the number of elements in the range of X with equality if and only if X has a uniform distribution over \boldsymbol{X}.
- Conditioning reduce entropy: $H(X \mid Y) \leq H(X)$ with equality iff X and Y are independent.

Proof $I(X ; Y)=H(X)-H(X \mid Y) \geq 0$ with equality iff X and Y are independent.

- Knowing another random variable Y can only reduce the uncertainty in X.
- No ge neral comparison between $H(X \mid Y=y)$ and $H(X)$.
- Independence bound on entropy: $H\left(X_{1}^{n}\right) \leq \sum_{i=1}^{n} H\left(X_{i}\right)$ with equality if and only if the X_{i} are independent.

Relative Entropy

- Relative entropy / Kullback Leibler "distance" between two probability mass functions $p(x)$ and $q(x)$

- A measure of the inefficiency of assuming that the distribution is q when the true distribution is p.
If we knew the true distribution $\{p(x)\}$ of the random variable, then we could construct a code with average description length $H(p)$. If, instead, we used the code for a distribution q, we would need $H(p)+D(p \| q)$ bits on the average to describe the random variable.

$$
\begin{aligned}
& \text { Proof. }(-p(x) \log q(x))-(-p(x) \log p(x))=p(x) \log \frac{p(x)}{q(x)} \text {. So, } \\
& E[-\log q(X)]=E[-\log p(X)]+E\left[\log \frac{p(X)}{q(X)}\right] .
\end{aligned}
$$

- $\geq 0,=0$ iff $p=q$.

$$
\text { Proof. } \begin{aligned}
D(p \| q) & =\sum_{x} p(x) \log \frac{p(x)}{q(x)} \geq \sum_{x} p(x)\left(1-\frac{q(x)}{p(x)}\right) \\
& \geq \sum_{x}(p(x)-q(x))=1-1=0
\end{aligned}
$$

- Note that this just means if we have two vectors \vec{u}, \vec{v} with the same lengths, each have elements which summed to 1 . Then, $\sum_{i} u_{i} \log \frac{u_{i}}{v_{i}} \geq 0$.
- In general, $D(p \| q) \neq D(q \| p)$.
- Log sum inequality: for non-negative numbers, a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n},
$\sum_{i=1}^{n} a_{i} \log \frac{a_{i}}{b_{i}} \geq\left(\sum_{i=1}^{n} a_{i}\right) \log \frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n} b_{i}}$ with equality iff $\frac{a_{i}}{b_{i}}=$ constant $\forall i$.
Proof. Define $a_{i}^{\prime}=\frac{a_{i}}{\sum_{i=1}^{n} a_{i}}=\frac{a_{i}}{A}$ and $b_{i}^{\prime}=\frac{b_{i}}{\sum_{i=1}^{n} b_{i}}=\frac{b_{i}}{B}$. Then, from

$$
\begin{aligned}
& D(p \| q)=\sum_{x \in X} p(x) \log \frac{p(x)}{q(x)} \geq 0, \text { we have } \\
& 0 \leq \sum_{i=1}^{n} a_{i}^{\prime} \log \frac{a_{i}^{\prime}}{b_{i}^{\prime}}=\sum_{i=1}^{n} \frac{a_{i}}{A} \log \frac{\frac{a_{i}}{b_{i}}}{\frac{b_{i}}{B}}=\sum_{i=1}^{n} \frac{a_{i}}{A} \log \frac{a_{i}}{b_{i}} \frac{B}{A}=\sum_{i=1}^{n} \frac{a_{i}}{A} \log \frac{a_{i}}{b_{i}}-\sum_{i=1}^{n} \frac{a_{i}}{A} \log \frac{A}{B} \\
& \quad=\frac{1}{A} \sum_{i=1}^{n} a_{i} \log \frac{a_{i}}{b_{i}}-\log \frac{A}{B}=\frac{1}{A}\left(\sum_{i=1}^{n} a_{i} \log \frac{a_{i}}{b_{i}}-A \log \frac{A}{B}\right)
\end{aligned}
$$

Thus, $\sum_{i=1}^{n} a_{i} \log \frac{a_{i}}{b_{i}} \geq(A) \log \frac{A}{B}$.
Equality iff $a_{i}^{\prime}=b_{i}^{\prime} \forall i \Leftrightarrow \frac{a_{i}}{b_{i}}=\frac{A}{B} \forall i$.

- $\quad a \log \frac{a}{0}=\infty$ if $a>0$, and $0 \log \frac{0}{0}=0$.
- Not a true distance since symmetry and triangle inequality fail. Nonetheless, it is often useful to think of it as a distance between distributions.
- $D(p \| q)$ is convex \cup in the pair (p, q).

If $\left(p_{1}, q_{1}\right)$ and $\left(p_{2}, q_{2}\right)$ are two pairs of probability mass functions, then

$$
D\left(\lambda p_{1}+(1-\lambda) p_{2} \| \lambda q_{1}+(1-\lambda) q_{2}\right) \leq \lambda D\left(p_{1} \| q_{1}\right)+(1-\lambda) D\left(p_{2} \| q_{2}\right) \forall 0 \leq \lambda \leq 1
$$

- For fixed $p, D(q \| p)$ is a convex \cup function of q.

$$
D\left(\lambda q_{1}+(1-\lambda) q_{2} \| p\right) \leq \lambda D\left(q_{1} \| p\right)+(1-\lambda) D\left(q_{2} \| p\right) .
$$

Proof.

