Suboptimal Receivers

- $\quad r[k]$ give sufficient statistics.
- $r[k]$ satisfies the equivalent discrete-time model
$r[k]=\rho[k] * s[k]+w[k] \xrightarrow{z} r(z)=\rho(z) s(z)+w(z)$
- $\quad w[k]=\left.\left(n(t) * h^{*}(-t)\right)\right|_{k T}$

- $\quad \rho(t)=h(t)^{*} h^{*}(-t)=\int_{-\infty}^{\infty} h(\tau) h^{*}(\tau-t) d \tau$

Proof

$$
\begin{aligned}
r(t) & =\left(\sum_{n=-\infty}^{\infty} s[n] h(t-n T)+n(t)\right) * h^{*}(-t) \\
& =\left(\left(\sum_{n=-\infty}^{\infty} s[n] \delta(t-n T)\right) * h(t)+n(t)\right) * h^{*}(-t) \\
& =\left(\sum_{n=-\infty}^{\infty} s[n] \delta(t-n T)\right) * h(t) * h^{*}(-t)+n(t)^{*} h^{*}(-t) \\
& =\left(\sum_{n=-\infty}^{\infty} s[n] \delta(t-n T)\right) * \rho(t)+n(t) * h^{*}(-t) \\
& =\sum_{n=-\infty}^{\infty} s[n] \rho(t-n T)+n(t)^{*} h^{*}(-t) \\
r[k] & =r(k T)=\sum_{n=-\infty}^{\infty} s[n] \rho(k T-n T)+\left.n(t) * h^{*}(-t)\right|_{t=k T} \\
& =\sum_{n=-\infty}^{\infty} s[n] \rho[k-n]+\left.n(t) * h^{*}(-t)\right|_{t=k T}
\end{aligned}
$$

- $\rho[-k]=\rho^{*}[k], \rho^{\#}(z)=\rho(z), \rho(t) \stackrel{\mp}{\rightleftharpoons} Q(f)=|H(f)|^{2}$.
- $\quad \rho(t) \stackrel{\mathcal{F}}{\rightleftharpoons} Q(f)=|H(f)|^{2}$

$$
\begin{gathered}
\rho[k] \xrightarrow{\text { DTFT }} Q_{\text {DTFT }}(f)=\frac{1}{T} \sum_{n=-\infty}^{\infty} Q\left(\frac{f}{T}+\frac{n}{T}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j n 2 \pi f} \\
\rho[k] \xrightarrow{\text { DTFT }} Q_{\text {DTFT }}(\omega)=\frac{1}{T} \sum_{n=-\infty}^{\infty} Q\left(\frac{\omega}{2 \pi T}+\frac{n}{T}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega} \\
\rho(t) \stackrel{\mathcal{F}}{\rightleftharpoons} \hat{Q}(\Omega)=|\hat{H}(\Omega)|^{2} \\
\rho[k] \xrightarrow{\text { DTFT }} Q_{\text {DTFT }}(\omega)=\sum_{k=-\infty}^{\infty}\left(\frac{1}{T} \hat{Q}\left(\frac{\omega}{T}+k \frac{2 \pi}{T}\right)\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega}
\end{gathered}
$$

- If $n(t)$ is white with $\operatorname{PSD} N_{0}$, then $R_{w w}[k]=N_{0} \rho[k] \xrightarrow{Z} S_{w w}(z)=N_{0} \rho(z)$. (Not white unless $\rho[k]=$ $\delta[k]$.
Proof Let $g(t)=h^{*}(-t)$. Because $w[k]=\left.(n(t) * g(t))\right|_{k T}$, we know that

$$
R_{w w}[k]=\left.N_{0}\left(g(t) * g^{*}(-t)\right)\right|_{t=k T}=\left.N_{0}\left(h^{*}(-t) * h(t)\right)\right|_{t=k T}=N_{0} \rho[k] .
$$

- The noise sequence $w[k]$ can be generated by a white noise with PSD N_{0} and a linear stable causal monic phase filter $\beta(z)$.

Proof We know that $\rho(z)=\rho^{\#}(z)$; thus, its poles and zeroes are located symmetrically with respect to the unit circle. We can then factorize $\rho(z)$ into $\gamma \beta(z) \beta^{\#}(z)$ where the poles and zeroes of $\beta(z)$ are the poles and zeroes of $\rho(z)$ that are located inside the unit circle. By choosing the ROC of $\beta(z)$ such that it includes the unit circle and extends outward, $\beta(z)$ is stable, causal, and minimum phase.
Now, if we filter white noise $n(z)$ with PSD N_{0} with $\beta(z)$, the output will be $N_{0} \beta(z) \beta^{\#}(z)$.
To create white noise with PSD γ, we can scale white noise with PSD N_{0} by $\sqrt{\frac{\gamma}{N_{0}}}$.

Linear algebra

- $\langle y[\cdot], x[\cdot]\rangle=\sum_{n=-\infty}^{\infty} x[n] y^{*}[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) Y^{*}\left(e^{j \omega}\right) d \omega$
- $\|\left. x[\cdot]\right|^{2}=\sum_{k=-\infty}^{\infty}|x[k]|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|X\left(e^{j \omega}\right)\right|^{2} d \omega$

Correlation and Correlation Spectrum

- Z-tranform: $X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} ; 0 \leq \mathrm{R}_{\mathrm{a}}<|\mathrm{z}|<\mathrm{R}_{\mathrm{b}} \leq \infty$

For $R_{a}<\hat{R}<R_{b}, x[n]=\frac{1}{2 \pi} \int_{0}^{2 \pi} X\left(\hat{\mathrm{R}} \mathrm{e}^{j \theta}\right) \hat{R}^{n} e^{j n \theta} d \theta$

- $x[k] \xrightarrow{Z} X(z)=\sum_{k=-\infty}^{\infty} x[k] z^{-k} \xrightarrow{z=e^{i \omega}} X\left(e^{j \omega}\right)$
- $x^{*}[-k] \xrightarrow{Z} X^{\#}(z)=\sum_{k=-\infty}^{\infty} x^{*}[-k] z^{-k}=X^{*}\left(\frac{1}{z^{*}}\right) \xrightarrow{z=e^{i \omega}} X^{*}\left(e^{j \omega}\right)$

$$
\text { Proof } \begin{aligned}
x^{*}[-k] \xrightarrow{Z} X^{\#}(z) & =\sum_{k=-\infty}^{\infty} x^{*}[-k] z^{-k}=\left(\sum_{k=-\infty}^{\infty} x[-k]\left(z^{*}\right)^{-k}\right)^{*} \\
& =\left(\sum_{n=-\infty}^{\infty} x[n]\left(\frac{1}{z^{*}}\right)^{-n}\right)^{*}=X^{*}\left(\frac{1}{z^{*}}\right)
\end{aligned}
$$