$$
\begin{aligned}
p_{0}(x) \log \frac{p_{0}(x)}{q_{0}(x)} & =\left(\lambda p_{1}(x)+(1-\lambda) p_{2}(x)\right) \log \frac{\lambda p_{1}(x)+(1-\lambda) p_{2}(x)}{\lambda q_{1}(x)+(1-\lambda) q_{2}(x)} \\
& =A \log \frac{A}{B} \\
& \leq \sum_{i=1}^{n} a_{i} \log \frac{a_{i}}{b_{i}} \\
& =\lambda p_{1}(x) \log \frac{\lambda p_{1}(x)}{\lambda q_{1}(x)}+(1-\lambda) p_{2}(x) \log \frac{(1-\lambda) p_{2}(x)}{(1-\lambda) q_{2}(x)} \\
& =\lambda p_{1}(x) \log \frac{p_{1}(x)}{q_{1}(x)}+(1-\lambda) p_{2}(x) \log \frac{p_{2}(x)}{q_{2}(x)}
\end{aligned}
$$

- Conditional relative entropy $D(p(y \mid x) \| q(y \mid x))$

$$
D(p(y \mid x) \| q(y \mid x))=E\left[\log \frac{p(Y \mid X)}{q(Y \mid X)}\right]=\sum_{x} p(x) \sum_{y} p(y \mid x) \log \frac{p(y \mid x)}{q(y \mid x)} .
$$

- $\quad D(p(\vec{x}) \| q(\vec{x})) \geq 0$

Proof. Map $X^{n} \xrightarrow[\text { onto }]{1-1}\left\{i: i=1, \ldots,|X|^{n}\right\}, p(\bar{x}) \rightarrow u_{i}, q(\bar{x}) \rightarrow v_{i}$. Then, $\sum_{i} u_{i}=1$, and

$$
\sum_{i} v_{i}=1 . \text { Use } \sum_{i} u_{i} \log \frac{u_{i}}{v_{i}} \geq 0 .
$$

- $D(p(x \mid z) \| q(x \mid z)) \geq 0$

Proof.. For any given $z, \sum_{x} p(x \mid z)=1$, and $\sum_{x} q(x \mid z)=1$; thus, $\sum_{x} p(x \mid z) \log \frac{p(x \mid z)}{q(x \mid z)} \geq$
0. $D(p(x \mid z) \| q(x \mid z))=\sum_{z} p(z) \underbrace{\sum_{x} p(x \mid z) \log \frac{p(x \mid z)}{q(x \mid z)}}_{\geq 0}$.

- $\quad D(p(\bar{x} \mid \bar{z}) \| q(\bar{x} \mid \bar{z})) \geq 0$
- Chain rule for relative entropy:

$$
\begin{gathered}
D(p(x, y) \| q(x, y))=D(p(x) \| q(x))+D(p(y \mid x) \| p(y \mid x)) \\
\text { Proof } \frac{p(x, y)}{q(x, y)}=\frac{p(x) p(y \mid x)}{q(x) q(y \mid x)}=\frac{p(x)}{q(x)} \frac{p(y \mid x)}{q(y \mid x)} .
\end{gathered}
$$

Mutual Information

- $i(x, y)=\log \frac{p(x, y)}{p(x) p(y)}=\log \frac{p(x \mid y)}{p(x)}=\log \frac{p(y \mid x)}{p(y)}$; can be negative.
$i(x, y)=i(y, x)$; more precisely $i(X=x, Y=y)=i(Y=y, X=x)$.
If $p(x \mid y)=1$, the mutual info is equivalent to the self-information of symbol x.

$$
\begin{aligned}
& i(x)=\left.i(x, y)\right|_{p(x \mid y)=1}=\left.\log \frac{p(x \mid y)}{p(x)}\right|_{p(x \mid y)=1}=\log \frac{1}{p(x)}=-\log p(x) . \\
& i(x)=i(x, x)=\log \frac{p(x \mid x)}{p(x)}=\log \frac{1}{p(x)}=-\log p(x) .
\end{aligned}
$$

$p(x)$

- Average Mutual information
- A measure of the amount of information that one random variable contains about another random variable. $(H(X \mid Y)=H(X)-I(X ; Y))$.
- The reduction in the uncertainty of one random variable due to the knowledge of the other.
- A special case relative entropy.
- Need on average $H(\{p(x, y)\})$ info bits to describe (x, y). If instead, assume that X and Y are independent, then would need on average $H(\{p(x) p(y)\})+D(p(x, y) \| p(x) p(y))$ info bits to describe (x, y).
- Average mutual information

$$
\underset{\text { iff independent }}{0} \leq I(X ; Y)=E\left[\log \frac{P(X, Y)}{p(X) q(Y)}\right]=E\left[\log \frac{P(X \mid Y)}{p(X)}\right]=E\left[\log \frac{Q(Y \mid X)}{q(Y)}\right] \text {. }
$$

$$
\begin{aligned}
I(X ; Y) & =\sum_{x \in X} \sum_{y \in Y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)} \\
& =E_{p(x, y)}\left[\log \frac{p(X, Y)}{p(X) p(Y)}\right]=E[i(X ; Y)] \\
& =D(p(x, y) \| p(x) p(y))
\end{aligned}
$$

≥ 0 with equality iff X and Y are independent
Proof

$$
\begin{aligned}
I(X ; Y) & =\sum_{x \in X} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x) p(y)} \\
& =\frac{1}{\ln (2)} \sum_{x \in X} \sum_{y \in \mathcal{Y}} p(x, y) \ln \frac{p(x, y)}{p(x) p(y)} \\
& \geq \frac{1}{\ln (2)} \sum_{x \in X} \sum_{y \in \mathcal{Y}} p(x, y)\left[1-\left(\frac{p(x, y)}{p(x) p(y)}\right)^{-1}\right] \\
& =\frac{1}{\ln (2)} \sum_{x \in X} \sum_{y \in \mathcal{Y}}[p(x, y)-p(x) p(y)]=\frac{1}{\ln (2)}(1-1)=0
\end{aligned}
$$

- $I(X ; Y)=H(X)+H(Y)-H(X, Y)$

$$
=H(Y)-H(Y \mid X)=H(X)-H(X \mid Y)
$$

Proof. $\frac{p(x, y)}{p(x) p(y)}=\frac{p(y \mid x)}{p(y)}=\frac{p(x \mid y)}{p(x)}$.