- $\left(X^{\#}(z)\right)^{\#}=X(z)$

$$
\begin{aligned}
& (X(z) Y(z))^{\#}=X^{\#}(z) Y^{\#}(z) \\
& (X(z)+Y(z))^{\#}=X^{\#}(z)+Y^{\#}(z)
\end{aligned}
$$

$$
\text { Proof }\left(X^{\#}(z)\right)^{\#}=\left(X^{*}\left(\frac{1}{\left(\frac{1}{z^{*}}\right)^{*}}\right)\right)^{*}=X(z)
$$

$$
(X(z) Y(z))^{\#}=\left(X\left(\frac{1}{z^{*}}\right) Y\left(\frac{1}{z^{*}}\right)\right)^{*}=X^{*}\left(\frac{1}{z^{*}}\right) Y^{*}\left(\frac{1}{z^{*}}\right)=X^{\#}(z) Y^{\#}(z)
$$

$$
(X(z)+Y(z))^{\#}=\left(X\left(\frac{1}{z^{*}}\right)+Y\left(\frac{1}{z^{*}}\right)\right)^{*}=X^{*}\left(\frac{1}{z^{*}}\right)+Y^{*}\left(\frac{1}{z^{*}}\right)=X^{\#}(z)+Y^{\#}(z)
$$

- $x[k]=x^{*}[-k] \Rightarrow X(z)=X^{\#}(z)$
- $X^{\#}\left(\frac{1}{z_{0}^{*}}\right)=X^{*}\left(z_{0}\right)$ and $X^{\#}\left(z_{1}\right)=X^{*}\left(\frac{1}{z_{1}^{*}}\right)$

Proof $X^{\#}\left(\frac{1}{z_{0}^{*}}\right)=X^{*}\left(\frac{1}{\left(\frac{1}{z_{0}^{*}}\right)^{*}}\right)=X^{*}\left(z_{0}\right)$. Substituting $z_{0}=\frac{1}{z_{1}^{*}}$, we have $X^{\#}\left(z_{1}\right)=X^{*}\left(\frac{1}{z_{1}^{*}}\right)$.

- $X\left(z_{0}\right)=0 \Rightarrow X^{\#}\left(\frac{1}{z_{0}^{*}}\right)=0 . X^{\#}\left(z_{1}\right)=0 \Rightarrow X\left(\frac{1}{z_{1}^{*}}\right)=0$.

Proof $\quad X^{\#}\left(\frac{1}{z_{0}^{*}}\right)=X^{*}\left(z_{0}\right)=0^{*}=0$.

- $\left|\lim _{z \rightarrow z_{0}} X(z)\right|=\infty \Rightarrow\left|\lim _{z \rightarrow \rightarrow \frac{1}{z_{0}}} X^{\#}(z)\right|=\infty .\left|\lim _{z \rightarrow z_{1}} X^{\#}(z)\right|=\infty \Rightarrow\left|\lim _{z \rightarrow \frac{1}{z_{1}}} X(z)\right|=\infty$.

Proof Use $X^{\#}\left(\frac{1}{z_{0}^{*}}\right)=X^{*}\left(z_{0}\right)$.

- If $X(z)=X^{\#}(z)$, then its poles and zeroes are located symmetrically with respect to the unit circle.

$$
\begin{aligned}
& \text { Proof } \quad X\left(z_{0}\right)=0 \Rightarrow X^{\#}\left(\frac{1}{z_{0}^{*}}\right)=0 . \text { Thus, } X\left(\frac{1}{z_{0}^{*}}\right)=X^{\#}\left(\frac{1}{z_{0}^{*}}\right)=0 . \\
& \left|\lim _{z \rightarrow z_{0}} X(z)\right|=\infty \Rightarrow\left|\lim _{z \rightarrow z_{0}} X^{\#}\left(\frac{1}{z^{*}}\right)\right|=\infty . \text { Thus, }\left|\lim _{z \rightarrow z_{0}} X\left(\frac{1}{z^{*}}\right)\right|=\left|\lim _{z \rightarrow z_{0}} X^{\#}\left(\frac{1}{z^{*}}\right)\right|=\infty .
\end{aligned}
$$

Note also that $\frac{1}{z_{0}^{*}}=\frac{1}{\left|z_{0}\right|}\left(\frac{z_{0}}{\left|z_{0}\right|}\right)$; thus $\angle\left(\frac{1}{z_{0}^{*}}\right)=\angle z_{0}$ and $\left|\frac{1}{z_{0}^{*}}\right|=\frac{1}{\left|z_{0}\right|}$. So, $\frac{1}{z_{0}^{*}}$ is along the same line from origin as z_{0}, but its magnitude is $\frac{1}{\left|z_{0}\right|}$. Also, $\left|\frac{1}{z_{0}^{*}}\right|>1 \Leftrightarrow\left|z_{0}\right|<1$ and $\left|\frac{1}{z_{0}^{*}}\right|<1 \Leftrightarrow\left|z_{0}\right|>1$.

- If $g(z)$ is monic and causal, then $g^{\#}(z)$ is monic and anti-causal.

Proof $g(z)$ is monic and causal; thus, it can be written in the form $g(z)=1+\sum_{k=1}^{\infty} a_{k} z^{-k}$.
$g^{\#}(z)=g^{*}\left(\frac{1}{z^{*}}\right)=1+\left(\sum_{k=1}^{\infty} a_{k}\left(z^{*}\right)^{k}\right)^{*}=1+\sum_{k=1}^{\infty} a_{k} z^{k}$. Thus, $g^{\#}(z)$ is monic and anticausal.

- If $g(z)$ is SCAMP, then $g^{-1}(z)$ is also SCAMP.

Proof $g(z)$ has all of its zeros and poles inside the unit circle. Now, the zeros of $g^{-1}(z)$ are the poles of $g(z)$ and vice versa. Thus, zeros and poles of $g^{-1}(z)$ are also inside the unit circle.
So, if we define the ROC if $g^{-1}(z)$ to be exactly outside the outermost pole, then $g^{-1}(z)$ is causal, stable, and minimum phase.
Because $g(z)$ is monic, $\lim _{|z| \rightarrow \infty} g(z)=1$. Therefore, $\lim _{|z| \rightarrow \infty} g^{-1}(z)=\frac{1}{1}=1$, which implies that $g^{-1}(z)$ is also monic.

- If $g(z)$ is SCAMP, then $g^{-1}(z)$ is monic, anticausal, stable, and maximum phase.

Proof $g(z)$ is monic and causal; thus $g^{\#}(z)$ is monic and anti-causal.
z_{0} is a zero/pole of $g(z)$ if and only if $\frac{1}{z_{0}^{*}}$ is a zero/pole of $g^{\#}(z)$. Thus, All poles and zeros of $g^{\#}(z)$ are outside the unit circle. So, $g^{\#}(z)$ is maximum phase. If de define the ROC of $g^{-1}(z)$ to be the disc inside the innermost pole, then $g^{\#}(z)$ is stable (and anti-causal.)

- $x[k] * y^{*}[-k]=\sum_{n=-\infty}^{\infty} x[n] y^{*}[n-k] \xrightarrow{z} X(z) Y^{\#}(z)=\sum_{k=-\infty}^{\infty}\left(\sum_{n=-\infty}^{\infty} x[n] y^{*}[n-k]\right) z^{-k}$.
- Given WSS $x[n], y[n]$
$R_{x y}[k]=E\left[x[n] y^{*}[n-k]\right] \xrightarrow{z} S_{x y}(z) \stackrel{?}{=} \hat{E}\left[X(z) Y^{\#}(z)\right]$ power spectrum density
$R_{x y}[k]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} S_{x y}\left(e^{j \omega}\right) e^{j k \omega} d \omega \stackrel{\text { DTFT }}{\rightleftharpoons} S_{x y}\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} R_{x y}[n] e^{-j n \omega}$.
- $R_{y x}^{*}[-k]=R_{x y}[k]$.

Proof $R_{y x}^{*}[-k]=\left(E\left[y[n] x^{*}[n+k]\right]\right)^{*}=E\left[y^{*}[n] x[n+k]\right] \underset{W S S}{=} E\left[y^{*}\left[n^{\prime}-k\right] x\left[n^{\prime}\right]\right]=R_{x y}[k]$.

- $S_{y x}^{\#}(z)=S_{x y}(z)$

Proof Because $R_{y x}^{*}[-k] \xrightarrow{Z} S_{y x}^{\#}(z)$, and $R_{x y}[k] \xrightarrow{Z} S_{x y}(z)$, the equality $R_{y x}^{*}[-k]=R_{x y}[k]$ implies $S_{y x}^{\#}(z)=S_{x y}(z)$.

- $R_{X X}[-k]=R_{X X}^{*}[k], S_{X X}^{\#}(z)=S_{X X}(z)$.
- $S_{X X}\left(e^{j \omega}\right)$ is real

Proof From $S_{X X}^{\#}(z)=S_{X X}(z)$, we have $S_{X X}^{\#}\left(e^{j \omega}\right)=S_{X X}\left(e^{j \omega}\right)$.
By definition, we have $S_{X X}^{\#}\left(e^{j \omega}\right)=S_{X X}^{*}\left(\frac{1}{\left(e^{j \omega}\right)^{*}}\right)=S_{X X}^{*}\left(e^{j \omega}\right)$.
Thus, $S_{X X}^{*}\left(e^{j \omega}\right)=S_{X X}\left(e^{j \omega}\right)$.

- White process $x[k] \Rightarrow S_{x x}(z)=E_{x}=E\left[|x[n]|^{2}\right]$
- $R_{x x}[0]=E\left[|x[k]|^{2}\right]=\int_{2 \pi}\left|S_{x x}\left(e^{j \omega}\right)\right|^{2} d \omega$.

Proof $R_{x x}[0]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} S_{x x}\left(e^{j \omega}\right) e^{j 0 \omega} d \omega=\frac{1}{2 \pi} \int_{-\pi}^{\pi} S_{x x}\left(e^{j \omega}\right) d \omega$.

- Linear filtering of a WSS process

- $R_{Y}[k]=R_{X}[k] * h[k] * h^{*}[-k]$

$$
\begin{aligned}
& \text { Proof } \begin{aligned}
& y[m]= x[m]^{*} h[m]=\sum_{n=-\infty}^{\infty} x[m-n] h[n] \\
& y[m-k]=\sum_{n^{\prime}=-\infty}^{\infty} x\left[m-k-n^{\prime}\right] h\left[n^{\prime}\right] \\
& y^{*}[m-k]=\sum_{n^{\prime}=-\infty}^{\infty} x^{*}\left[m-k-n^{\prime}\right] h^{*}\left[n^{\prime}\right] \\
& R_{Y}[k]=E\left[y[m] y^{*}[m-k]\right]=E\left[\left(\sum_{n=-\infty}^{\infty} x[m-n] h[n]\right)\left(\sum_{n^{\prime}=-\infty}^{\infty} x^{*}\left[m-k-n^{\prime}\right] h^{*}\left[n^{\prime}\right]\right)\right] \\
&=\sum_{n=-\infty}^{\infty} \sum_{n^{\prime}=-\infty}^{\infty} E\left[x[m-n] x^{*}\left[m-k-n^{\prime}\right]\right] h[n] h^{*}\left[n^{\prime}\right] \\
& \sum_{n=-\infty}^{\infty} \sum_{n^{\prime}=-\infty}^{\infty} R_{X}[k\left.+n^{\prime}-n\right] h[n] h^{*}\left[n^{\prime}\right] \\
& R_{X}[k]^{*} h[k]^{*} h^{*}[-k]=\left(\sum_{n=-\infty}^{\infty} R_{X}[k-n] h[n]\right) * h^{*}[-k] \\
&=\sum_{n^{\prime}=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} R_{X}\left[k-n^{\prime}-n\right] h[n] h^{*}\left[-n^{\prime}\right] \\
&=\sum_{n^{\prime}=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} R_{X}\left[k+n^{\prime \prime}-n\right] h[n] h^{*}\left[n^{\prime \prime}\right]
\end{aligned}
\end{aligned}
$$

- $S_{y y}(z)=H(z) H^{\#}(z) S_{x x}(z)$

Proof Directly from $R_{Y}[k]=R_{X}[k]^{*} h[k]^{*} h^{*}[-k]$.