- $I(X ; X)=H(X) \Rightarrow$ entropy $=$ self-information.

Proof. $I(X ; X)=H(X)-H(X \mid X)=H(X)$.

- $I(X ; Y)=I(Y ; X)$
- The X says, on average, as much about Y as Y says, on average, about X.
- Conditional mutual information of random variables X and Y given Z,

$$
\begin{aligned}
I(X ; Y \mid Z) & =H(X \mid Z)-H(X \mid Y, Z) \\
& =E_{p(x, y, z)} \log \frac{p(X, Y \mid Z)}{P(X \mid Z) p(Y \mid Z)}
\end{aligned}
$$

≥ 0 with equality iff X and Y are conditionally independent given Z
Proof. $\frac{p(x, y \mid z)}{P(x \mid z) p(y \mid z)}=\frac{1}{p(x \mid z)} \frac{p(y \mid z) p(x \mid y, z)}{P(y \mid z)}=\frac{1}{p(x \mid z)} p(x \mid y, z)$.

Proof. $I(X ; Y \mid Z)=D\left(p(x, y \mid z) \mu_{Z}(x, y \mid z)\right) \geq 0$ where $q(x, y \mid z)=p(x \mid z) p(y \mid z)$.

- $I\left(X_{1}^{n} ; Y\right)=E\left[\log \frac{p\left(X_{1}^{n}, Y\right)}{p\left(X_{1}^{n}\right) p(Y)}\right]=\sum_{x_{1} \in x_{1}} \sum_{x_{2} \in X_{2}} \cdots \sum_{x_{n} \in X_{n}} \sum_{y \in \mathcal{Y}} p\left(x_{1}^{n}, y\right) \log \frac{p\left(x_{1}^{n}, y\right)}{p\left(x_{1}^{n}\right) p(y)}$

$$
=H\left(X_{1}^{n}\right)+H(Y)-H\left(X_{1}^{n}, Y\right)
$$

$$
=H\left(X_{1}^{n}\right)-H\left(X_{1}^{n} \mid Y\right)=H(Y)-H\left(Y \mid X_{1}^{n}\right)
$$

$$
\text { Proof } \begin{aligned}
E\left[\log \frac{p\left(X_{1}^{n}, Y\right)}{p\left(X_{1}^{n}\right) p(Y)}\right] & =E\left[\log p\left(X_{1}^{n}, Y\right)\right]-E\left[\log p\left(X_{1}^{n}\right)\right]-E[\log p(Y)] \\
& =-H\left(X_{1}^{n}, Y\right)+H\left(X_{1}^{n}\right)+H(Y)
\end{aligned}
$$

- Chain rule for information:

$$
\begin{aligned}
& I\left(X_{1}, X_{2}, \ldots, X_{n} ; Y\right)=\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X_{i-1}, X_{i-1}, \ldots, X_{1}\right) \\
& I\left(X_{1}^{n} ; Y\right)=\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X_{1}^{i-1}\right)
\end{aligned}
$$

$$
\text { Proof } \begin{aligned}
& I\left(X_{1}^{n} ; Y\right)=H\left(X_{1}^{n}\right)-H\left(X_{1}^{n} \mid Y\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X_{1}^{i-1}\right)-\sum_{i=1}^{n} H\left(X_{i} \mid X_{1}^{i-1}, Y\right) \\
&=\sum_{i=1}^{n}\left(H\left(X_{i} \mid X_{1}^{i-1}\right)-H\left(X_{i} \mid X_{1}^{i-1}, Y\right)\right)=\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X_{1}^{i-1}\right) \\
& H\left(X_{i} \mid X_{1}^{i-1}\right)-H\left(X_{i} \mid X_{1}^{i-1}, Y\right)=H(X \mid Z)-H(X \mid Z, Y)=I(X ; Y \mid Z) \\
&=I\left(X_{i} ; Y \mid X_{1}^{i-1}\right)
\end{aligned}
$$

$$
I\left(X_{1}, X_{2} ; Y\right)=I\left(X_{1} ; Y\right)+I\left(X_{2} ; Y \mid X_{1}\right)
$$

Stationary Information Sources

- Consider stationary source $\{U(k)\}$. Common alphabet \boldsymbol{U}.
- $H\left(U_{1}^{n}\right)=H\left(U_{k}^{k+n-1}\right)$
- Per letter entropy of an L-block:
- $H_{L}=\frac{H\left(U_{1}^{L}\right)}{L}=\frac{H\left(U_{k}^{k+L-1}\right)}{L}$.
- $H_{\text {Volumetric }}=\lim _{L \rightarrow \infty} H_{L}$
- Incremental entropy change
- $h_{L}=H\left(U_{L} \mid U_{1}^{L-1}\right)=H\left(U_{1}^{L}\right)-H\left(U_{1}^{L-1}\right)$
- $H_{\text {Incremenenal }}=\lim _{L \rightarrow \infty} h_{L}$.
- For stationary Markov chain (the initial state of the Markov chain is drawn according to a stationary distribution.):

$$
\begin{aligned}
& h_{L, \text { markovov }}=H\left(U_{L} \mid U_{1}^{L-1}\right)=H\left(U_{L} \mid U_{L-1}\right)=H\left(U_{2} \mid U_{1}\right) \forall L \geq 2 . \\
& H=\lim _{L \rightarrow \infty} h_{L}=H\left(U_{2} \mid U_{1}\right)=-\sum_{u_{1}, u_{2}} p\left(u_{1}\right) p\left(u_{2} \mid u_{1}\right) \log p\left(u_{2} \mid u_{1}\right) .
\end{aligned}
$$

- $h_{1}=H_{1}=H\left(U_{1}\right)=H\left(U_{k}\right)$
- Both h_{L} and H_{L} are non increasing \downarrow function of L, converging to same limit H.
$\lim _{L \rightarrow \infty} H_{L}=\lim _{L \rightarrow \infty} h_{L}=H$. Also, $h_{L} \leq H_{L}\left(H\left(X_{n} \mid X_{1}^{n-1}\right) \leq \frac{H\left(X_{1}^{n}\right)}{n}\right)$.
Proof. $h_{L} \leq h_{L-1}$.

$$
h_{L}=H\left(U_{L} \mid U_{1}^{L-1}\right) \leq H\left(U_{L} \mid U_{2}^{L-1}\right)_{\text {staionary }}=H\left(U_{L-1} \mid U_{1}^{L-2}\right)=h_{L-1} .
$$

Proof $H\left(U_{1}^{L}\right)=\sum_{k=1}^{L} h_{k}$

$$
H\left(U_{1}^{L}\right)=\sum_{k=1}^{L} H\left(U_{k} \mid U_{1}^{k-1}\right)=\sum_{k=1}^{L} h_{k}
$$

Proof $h_{L} \leq H_{L}$

$$
H\left(U_{1}^{L}\right)=\sum_{k=1}^{L} h_{k} \geq \sum_{k=1}^{L} h_{L}=L h_{L} . \text { So, } h_{L} \leq \frac{H\left(U_{1}^{L}\right)}{L}=H_{L} \text {. }
$$

Proof $H_{L} \leq H_{L-1}$

$$
\begin{aligned}
H_{L} & =\frac{1}{L} H\left(U_{1}^{L-1}\right)+\frac{h_{L}}{L}=\frac{L-1}{L} \frac{H\left(U_{1}^{L-1}\right)}{L-1}+\frac{h_{L}}{L}=\frac{L-1}{L} H_{L-1}+\frac{h_{L}}{L} \\
& \leq \frac{L-1}{L} H_{L-1}+\frac{H_{L}}{L} \\
\frac{L-1}{L} H_{L} & \leq \frac{L-1}{L} H_{L-1} \\
H_{L} & \leq H_{L-1}
\end{aligned}
$$

Proof $\lim _{L \rightarrow \infty} H_{L}=\lim _{L \rightarrow \infty} h_{L}$
From $h_{L} \leq H_{L}, \lim _{L \rightarrow \infty} H_{L} \geq \lim _{L \rightarrow \infty} h_{L}$.

$$
\begin{aligned}
H_{L+M} & =\frac{H\left(U_{1}^{L+M}\right)}{L+M}=\frac{\sum_{k=L}^{L+M} H\left(U_{k} \mid U_{1}^{k-1}\right)+H\left(U_{1}^{L-1}\right)}{L+M}=\frac{\sum_{k=L}^{L+M} h_{k}+H\left(U_{1}^{L-1}\right)}{L+M} \\
& \leq \frac{\sum_{k=L}^{L+M} h_{L}+H\left(U_{1}^{L-1}\right)}{L+M}=\frac{(M+1) h_{L}+H\left(U_{1}^{L-1}\right)}{L+M}
\end{aligned}
$$

Take $M \rightarrow \infty$. $\lim _{M \rightarrow \infty} H_{L+M} \leq h_{L}$
Take $L \rightarrow \infty$. $\lim _{L \rightarrow \infty} \lim _{M \rightarrow \infty} H_{L+M}=\lim _{L \rightarrow \infty} H_{L} \leq \lim _{L \rightarrow \infty} h_{L}$.

- Entropy rate of stationary source $\left\{U_{k}\right\}$
$H\left(\left\{U_{\ell}\right\}\right)=H_{U}=\lim _{L \rightarrow \infty} \frac{H\left(U_{1}^{L}\right)}{L}=\lim _{L \rightarrow \infty} H\left(U_{L} \mid U_{1}^{L-1}\right)$.
- So, for stationary source, the entropy $H\left(U_{1}^{L}\right)$ grows (asymptotically) linearly with L at a rate H_{U}.
- For stationary Markov chain of order $r, H_{U}=H\left(U_{r+1} \mid U_{1}^{r}\right)=h_{r+1}$.
- For stationary Markov chain of order $1, H_{U}=H\left(U_{2} \mid U_{1}\right)=h_{2}<H\left(U_{1}\right)=H\left(U_{2}\right)$.
- Let $\left\{X_{i}\right\}$ be a statio nary Markov chain with stationary distribution \vec{u} and transition matrix P. Then, the entropy rate is $H=-\sum_{i j} u_{i} P_{i j} \log P_{i j}$.

$$
\begin{aligned}
& P_{i j}=\operatorname{Pr}[\text { Next state is } j \mid \text { Current state is } i]=\operatorname{Pr}\left[\left[X_{2}=j \mid X_{1}=i\right] .\right. \\
& u_{i}=\operatorname{Pr}\left[X_{1}=i\right] .
\end{aligned}
$$

- More than one communicating class: $H_{U}=\sum_{i} \operatorname{Pr}\left[\operatorname{class}_{i}\right] H\left(U_{2} \mid U_{1}\right.$, class $\left._{i}\right)$.
- The best achievable data compression.