- $\quad S_{y y}\left(e^{j \omega}\right)=\left|H\left(e^{j \omega}\right)\right|^{2} S_{x x}\left(e^{j \omega}\right)$
- For an FIR filter with white input $\left(S_{x x}(z)=E_{x}=E\left[|x[n]|^{2}\right]\right)$,
- $S_{y y}(z)=E_{x} H(z) H^{\#}(z)$
- The PSD of the output has zeros symmetrical around the unit circle.

Proof Because $H\left(z_{0}\right)=0 \Leftrightarrow H^{\#}\left(\frac{1}{z_{0}^{*}}\right)=0$. Thus, $S_{y y}\left(z_{0}\right)=0 \Leftrightarrow S_{y y}\left(\frac{1}{z_{0}^{*}}\right)=0$.

- Filter $h[k]$
- An LTI filter $H(z)=\frac{B(z)}{A(z)}$ is minimum phase
- if all its poles and zeros are inside the unit circles $|z|=1$.
\equiv if both it and its inverse $\frac{1}{H(z)}$ are stable.
- \Rightarrow causal.
- A polynomial of the form $H(z)=h_{0}+h_{1} z^{-1}+\ldots+h_{N} z^{-N}=h_{0}\left(1-z_{1} z^{-1}\right)\left(1-z_{2} z^{-1}\right) \cdots\left(1-z_{N} z^{-1}\right)$ is minimum phase if all of its roots z_{i} are inside the unit circle, i.e. $\left|z_{i}\right|<1$.
- Monic if $h[0]=1$.
- Causal \Rightarrow [monic $\left.\Leftrightarrow \lim _{|z| \rightarrow \infty} H(z)=1\right]$
- If rational $H(z)$, minimum phase if all its zeros are inside the unit circle.
- For a causal minimum phase $h[k]$, the partial energy $\mathcal{E}[n]=\sum_{k=0}^{n}|h[k]|^{2}$ is maximum for all n among all sequences with the same energy. Thus, minimum-phase signals are maximally concentrated toward time 0 among the space of causal signals for a given magnitude spectrum.
-

- Spectral Factorization

- Let $x[k]$ be a stationary process with power spectrum density $S_{x x}(z)=E\left[X(z) X^{\#}(z)\right]$.

If $\int_{-\pi}^{\pi} \ln S_{x x}\left(e^{j \omega}\right) d \omega>-\infty$, then there exists a $\gamma>0$ and a unique stable, causal, monic, and minimum phase (SCAMP) filter $g[k] \xrightarrow{Z} G(z)$ such that $S_{x x}(z)=\gamma G(z) G^{\#}(z), \gamma=e^{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln S_{X x}\left(e^{j \omega}\right) d \omega}$. - $G^{-1}(z)$ is also SCAMP.

- Given $S_{x x}(z)$, we can generate $x[k]$ (in fact, generate sth. that has the same spectrum as $x[\mathrm{k}]$) using a linear filter $G(z)$ with white input.
- Whittle's Construction:

If $\ln S_{x x}(z)$ is analytic in $\rho<|z|<\frac{1}{\rho}(\rho<1)$, then it has the Laurent expansion $\ln S_{x x}(z)=\sum_{k=-\infty}^{\infty} c_{k} z^{-k}$ where $c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln S_{x x}\left(e^{j \omega}\right) e^{j k \omega} d \omega \xrightarrow{\text { DTFT }} \ln S_{x x}\left(e^{j \omega}\right) \cdot c_{k}$ is real and even. (??)
Then $S_{x x}(z)=e^{\sum^{\infty} c_{k} z^{-k}}=e^{\sum_{k=\infty}^{-1} c_{k} z^{-k}} e^{c_{0}} e^{\sum_{k=1}^{\infty} c_{k} z^{-k}}=e^{c_{0}} e^{\sum_{k=1}^{\infty} c_{k} z^{-k}} e^{\sum_{k=1}^{\infty} c_{-k} z^{k}}$.
Define

$$
\begin{aligned}
& \gamma=e^{c_{0}}=e^{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln S_{x x}\left(e^{j \omega}\right) d \omega} \cdot \\
& G(z)=e^{\sum_{k=1}^{\infty} c_{k} z^{-k}} . \text { Then } G^{\#}(z)=G^{*}\left(\frac{1}{z^{*}}\right)=\left(e^{\sum_{k=1}^{\infty} c_{k}\left(\frac{1}{z^{*}}\right)^{-k}}\right)^{*}=e^{\sum_{k=1}^{\infty} c_{k}^{*} z^{k}}=e^{\sum_{k=1}^{\infty} c_{k} z^{k}}=e^{\sum_{k=1}^{\infty} c_{-k} z^{k}} .
\end{aligned}
$$

- $\quad G(z)$ is causal (involving only z^{-k} ??)
- $G(z)$ is monic because $\lim _{|z| \rightarrow \infty} G(z)=1$.
- $G(z)$ is minimum phase because $G^{-1}(z)$ is also analytical (??)
- The Whitening Filter:

Suppose that $x[k]$ is a WSS process with PSD that admits the spectral factorization $S_{x x}(z)=\gamma G(z) G^{\#}(z)$,
$\gamma=e^{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln S_{x x}\left(e^{j \omega}\right) d \omega}$.
If $x[k]$ be the input of a SCAMP filter, then, among the set of SCAMP filters, the whitening filter $\alpha(z)=\frac{1}{G(z)}$ minimizes the output variance. In particular, the output $y[k]$ is a white sequence and $E\left[|y[k]|^{2}\right]=\gamma=e^{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln S_{x x}\left(e^{j \omega}\right) d \omega}$.