Variable-length (VL) lossless source codes

- Stationary discrete memoryless?? source $\left\{U_{k}\right\}$, finite alphabet \boldsymbol{U}.
- A variable-length D-ary source codes is a mapping $\phi: \boldsymbol{U} \rightarrow\{0, \ldots, D-1\}^{*}$
- binary $D=2$
- $D=$ coding alphabet cardinality.
- Def: ϕ is uniquely decipherable if $\forall M \forall N$ and any $\underline{U}=\left(U_{1}, \ldots, U_{M}\right), \underline{U^{\prime}}=\left(U_{1}^{\prime}, \ldots, U_{N}^{\prime}\right)$, $\phi(\underline{U})=\phi\left(\underline{U}^{\prime}\right) \Rightarrow \underline{U}=\underline{U}^{\prime}$.
(No two distinct source strings get mapped into same code string.
- $\quad \ell(u)$ is length of D -ary string $\phi(u)$.
- Def: $\bar{\ell}=$ the mean code word length $=E[\ell(u)]=\sum_{u \in \boldsymbol{u}} p(u) \ell(u)$.
- Optimum $=\min \bar{\ell}$, uniquely decipherable.
- Morse's principle: To minimize $\bar{\ell}$, if $p(u)=\operatorname{Pr}\left[U_{k}=u\right]$ is small, make $\ell(u)$ large, and conversely.
- Prefix code: no short code word is prefix of a longer one. \Rightarrow uniquely decipherable
- Kraft Inequality $(\mathrm{KI}): \sum_{u \in \mathcal{U}} D^{-\ell(u)} \leq 1$.
- Property of a length set $\{\ell(u), u \in \boldsymbol{u}\}$
(1) If $\{\ell(u), u \in \boldsymbol{U}\}$ satisfying KI, then there exists a prefix code (hence, UD) with these lengths.
(2) Every D-ary UD code has word lengths $\{\ell(u), u \in \boldsymbol{u}\}$ that satisfy KI.
$\mathrm{KI} \Rightarrow \exists$ prefix (UD), UD (including prefix) $\Rightarrow \mathrm{KI}$
We are looking for a UD code with min $\bar{\ell}$. Suppose we find one. Because it is UD, from (2), it's length set satisfies KI. Then, (1) tells us that there exists a prefix code with exactly the same length set and thus also minimize $\bar{\ell}$. So, (1) and (2) let us restrict search for optimal code to prefix codes.

Proof (2)

$$
\text { Consider } L \text {-vector } \underline{u}=\left(u_{1}, u_{2}, \ldots, u_{L}\right) \text {. }
$$

$$
\begin{aligned}
& \phi(\underline{u})=\phi\left(u_{1}\right) \phi\left(u_{2}\right) \cdots \phi\left(u_{L}\right) \cdot \ell(\underline{u})=\ell\left(u_{1}\right)+\ell\left(u_{2}\right)+\cdots+\ell\left(u_{L}\right) . \\
& \begin{aligned}
\sum_{\underline{u} \in \mathcal{U}^{L}} D^{-\ell(\underline{u})} & =\sum_{\underline{u \in \mathcal{U}^{L}}} D^{\left.-\ell \ell\left(u_{1}\right)+\ell\left(u_{2}\right)+\cdots+\ell\left(u_{L}\right)\right)}=\sum_{\underline{u} \in \mathcal{U}^{L}} D^{-\ell\left(u_{1}\right)} D^{-\ell\left(u_{2}\right)} \cdots D^{-\ell\left(u_{L}\right)} \\
& =\sum_{u_{1} \in \boldsymbol{U}} \sum_{u_{2} \in \mathcal{U}} \cdots \sum_{u_{L} \in \mathcal{U}} D^{-\ell\left(u_{1}\right)} D^{-\ell\left(u_{2}\right)} \cdots D^{-\ell\left(u_{L}\right)} \\
& =\left(\sum_{u_{1} \in \mathcal{U}} D^{-\ell\left(u_{1}\right)}\right)\left(\sum_{u_{2} \in \mathcal{U}} D^{-\ell\left(u_{2}\right)}\right) \cdots\left(\sum_{u_{L} \in \boldsymbol{U}} D^{-\ell\left(u_{L}\right)}\right)=\left(\sum_{u \in \mathcal{U}} D^{-\ell(u)}\right)^{L}
\end{aligned}
\end{aligned}
$$

So, we have $\sum_{\underline{u} \in \mathcal{U}^{L}} D^{-\ell(\underline{u})}=\left(\sum_{u \in \boldsymbol{U}} D^{-\ell(u)}\right)^{L}$.
Let $\ell_{\min }=\min _{u} \ell(u), \ell_{\max }=\max _{u} \ell(u)$.

$$
A_{n}=\text { the number of } \underline{u} \in \mathcal{U}^{L} \text { such that } \ell(\underline{u})=n .
$$

Note that $L \ell_{\text {min }} \leq n \leq L \ell_{\max }$. The maximum is attained when every u_{k} in \underline{u} corresponds to $\ell_{\max }$. The minimum is attained when every u_{k} in \underline{u} corresponds to $\ell_{\min }$. Also, $\sum_{\underline{u} \in \boldsymbol{u}^{L}} D^{-\ell(\underline{u})}=\sum_{n=L \ell_{\min }}^{L \ell_{\operatorname{mxx}}} A_{n} D^{-n}$.

UD implies that $A_{n} \leq D^{n}$. (There are only D^{n} different code sequences of length n. If $A_{n}>D^{n}$, then there are at least two \underline{u} which map to the same code sequence.)

$$
\begin{aligned}
\sum_{U \in \mathcal{U}^{L}} D^{-\ell(\underline{L})} & =\sum_{n=L_{\text {min }}}^{L \ell_{\text {max }}} A_{n} D^{-n} \leq \sum_{n=L L_{\text {min }}}^{L L_{\text {max }}} D^{n} D^{-n}=\sum_{n=L_{\text {min }}}^{L_{\text {max }}} 1=L \ell_{\max }-L \ell_{\text {min }}+1 \\
& \leq L \ell_{\text {max }}
\end{aligned}
$$

So, UD requires $\sum_{\underline{u} \in \mathcal{U}^{L}} D^{-\ell(\underline{u})} \leq L \ell_{\text {max }} \cdot\left({ }^{* *}\right)$.
Combining $(*)$ and $(* *)$, we have $\left(\sum_{u \in \boldsymbol{\mathcal { U }}} D^{-\ell(u)}\right)^{L} \leq L \ell_{\max }$, or equivalently, $\sum_{u \in \boldsymbol{U}} D^{-\ell(u)} \leq\left(L \ell_{\max }\right)^{\frac{1}{L}}$. This has to be true for all L.
Note that $\left(L \ell_{\max }\right)^{\frac{1}{L}}$ is strictly decreasing as L increase. $\lim _{L \rightarrow \infty}\left(L \ell_{\max }\right)^{\frac{1}{L}}=1$. Thus, $\left(L \ell_{\text {max }}\right)^{\frac{1}{L}}$ can get arbitrary close to 1 from above. If $\sum_{u \in \mathcal{U}} D^{-\ell(u)}>1$, there will exist L_{0} such that $\sum_{u \in \mathcal{U}} D^{-\ell(u)}>\left(L \ell_{\max }\right)^{\frac{1}{L}}$ for all $L>L_{0}$. So, to have $\sum_{u \in \boldsymbol{U}} D^{-\ell(u)} \leq\left(L \ell_{\max }\right)^{\frac{1}{L}}$, need $\sum_{u \in \boldsymbol{U}} D^{-\ell(u)} \leq 1$.
Proof (1) by induction
We will show that we can embed these KI satisfying word lengths as the terminal nodes in a D-ary branching tree.
Note that putting a terminal node on level ℓ prunes away $D^{L-\ell}$ nodes from level L $\geq \ell$.

Suppose each u such that $\ell(u) \leq \ell-1$ has been assigned a terminal node on level $\ell(u)$. Now, we want to assign terminal nodes on level ℓ to all u such that $\ell(u)=\ell$. We then need there to be at least $|\{u: \ell(u)=\ell\}|$ nodes on level ℓ not yet pruned away.

Originally, there were D^{ℓ} nodes on level ℓ. We have pruned away $\sum_{\substack{u \\ \ell(u) \leq \ell-1}} D^{\ell-\ell(u)}$ of them. So, we need $D^{\ell}-\sum_{\substack{u \\ \ell(u) \leq \ell-1}} D^{\ell-\ell(u)} \geq|\{u: \ell(u)=\ell\}|$.
Trick: $|\{u: \ell(u)=\ell\}|=\sum_{\substack{u \\ \ell(u)=\ell-1}} 1=\sum_{\substack{u \\ \ell(u)=\ell-1}} D^{\ell-\ell(u)}$.
So, need $1 \geq \sum_{\substack{u \\ \ell(u) \leq \ell}} D^{-\ell(u)}$.
If $\{\ell(u), u \in \mathcal{U}\}$ satisfying KI, then $\sum_{u \in \mathcal{U}} D^{-\ell(u)} \leq 1$, and therefore,

$$
\sum_{\substack{u \\ \ell(u) \leq \ell}} D^{-\ell(u)} \leq \sum_{u \in \boldsymbol{U}} D^{-\ell(u)} \leq 1 .
$$

- For any UD D-ary code, and any distribution $\{p(u), u \in \boldsymbol{u}\}$,

$$
\begin{aligned}
& \bar{\ell} \geq H_{D}(\{p(u)\})=-\sum_{u \in \mathcal{U}} p(u) \log _{D} p(u) . \\
& \text { Proof. } \bar{\ell}-H_{D}(\{p(u)\}) \\
& \quad=\sum_{u \in \mathcal{U}} p(u) \ell(u)+\sum_{u \in \mathcal{U}} p(u) \log _{D} p(u)=\sum_{u \in \mathcal{U}} p(u)\left(\ell(u)+\log _{D} p(u)\right) \\
& \quad=\sum_{u \in \mathcal{U}} p(u)\left(\log _{D} D^{\ell(u)}+\log _{D} p(u)\right)=\sum_{u \in \mathcal{U}} p(u)\left(\log _{D} p(u) D^{\ell(u)}\right) \\
& \\
& =\frac{1}{\ln D} \sum_{u \in \mathcal{U}} p(u) \ln p(u) D^{\ell(u)} \\
& \\
& \geq \frac{1}{\ln D} \sum_{u \in \mathcal{U}} p(u)\left(1-\frac{1}{p(u) D^{\ell(u)}}\right)=\underbrace{\frac{1}{\ln D}}_{>0}\left(\sum_{u \in \mathcal{U}} p(u)-\sum_{u \in \mathcal{U}} D^{-\ell(u)}\right) \\
& \quad(a) \\
& \quad \geq \frac{1}{\ln D}(1-1)=0 \\
& \text { (a) Code is UD; thus length set satisfies KI. }
\end{aligned}
$$

- $K I \Rightarrow \bar{\ell} \geq \underset{\substack{R_{i}=\log _{D} p_{i}}}{H_{1}\left(\left\{p_{i}\right\}\right.}$
- Shannon-Fano codes: $\left\{\ell(u)=\left\lceil-\log _{D} p(u)\right\rceil=\lceil i(u)\rceil, u \in \boldsymbol{u}\right\}$.

- This length assignment is possible because it satisfies KI.