Proof For any causal, stable, and monic filter $\alpha(z)$ we have

$$
\begin{aligned}
S_{y y}(z) & =\alpha(z) \alpha^{\#}(z) S_{x x}(z)=\alpha(z) \alpha^{\#}(z) \gamma G(z) G^{\#}(z) \\
& =\gamma \alpha(z) G(z) \alpha^{\#}(z) G^{\#}(z) \\
& =\gamma \beta(z) \beta^{\#}(z)
\end{aligned}
$$

where $\beta(z)=\alpha(z) G(z)$ is causal, stable, and monic.

$$
\gamma=e^{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln S_{x x}\left(e^{j \omega}\right) d \omega}=e^{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln S_{y y}\left(e^{j \omega}\right) d \omega} .
$$

Applying Jensen's inequality,

$$
\gamma=e^{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln S_{y y}\left(e^{i j \rho}\right) d \omega} \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{\ln S_{y y}\left(e^{j \omega}\right)} d \omega=\frac{1}{2 \pi} \int_{-\pi}^{\pi} S_{y y}\left(e^{j \omega}\right) d \omega=E\left[|y[k]|^{2}\right] .
$$

Equality holds if $S_{y y}\left(e^{j \omega}\right)=\gamma$. (Equality holds if $S_{y y}\left(e^{j \omega}\right)$ is constant. Since $\beta(z)=\alpha(z) G(z)$ is monic, it is a constant iff $\beta(z)=\alpha(z) G(z)=1)$
This happens when $\alpha(z)=\frac{1}{G(z)}$.

Optimal Linear Prediction

- Given $x[t-1], x[t-2], \ldots$,
find a stable linear predictor $A(z)$ (causal, $a_{0}=0$)

$$
\begin{aligned}
& \hat{x}[t]=\sum_{k=1}^{\infty} a_{k} x[t-k] \xrightarrow{z} \hat{X}(z)=A(z) X(z) \\
& e[t]=x[t]-\hat{x}[t] \xrightarrow{z} X(z)(1-A(z))=X(z) \alpha(z) ; \alpha(z)=1-A(z) .
\end{aligned}
$$

such that the mean square error $\mathcal{E}=E\left[|e[t]|^{2}\right]$ is minimized by a causal monic and stable $\alpha(z)$.

- If $S_{x x}(z)=\gamma \beta(z) \beta^{\#}(z)$, we obtain $A_{\text {opt }}(z)=1-\frac{1}{\beta(z)}$

Proof Note that $\alpha(z)=1-A(z)$ is causal, stable, and monic.
Because $e(z)=X(z) \alpha(z)$, by the whitening filter theorem, the whitening filter $\alpha(z)=\frac{1}{\beta(z)}$ minimizes the output variance, which is $\mathcal{E}=E\left[|e[t]|^{2}\right]$. From $\alpha(z)=1-A(z)$, we have

$$
A_{o p t}(z)=1-\frac{1}{\beta(z)}
$$

MMSE Linear Equalizer

- Scalar.

Consider two zero mean random variable s and y. Knowing y, we like to infer s by exploiting the joint distribution of s and y.

$$
\hat{s}=f y .
$$

$e=s-f y$. Want to minimize $E\left[|e|^{2}\right]=E\left[|s-f y|^{2}\right]$.

- Completing the squares solution:

$$
\begin{aligned}
\mathcal{E} & =E\left[|\hat{s}-s|^{2}\right]=E\left[|f y-s|^{2}\right]=E\left[(f y-s)\left(f^{*} y^{*}-s^{*}\right)\right] \\
& =|f|^{2} E\left[|y|^{2}\right]+E\left[|s|^{2}\right]-f E\left[y s^{*}\right]-f^{*} E\left[y^{*} s\right] \\
& =|f|^{2} R_{y y}+R_{s s}-f R_{y s}-f^{*} R_{s y}
\end{aligned}
$$

Consider $\left(f-R_{s y} r_{y y}^{-1}\right) R_{y y}\left(f-R_{s y} R_{y y}^{-1}\right)^{*}=\left(f-R_{s y} R_{y y}^{-1}\right) R_{y y}\left(f^{*}-R_{s y}^{*}\left(R_{y y}^{-1}\right)^{*}\right)$

$$
\begin{aligned}
& =\left(f R_{y y}-R_{s y}\right)\left(f^{*}-\left(R_{y y}^{-1}\right)^{*} R_{y s}\right) \\
& =|f|^{2} R_{y y}-R_{s y} f^{*}-f R_{y y}\left(R_{y y}^{-1}\right)^{*} R_{y s}+R_{s y}\left(R_{y y}^{-1}\right)^{*} R_{y s} \\
& =|f|^{2} R_{y y}-R_{s y} f^{*}-f R_{y s}+R_{s y}\left(R_{y y}^{-1}\right)^{*} R_{y s} \\
& =\mathcal{E}-R_{s s}+R_{s y}\left(R_{y y}^{-1}\right)^{*} R_{y s}
\end{aligned}
$$

So, $f_{\text {MMSE }}=R_{s y} R_{y y}^{-1}$ and $\mathcal{E}_{\text {MMSE }}=R_{s s}-R_{s y}\left(R_{y y}^{-1}\right)^{*} R_{y s}$.

- Geometrical solution:

Want to find $\hat{s}=f y$ closet to s in the direction of y.
The necessary and sufficient condition of optimality is $e \perp y \equiv E\left[e y^{*}\right]=0$.
$E\left[(s-f y) y^{*}\right]=E\left[s y^{*}\right]-f E\left[y y^{*}\right]=R_{s y}-f R_{y y}=0$.
Thus, $f_{\text {MMSE }}=R_{s y} R_{y y}^{-1}$.

$$
\begin{aligned}
E\left[\varepsilon_{\text {MMSE }}\right] & =E\left[|e|^{2}\right]=E\left[|s|^{2}\right]-E\left[\left|f_{M M S E} y\right|^{2}\right]=R_{s s}-E\left[\left|R_{s y} R_{y y}^{-1} y\right|^{2}\right] \\
& =R_{s s}-R_{s y} R_{y y}^{-1} R_{s y}^{*} R_{y y}^{-1} R_{y y}=R_{s s}-R_{s y} R_{y y}^{-1} R_{y s}
\end{aligned}
$$

- $R_{y y}$ is real.
- Vectors: Estimating a WSS random process $s[k]$ by linear-filtering a WSS process $y[k]$. $\hat{s}(z)=f(z) y(z)$.