Proof. Because $\left\lceil-\log _{D} p(u)\right\rceil \geq-\log _{D} p(u) \geq 0,-\left\lceil-\log _{D} p(u)\right\rceil \leq \log _{D} p(u)$, and $D^{-\left\lceil-\log _{D} p(u)\right\rceil} \leq D^{\log _{D} p(u)}$.
Thus, $\sum_{u \in \mathcal{U}} D^{-\ell(u)}=\sum_{u \in \mathcal{U}} D^{-\left\lceil-\log _{D} p(u)\right\rceil} \leq \sum_{u \in \boldsymbol{U}} D^{\log _{D} p(u)}=\sum_{u \in \mathcal{U}} p(u)=1$.

- $H_{D}(\{p(u)\}) \leq \bar{\ell}_{S F}<1+H_{D}(\{p(u)\})$

Proof. $1+-\log _{D} p(u) \geq\left\lceil-\log _{D} p(u)\right\rceil \geq-\log _{D} p(u)$
So, $1+E\left[-\log _{D} p(u)\right]>E\left\lceil-\log _{D} p(u)\right\rceil \geq E\left[-\log _{D} p(u)\right]$.
Hence, $1+H_{D}(\{p(u)\})>\bar{\ell}_{S F} \geq H_{D}(\{p(u)\})$.

- If $-\log _{D} p(u)$ is an integer $\left(\boldsymbol{D}\right.$-adic) for all $u \in \boldsymbol{U}$, then $\bar{\ell}_{S F}=H_{D}(\{p(u)\})$.
- Ex. for $D=2,\{p(u)\}=\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots, \frac{1}{2^{n}}, \frac{1}{2^{n}}\right\}$.
- Ex. for general $D,\{p(u)\}=\{\underbrace{\frac{1}{D}, \ldots, \frac{1}{D}}_{D-1 \text { times }}, \underbrace{\frac{1}{D^{2}}, \ldots, \frac{1}{D^{2}}}_{D-1 \text { times }}, \ldots,, \underbrace{\frac{1}{D^{n}}, \ldots, \frac{1}{D^{n}}}_{D-1 \text { times }}, \frac{1}{D^{n}}\}$. Proof $(D-1) \frac{\frac{1}{D}-\frac{1}{D^{n+1}}}{1-\frac{1}{D}}+\frac{1}{D^{n}}=\left(1-\frac{1}{D^{n}}\right)+\frac{1}{D^{n}}=1$.
- $H_{D}(\{p(u)\}) \leq \bar{\ell}_{o p t} \leq \bar{\ell}_{S F}<1+H_{D}(\{p(u)\})$.
- Block-to-variable length codes
- Instead of $\phi: \boldsymbol{U} \rightarrow\{0, \ldots, D-1\}^{*}$, use $\phi: \boldsymbol{U}^{L} \rightarrow\{0, \ldots, D-1\}^{*}$ with corresponding $\left\{p(\underline{u}), \underline{u} \in \boldsymbol{U}^{L}\right\}$.
- Super-letters.
- Super letter source is still stationary.
- Entropy rate per letter is the same as that of original source (H).

Proof For original source, entropy rate per letter $H=\lim _{L \rightarrow \infty} H_{L}=\lim _{L \rightarrow \infty} \frac{H\left(U_{1}^{L}\right)}{L}$.
For the new one, entropy rate per super letter $=$

$$
\begin{aligned}
& H_{\text {sup } e r}=\lim _{n \rightarrow \infty} \frac{H\left(\underline{U}_{1}^{n}\right)}{n}=\lim _{n \rightarrow \infty} \frac{H\left(U_{1}^{L n}\right)}{n} . \text { Thus, entropy rate per letter } \\
& =\lim _{n \rightarrow \infty} \frac{H\left(U_{1}^{L n}\right)}{L n} . \text { Note that sequence } \frac{H\left(U_{1}^{L n}\right)}{L n} \text { is a subsequence of } \frac{H\left(U_{1}^{n}\right)}{n} .
\end{aligned}
$$

Because the sequence $\frac{H\left(U_{1}^{n}\right)}{n}$ converges, the subsequence converge to the same limit.

- 2- L delay and extra complexity.
- As $L \rightarrow \infty, \bar{\ell} \rightarrow H$, the source's entropy rate.

$$
\text { Proof } \begin{aligned}
\bar{\ell} & =\frac{E[[-\log p(\underline{U})]]}{L} \\
& <\frac{E[1-\log p(\underline{U})]}{L}=\frac{1+E[-\log p(\underline{U})]}{L} \\
& =\frac{1+H\left(U_{1}^{L}\right)}{L}=\frac{1}{L}+H_{L}
\end{aligned}
$$

Note: $E[-\log p(\underline{U})]=H\left(U_{1}^{L}\right)$ because the source is stationary. $\lim _{L \rightarrow \infty} \bar{\ell} \leq H_{L}=H$. And we already know that treating a super letter as normal letter, $H\left(U_{1}^{L}\right) \leq \bar{\ell}_{\text {super }}<H\left(U_{1}^{L}\right)+1$. So, $\frac{H\left(U_{1}^{L}\right)}{L} \leq \frac{\bar{\ell}_{\text {sup } e r}}{L}<\frac{H\left(U_{1}^{L}\right)}{L}+\frac{1}{L}$, and thus $\lim _{L \rightarrow \infty} \frac{\bar{\ell}_{\text {super }}}{L}=\lim _{L \rightarrow \infty} \frac{H\left(U_{1}^{L}\right)}{L}=H$.

- Huffman code, $D=2$.