Define $e(z)=\hat{s}(z)-s(z)$. Want to minimize $S_{e e}(z)=E\left[e(z) e^{\#}(z)\right]$.
Applying the orthogonal principle, we want $e(z) \perp y(z)$, i.e. $E\left[e(z) y^{\#}(z)\right]=0$.
From $E\left[e(z) y^{\#}(z)\right]=E\left[(\hat{s}(z)-s(z)) y^{\#}(z)\right]=E\left[(f(z) y(z)-s(z)) y^{\#}(z)\right]$

$$
\begin{aligned}
& =f(z) E\left[y(z) y^{\#}(z)\right]-E\left[s(z) y^{\#}(z)\right] \\
& =f(z) S_{y y}(z)-S_{s y}(z)
\end{aligned}
$$

We need $f_{\text {opt }}(z) S_{y y}(z)-S_{s y}(z)=0$. Hence $f_{\text {opt }}(z)=\frac{S_{s y}(z)}{S_{y y}(z)}$.

$$
\begin{aligned}
S_{e e}(z) & =E\left[e(z) e^{\#}(z)\right]=E\left[\left(\frac{S_{s y}(z)}{S_{y y}(z)} y(z)-s(z)\right)\left(\frac{S_{s y}^{\#}(z)}{S_{y y}(z)} y^{\#}(z)-s^{\#}(z)\right)\right] \\
& =E\left[e(z) e^{\#}(z)\right]=E\left[\left(\frac{S_{s y}(z)}{S_{y y}(z)} y(z)-s(z)\right)\left(\frac{S_{y s}(z)}{S_{y y}(z)} y^{\#}(z)-s^{\#}(z)\right)\right] \\
& =E\left[\frac{S_{s y}(z)}{S_{y y}(z)} y(z) \frac{S_{y s}(z)}{S_{y y}(z)} y^{\#}(z)-s(z) \frac{S_{y s}(z)}{S_{y y}(z)} y^{\#}(z)-\frac{S_{s y}(z)}{S_{y y}(z)} y(z) s^{\#}(z)+s(z) s^{\#}(z)\right] \\
& =\frac{S_{s y}(z)}{S_{y y}(z)} \frac{S_{y s}(z)}{S_{y y}(z)} S_{s y}(z)-\frac{S_{y s}(z)}{S_{y y}(z)} S_{s y}(z)-\frac{S_{s y}(z)}{S_{y y}(z)} S_{y s}(z)+S_{s s}(z) \\
& =S_{s s}(z)-\frac{S_{s y y}(z)}{S_{y y}(z)} S_{y s}(z)
\end{aligned}
$$

MMSE - Minimum Mean Square Error Estimation

MMSE Linear Equalizer

- $f(z)$: stable IIR, can be non-causal.

MMSE-DFE

- $f(z)$: stable IIR, can be non-causal.
- Causal $b(z), b[0]=0\left(\lim _{|z| \rightarrow \infty} b(z)=0\right) \cdot b(z)=b_{1} z^{-1}+b_{2} z^{-2}+\cdots$
- If do optimally, should be better than MMSE without DFE because $b(z)=0$ case is included, so the optimal case should be better.
- Criterion: $\min _{f(z), b(z)} E\left[|v[k]-s[k]|^{2}\right]$.
- Assumption: $\hat{s}[k] \approx s[k]$.

$$
v(z)=r(z) f(z)-b(z) \hat{s}(z) \approx r(z) f(z)-b(z) s(z)
$$

$$
\begin{aligned}
e(z) & =v(z)-s(z)=r(z) f(z)-b(z) s(z)-s(z)=r(z) f(z)-(b(z)+1) s(z) . \\
& =r(z) f(z)-\beta(z) s(z)
\end{aligned}
$$

Note that $\beta(z)=b(z)+1$ is IIR, causal, stable, and monic.
Applying the orthogonal principle, we need $e(z) \perp r(z)$,

$$
\begin{aligned}
& E\left[(r(z) f(z)-\beta(z) s(z)) r^{\#}(z)\right]=f(z) S_{r r}(z)-\beta(z) S_{s r}(z)=0 \\
& f(z)=\frac{S_{s r}(z)}{S_{r r}(z)} \beta(z) \\
& e(z)=r(z) f(z)-\beta(z) s(z)=r(z) \frac{S_{s r}(z)}{S_{r r}(z)} \beta(z)-\beta(z) s(z) \\
&=\beta(z)\left(\frac{S_{s r}(z)}{S_{r r}(z)} r(z)-s(z)\right) \\
&=\beta(z) \tilde{e}(z)
\end{aligned}
$$

where $\tilde{e}(z)$ is the MSE of the linear MMSE estimator (without DFE).
The optimal feedback filter is given by choosing a SCAMP $\beta(z)$ to minimize $E\left[|e(z)|^{2}\right]$.
So, get $\beta(z)$ from spectral factorization of $S_{\tilde{\partial} \tilde{e}}(z)=S_{s s}(z)-\frac{S_{s y}(z)}{S_{y y}(z)} S_{y s}(z)$.

Discrete-time Equivalent Channel with MMSE

- $r[k]=\rho[k] * s[k]+w[k] \xrightarrow{z} r(z)=\rho(z) s(z)+w(z)$
$R_{w w}[k]=N_{0} \rho[k] \xrightarrow{z} S_{w w}(z)=N_{0} \rho(z)$
$S_{s s}(z)=E_{s}$.
- $S_{r r}(z)=\rho(z)\left(\rho(z) S_{s s}(z)+N_{0}\right)$

Proof From $r(z)=\rho(z) s(z)+w(z)$,

$$
\begin{aligned}
S_{r r}(z) & =E\left[r(z) r^{\#}(z)\right]=E\left[(\rho(z) s(z)+w(z))(\rho(z) s(z)+w(z))^{\#}\right] \\
& =E\left[(\rho(z) s(z)+w(z))\left(\rho^{\#}(z) s^{\#}(z)+w^{\#}(z)\right)\right] \\
& =E\left[(\rho(z) s(z)+w(z))\left(\rho(z) s^{\#}(z)+w^{\#}(z)\right)\right] \\
& =E\left[\rho(z) s(z) \rho(z) s^{\#}(z)+w(z) \rho(z) s^{\#}(z)+\rho(z) s(z) w^{\#}(z)+w(z) w^{\#}(z)\right] \\
& =\rho(z) \rho(z) S_{s s}(z)+\rho^{\#}(z) E\left[s^{\#}(z) w(z)\right]+\rho(z) E\left[s(z) w^{\#}(z)\right]+S_{w w}(z)
\end{aligned}
$$

From independence of $w[k]$ and $s[k]$, and assuming that the noise is zero mean,

$$
\begin{aligned}
S_{r r}(z) & =\rho(z) \rho(z) S_{s s}(z)+\rho^{\#}(z) E\left[s^{\#}(z)\right] E\left[{ }^{0}(z)\right]+\rho(z) E[s(z)] E\left[w^{*}(z)\right]+S_{w w}(z) \\
& =\rho(z) \rho(z) S_{s s}(z)+S_{w w}(z)
\end{aligned}
$$

We have shown that $S_{w w}(z)=\rho(z) N_{0}$; thus, $S_{r r}(z)=\rho(z)\left(\rho(z) S_{s s}(z)+N_{0}\right)$.

- Linear MMSE
- $f_{\text {MMSE }}(z)=\frac{E_{s}}{\rho(z) E_{s}+N_{0}}$

Proof $S_{s r}(z)=E\left[s(z) r^{\#}(z)\right]=E\left[s(z)(\rho(z) s(z)+w(z))^{\#}\right]=E\left[s(z)\left(\rho(z) s^{\#}(z)+w^{\#}(z)\right)\right]$

$$
=\rho(z) S_{s s}(z)+E\left[s(z) w^{\#}(z)\right]
$$

From independence of s and w, we have $E\left[s(z) w^{\#}(z)\right]=E[s(z)] E\left[w^{\#}(z)\right]=0$.
Therefore, $S_{s y}(z)=\rho^{\#}(z) S_{s s}(z)=\rho(z) S_{s s}(z)$.
$S_{r r}(z)=\rho(z)\left(\rho(z) S_{s s}(z)+N_{0}\right)$
$f_{\text {MMSE }}(z)=\frac{S_{s r}(z)}{S_{r r}(z)}=\frac{\rho(z) S_{s s}(z)}{\rho(z)\left(\rho(z) S_{s s}(z)+N_{0}\right)}=\frac{S_{s s}(z)}{\rho(z) S_{s s}(z)+N_{0}}$.
If we assume that $s[k]$ is white, then $S_{s s}(z)=E_{s}$ and $f_{\text {MMSE }}(z)=\frac{E_{s}}{\rho(z) E_{s}+N_{0}}$.

- $S_{e e}(z)=\frac{N_{0} E_{s}}{\rho(z) E_{s}+N_{0}}$

Proof $S_{e e}(z)=S_{s s}(z)-\frac{S_{s r}(z)}{S_{r r}(z)} S_{r s}(z)=S_{s s}(z)-\frac{\rho(z) S_{s s}(z)\left(\rho(z) S_{s s}(z)\right)^{\#}}{\rho(z)\left(\rho(z) S_{s s}(z)+N_{0}\right)}$

$$
=S_{s s}(z)-\frac{\rho(z) S_{s s}^{2}(z)}{\rho(z) S_{s s}(z)+N_{0}}=\frac{N_{0} S_{s s}(z)}{\rho(z) S_{s s}(z)+N_{0}}
$$

If we assume that $s[k]$ is white, then $S_{s s}(z)=E_{s}$ and $S_{e e}(z)=\frac{N_{0} E_{s}}{\rho(z) E_{s}+N_{0}}$.

- $\mathcal{E}_{L-M M S E}=E\left[|e[k]|^{2}\right]=E_{s} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1}{\rho\left(e^{j \omega}\right) \frac{E_{s}}{N_{0}}+1} d \omega$

Proof $E\left[|e[k]|^{2}\right]=R_{e e}[0]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} S_{e e}\left(e^{j \omega}\right) d \omega=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{N_{0} E_{s}}{\rho\left(e^{j \omega}\right) E_{s}+N_{0}} d \omega$

$$
=E_{s} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{N_{0}}{\rho\left(e^{j \omega}\right) E_{s}+N_{0}} d \omega=E_{s} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1}{\rho\left(e^{j \omega}\right) \frac{E_{s}}{N_{0}}+1} d \omega
$$

- Define $S N R_{L-M M S E}=\frac{E_{s}}{\mathcal{E}_{L-M M S E}}$. Then $S N R_{L-M M S E}=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1}{\rho\left(e^{j \omega}\right) \frac{E_{s}}{N_{0}}+1} d \omega\right)^{-1}$.

Proof $S N R_{L-M M S E}=\frac{E_{s}}{\varepsilon_{L-M M S E}}=\frac{E_{s}}{E_{s} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1}{\rho\left(e^{j \omega}\right) \frac{E_{s}}{N_{0}}+1} d \omega}=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1}{\rho\left(e^{j \omega}\right) \frac{E_{s}}{N_{0}}+1} d \omega\right)^{-1}$.

- MMSE-DFE

- If $S_{o}(z)=\rho(z) E_{s}+N_{0}=\gamma_{0} g_{0}(z) g_{0}^{\#}(z)$, then $\beta(z)=g_{0}(z)$.

Proof Consider $S_{o}(z)=\rho(z) E_{s}+N_{0}$.

$$
\text { Let } S_{o}(z)=\gamma_{0} g_{0}(z) g_{0}^{\#}(z) . S_{\tilde{e} \tilde{e}}(z)=\frac{N_{0} E_{s}}{\rho(z) E_{s}+N_{0}}=\frac{N_{0} E_{s}}{\gamma_{0} g_{0}(z) g_{0}^{\#}(z)}=\frac{N_{0} E_{s}}{\gamma_{0}} \frac{1}{g_{0}(z)} \frac{1}{g_{0}^{\#}(z)}
$$

Because $e(z)=\beta(z) \tilde{e}(z)$, to minimize $E\left[|e(z)|^{2}\right], \beta(z)=\frac{1}{\frac{1}{g_{0}(z)}}=g_{0}(z)$. Then, minimum

$$
E\left[|e(z)|^{2}\right]=\frac{N_{0} E_{s}}{\gamma_{0}} .
$$

$$
=N_{0} e^{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln \left(\rho\left(e^{j \rho}\right) \frac{E_{s}}{N_{0}}+1\right) d \omega}
$$

- $f(z)=f_{L-\text { MMSE }}(z) \beta(z)=\frac{E_{s}}{\rho(z) E_{s}+N_{0}} \beta(z)=\frac{E_{s} g_{0}(z)}{\rho(z) E_{s}+N_{0}}$
- $b_{\text {MMSE-DFE }}(z)=\beta(z)-1=g_{0}(z)-1$.
- $\boldsymbol{\mathcal { E }}_{\text {MMSE-DFE }}=\frac{E_{s}}{e^{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln \left(\rho\left(e^{j \rho}\right) \frac{E_{s}}{N_{0}}+1\right) d \omega}}$

$$
\text { Proof } \mathcal{E}_{\text {MMSE-DFE }}=\frac{N_{0} E_{s}}{\gamma_{0}}=\frac{N_{0} E_{s}}{N_{0} e^{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln \left(\rho\left(e^{i \omega}\right) \frac{E_{s}}{N_{0}}+1\right) d \omega}}=\frac{E_{s}}{e^{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln \left(\rho\left(e^{j \omega}\right) \frac{E_{s}}{N_{0}}+1\right) d \omega}}
$$