Given $\left\{p_{j}, 0 \leq j \leq M-1\right\}$. Want to build a minimum $\bar{\ell}$ binary prefix code by assigning lengths $\left\{\ell_{j}, 0 \leq j \leq M-1\right\}$ that minimize $\bar{\ell}=\sum_{j=0}^{M-1} \ell_{j} p_{j}$.
$M=|\boldsymbol{U}|$. Assume $p_{0} \geq p_{1} \geq \cdots \geq p_{M-1}$.
Assume that we have optimal length described by $\left\{\ell_{j}, 0 \leq j \leq M-1\right\}$.
Let $\ell_{\text {max }}$ be the longest of the optimum ℓ_{j} 's.

Least likely source symbol has $\ell=\ell_{\max }$. (Morse. If not, switch its assignment with the one that has $\ell_{\max }$ will give lower $\bar{\ell}$.)
Next-to-least likely source symbol should have $\ell=\ell_{\text {max }}$ also.
Suppose not. Assume the next-to-least likely source symbol has $\ell<\ell_{\max }$.
Then, note that no other symbols can have $\ell=\ell_{\text {max }}$. It has larger probability than the next-to-least likely symbol; so, it should not be assigned larger ℓ.
This means the least likely source symbol is the only one on the level ℓ. This is not optimal because

Without loss of generality, let's have code strings for these two letters identical through level $\ell_{\max }-1$. (Then, one of them ends with 0 , the other with 1 .) This means they are assigned a common ancestor on level $\ell_{\text {max }}-1$.
Then, define new alphabet set with $\left|\boldsymbol{u}^{\prime}\right|=M-1$.

$$
\begin{aligned}
& p_{i}^{\prime}=p_{i} \text { for } 0 \leq i \leq M-3 \cdot p_{M-2}^{\prime}=p_{M-2}+p_{M-1} . \\
& \begin{aligned}
\bar{\ell} & =\sum_{k=0}^{M-1} \ell_{k} p_{k}=\sum_{k=0}^{M-3} \ell_{k} p_{k}+\ell_{\max }\left(p_{M-2}+p_{M-1}\right) \\
& =\sum_{k=0}^{M-3} \ell_{k}^{\prime} p_{k}^{\prime}+\ell_{\max }\left(p_{M-2}^{\prime}\right)=\sum_{k=0}^{M-3} \ell_{k}^{\prime} p_{k}^{\prime}+\left(\ell_{M-2}^{\prime}+1\right)\left(p_{M-2}^{\prime}\right) \\
& =\sum_{k=0}^{M-2} \ell_{k}^{\prime} p_{k}^{\prime}+p_{M-2}^{\prime}
\end{aligned}
\end{aligned}
$$

Because p_{M-2}^{\prime} is constant, we then want to minimize $\bar{\ell}^{\prime}=\sum_{k=0}^{M-2} \ell_{k}^{\prime} p_{k}^{\prime}$.
This can be accomplished by recursively applying the above argument.

- D-ary Huffman code, $D \geq 2$.
- Full D-ary tree: one with D branches out of every internal node.
- Full tree has $D+k(D-1)$ terminal nodes for some non-negative integer k. So, if $|\boldsymbol{U}|$ is not in that form, then can't have full tree.

First full-fan has D terminal nodes. Growing from this fan, adding one full-fan takes one terminal node off; so, net increase $=D-1$.

- Optimal code should have full tree except one of the top.

If any one at lower level is not full, then can move one from the top down and reduce $\bar{\ell}$.

- If there exists k such that $|\boldsymbol{U}|=D+k(D-1)$, then, hang D least likely off common ancestor and proceed iteratively as in binary.
If no such k exists, there is a non-full fan of the least likely letters' terminals on $\ell_{\max }$. Let $N=$ size of this fan. Then, $2 \leq N \leq D$.
$|\boldsymbol{u}|=D+k(D-1)+N-1$ because we add one fan of N terminal nodes to a full tree. This adds N terminal nodes but takes out 1 terminal node.

$$
\begin{aligned}
|\boldsymbol{U}| & =D+k(D-1)+N-1=(k+1)(D-1)+1+N-1 \\
& =(k+1)(D-1)+N \\
& =(k+1)(D-1)+2+(N-2)
\end{aligned}
$$

Note that $0 \leq N-2 \leq D-2$. Therefore, $(N-2) \bmod (D-1)=N-2$.
So, $(|\boldsymbol{u}|-2) \bmod (D-1)=N-2$. So, $N=2+(|\boldsymbol{u}|-2) \bmod (D-1)$.
Grab $N=2+(|\boldsymbol{U}|-2) \bmod (D-1)$ least likely at first, then always D at a time.

- For $D=3, N= \begin{cases}2, & \text { even }|\boldsymbol{U}| \\ 3, & \text { odd }|\boldsymbol{u}|\end{cases}$
- Universal lossless coding
- Borisfitingof

Discrete memoryless stationary source with alphabet \boldsymbol{U} but unknown distribution $\{p(u), u \in \boldsymbol{U}\}$.
Encoding: Gather n-block, $\underline{u}=\left(u_{1}, \ldots, u_{n}\right)$. Compute empirical distribution
$\tilde{p}(u)=\frac{n(u)}{n} . n(u)=\left|\left\{k: u_{k}=u\right\}\right|$.
Also need to send $\{\tilde{p}(u)\}$. Note that $0 \leq n(u) \leq n$ for every $u \in \boldsymbol{U}$. So, $\{\tilde{p}(u)\}$ cannot assume more than $(n+1)^{|u|}$ values. So, take no more than $\left\lceil\log _{2}(n+1)^{|u|}\right\rceil$ binary digits to specify $\{\tilde{p}(u), u \in \mathcal{U}\}$.
Thus, per source letter, use fewer than $\frac{\left[\log _{2}(n+1)^{|x|}\right]}{n}$. As $n \rightarrow \infty$, this $\rightarrow 0$.

- Lempel-Ziv (LZ codes)
- Arithmetic (Pasco, Rissanen, La ngdon)