- Define $S N R_{M M S E-D F E}=\frac{E_{s}}{\mathcal{E}_{\text {MMSE-DFE }}}$. Then $S N R_{M M S E-D F E}=e^{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln \left(\rho\left(e^{i o}\right) \frac{E_{s}}{N_{0}+1}\right) d \omega}$. Proof $S N R_{\text {MMSE-DFE }}=\frac{E_{s}}{\mathcal{E}_{\text {MMSE-DFE }}}=\frac{E_{s}}{\frac{N_{0} E_{s}}{\gamma_{0}}}=\frac{\gamma_{0}}{N_{0}}=\frac{N_{0} e^{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln \left(\rho\left(e^{i \rho}\right) \frac{E_{s}}{N_{0}}+1\right) d \omega}}{N_{0}}=e^{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln \left(\rho\left(e^{i \rho}\right) \frac{E_{s}}{N_{0}}+1\right) d \omega}$.
- Linear zero-forcing equalizer: "zero" ISI completely by channel inversion.
- $f_{L-Z F}(z)=\frac{1}{\rho(z)}$
- $e(z)=r(z) f(z)-s(z)=\frac{r(z)}{\rho(z)}-s(z)=\frac{s(z) \rho(z)+w(z)}{\rho(z)}-s(z)=\frac{w(z)}{\rho(z)}$.
- $S_{e e}(z)=E\left[e(z) e^{\#}(z)\right]=\frac{S_{w w}(z)}{\rho^{2}(z)}=\frac{N_{0} \rho(z)}{\rho^{2}(z)}=\frac{N_{0}}{\rho(z)}$.
- $\mathcal{E}_{L-Z F}=E\left[|e[k]|^{2}\right]=R_{e e}[0]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} S_{e e}\left(e^{j \omega}\right) d \omega=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{N_{0}}{\rho\left(e^{j \omega}\right)} d \omega$.
- $S N R_{L-Z F}=\frac{E_{s}}{\varepsilon_{L-Z F}}=\frac{E_{s}}{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{N_{0}}{\rho\left(e^{j \omega}\right)} d \omega}=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1}{\frac{E_{s}}{N_{0}} \rho\left(e^{j \omega}\right)} d \omega\right)^{-1}$.
- $\varepsilon_{L-Z F} \geq \mathcal{E}_{L-M M S E} \geq \varepsilon_{\text {MUSE-DFE }}$ and $S N R_{L-Z F} \leq S N R_{L-M M S E} \leq S N R_{\text {MMSE-DFE }}$.

$$
\begin{gathered}
\text { Proof } \mathcal{E}_{L-M M S E}=E\left[|e[k]|^{2}\right]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{N_{0} E_{s}}{\rho\left(e^{j \omega}\right) E_{s}+N_{0}} d \omega=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{N_{0}}{\rho\left(e^{j \omega}\right)+\frac{N_{0}}{E_{s}}} d \omega . \\
\mathcal{E}_{L-Z F}=E\left[|e[k]|^{2}\right]=R_{e e}[0]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} S_{e e}\left(e^{j \omega}\right) d \omega=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{N_{0}}{\rho\left(e^{j \omega}\right)} d \omega
\end{gathered}
$$

Because $\frac{N_{0}}{\rho\left(e^{j \omega}\right)} \geq \frac{N_{0}}{\rho\left(e^{j \omega}\right)+\frac{N_{0}}{E_{s}}}$,
we conclude $\mathcal{E}_{L-Z F}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{N_{0}}{\rho\left(e^{j \omega}\right)} d \omega \geq \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{N_{0}}{\rho\left(e^{j \omega}\right)+\frac{N_{0}}{E_{s}}} d \omega=\mathcal{E}_{L-M M S E}$

$$
\begin{aligned}
& \text { Now applying Jensen inequality to } \boldsymbol{\varepsilon}_{\text {MMSE-DFE }}=\frac{E_{s}}{e^{\frac{1}{2 \pi}} \int_{-\pi}^{\pi} \ln \left(\rho\left(e^{i \rho}\right) \frac{E_{s}}{N_{0}}+1\right) d \omega} \text {, we have } \\
& \boldsymbol{\mathcal { E }}_{\text {MMSE-DFE }}=\frac{E_{s}}{e^{\frac{1}{2} \pi} \int_{-\pi}^{\pi} \ln \left(\rho\left(e^{i \rho}\right) \frac{E_{s}}{N_{0}}+1\right) d \omega} \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{E_{s}}{\left.e^{\ln \left(\rho\left(e^{i \rho}\right) \frac{E_{s}}{N_{0}}+1\right.}\right)} d \omega=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{E_{s}}{\rho\left(e^{j \omega}\right) \frac{E_{s}}{N_{0}}+1} d \omega=\boldsymbol{\mathcal { C }}_{L-M M S E} \\
& f(E[\cdot])
\end{aligned}
$$

- $\lim _{E_{s} \rightarrow 0} S N R_{M M S E-D F E}=1$ and $\lim _{E_{s} \rightarrow 0} S N R_{L-Z F}=0$.

Proof $\lim _{E_{\mathrm{s}} \rightarrow 0} S N R_{\text {MMSE-DFE }}=\lim _{E_{\mathrm{s}} \rightarrow 0} e^{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln \left(\rho\left(e^{j \omega}\right) \frac{E_{s}}{N_{0}}+1\right) d \omega}=e^{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln (0+1) d \omega}=1$

$$
\lim _{E_{s} \rightarrow 0} S N R_{L-Z F}=\lim _{E_{s} \rightarrow 0}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1}{\frac{E_{s}}{N_{0}} \rho\left(e^{j \omega}\right)} d \omega\right)^{-1}=\lim _{E_{s} \rightarrow 0} \frac{E_{s}}{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{N_{0}}{\rho\left(e^{j \omega}\right)} d \omega}=0
$$

