Math

•
$$\frac{d}{dx}\int_{u(x)}^{v(x)} f(t)dt = \frac{d}{dx}\left(\int_{a}^{v(x)} f(t)dt - \int_{a}^{u(x)} f(t)dt\right) = f(v(x))v'(x) - f(u(x))u'(x)$$

•
$$\int_{0}^{\infty} \frac{1}{\sqrt{x}} e^{-\alpha x} dx = \sqrt{\frac{\pi}{\alpha}}, \quad \int_{0}^{\infty} e^{-\alpha x^{2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}, \quad \int_{-\infty}^{\infty} e^{-(\alpha x^{2} + bx + c)} dx = \sqrt{\frac{\pi}{\alpha}} e^{\frac{b^{2} - 4ac}{4a}}$$

•
$$F_{X|Y}(x|y) = P[X \le x|Y = y], F_{X,A}(x) = P[\{X \le x\} \cap A]$$

•
$$P[A|X = x] = \lim_{\Delta \to 0} \frac{\int_{x-\Delta} f_{X,A}(x')dx'}{\int_{x-\Delta}^{x} f_X(x')dx'} = \frac{f_{X,A}(x)}{f_X(x)} = \frac{P[A]f_{X|A}(x)}{f_X(x)}$$

- Inequality/bound
 - Markov's: $P[X \ge a] \le \frac{1}{a} EX$, X is a <u>nonnegative</u> r.v.

• Chebyshev:
$$P[|X - EX| \ge a] \le \frac{\sigma_X^2}{a^2}$$
 \square One-sided Chebyshev: $P[X \ge EX + a] \le \frac{\sigma_X^2}{\sigma_X^2 + a^2}$,
 $P[X \ge EX - a] \le \frac{\sigma_X^2}{\sigma_X^2 + a^2}$

- Chernoff: $P[X > a] \le \frac{1}{e^{\lambda a}} E[e^{\lambda X}]$; minimize the RHS w.r.t. λ . $E[e^{\lambda X}] = \Phi_X(-i\lambda); P[X < a] \le e^{\lambda a} E[e^{-\lambda X}].$
- Union: $P[A \cup B \cup C] \leq P[A] + P[B] + P[C]$.
- Jensen's: For real valued convex function f, $f(EX) \le E[f(X)]$.

• Poisson
$$\mathcal{P}(\lambda)$$
, $e^{-\lambda} \frac{\lambda}{i!}$; $\Omega = N$, $0 \le \lambda$, $EX = \lambda$, $VAR(X) = \lambda$, $\Phi_X(u) = Ee^{iuX} = e^{\lambda(e^{iu}-1)}$ Binomial

$$\binom{n}{k}p^{k}(1-p)^{n-k}; np, np(1-p), (pe^{iu}+1-p)^{n} \quad \textbf{Uniform } \mathcal{U}(a,b), \frac{a+b}{2}, \frac{(b-a)^{2}}{12}, e^{iu\frac{b+a}{2}}\frac{\sin\left(u\frac{b-a}{2}\right)}{u\frac{b-a}{2}}$$

Exponential
$$\mathcal{E}(\alpha), \frac{1}{\alpha}, \frac{1}{\alpha^2}, \frac{\alpha}{\alpha - iu}$$
. Laplacian $\mathcal{L}(\alpha), \frac{\alpha}{2}e^{-\alpha|x|}; \alpha > 0, \begin{cases} \frac{1}{2}e^{\alpha x} & x < 0\\ 1 - \frac{1}{2}e^{-\alpha x} & x \ge 0 \end{cases}, 0, \frac{2}{\alpha^2}, \frac{\alpha^2}{\alpha^2 + u^2}. \end{cases}$

• Majority rule: independent *K* channels. Each with error probability *p*.

$$P[\boldsymbol{\mathcal{E}}] = P\left[> \frac{K}{2} \text{ error} \right] = \sum_{i=\left\lceil \frac{K}{2} \right\rceil}^{K} {\binom{K}{i}} p^{i} (1-p)^{K-i} \le 2^{K} \left[(1-p) p \right]^{\frac{K}{2}}$$

Gaussian

Real:
$$\mathcal{N}(m,\sigma^2) \Rightarrow f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-m)^2}{2\sigma^2}}, E\left[e^{-jvX}\right] = e^{jmv-\frac{1}{2}v^2\sigma^2}$$

•
$$f_{X_{1},X_{2}}(x_{1},x_{2}) = \frac{1}{2\pi\sigma_{X_{1}}\sigma_{X_{2}}\sqrt{1-\rho^{2}}} e^{\frac{\left(\frac{x_{1}-EX_{1}}{\sigma_{X_{1}}}\right)^{2}-2\left(\frac{x_{1}-EX_{1}}{\sigma_{X_{2}}}\right)^{\frac{x_{2}-EX_{2}}{\sigma_{X_{2}}}}+\left(\frac{x_{2}-EX_{2}}{\sigma_{X_{2}}}\right)^{\frac{2}{2}(1-\rho^{2})}} \\ \rho = \frac{Cov(X_{1},X_{2})}{\sigma_{X_{1}}\sigma_{X_{2}}} = \frac{E(X_{1}X_{2}) - EX_{1}EX_{2}}{\sigma_{X_{1}}\sigma_{X_{2}}} \\ \bullet \mathcal{N}(0,1): \mathcal{Q}(z) = \int_{z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx \quad \text{indecreasing function} \quad \mathcal{Q}(0) = \frac{1}{2}, \quad \mathcal{Q}(-z) = 1 - \mathcal{Q}(z) \quad \text{indecreasing function} \quad \mathcal{Q}(0) = \frac{1}{2}, \quad \mathcal{Q}(-z) = 1 - \mathcal{Q}(z) \quad \text{indecreasing function} \quad \mathcal{Q}(0) = \frac{1}{2}, \quad \mathcal{Q}(-z) = 1 - \mathcal{Q}(z) \quad \text{indecreasing function} \quad \mathcal{Q}(0) = \frac{1}{2}, \quad \mathcal{Q}(-z) = 1 - \mathcal{Q}(z) \quad \text{indecreasing function} \quad \mathcal{Q}(0) = \frac{1}{2}, \quad \mathcal{Q}(-z) = 1 - \mathcal{Q}(z) \quad \text{indecreasing function} \quad \mathcal{Q}(0) = \frac{1}{2}, \quad \mathcal{Q}(-z) = 1 - \mathcal{Q}(z) \quad \text{indecreasing function} \quad \mathcal{Q}(0) = \frac{1}{2}, \quad \mathcal{Q}(-z) = 1 - \mathcal{Q}(z) \quad \text{indecreasing function} \quad \mathcal{Q}(0) = \frac{1}{2}, \quad \mathcal{Q}(-z) = 1 - \mathcal{Q}(z) \quad \text{indecreasing function} \quad \mathcal{Q}(0) = \frac{1}{2}, \quad \mathcal{Q}(-z) = 1 - \mathcal{Q}(z) \quad \text{indecreasing function} \quad \mathcal{Q}(0) = \frac{1}{2}, \quad \mathcal{Q}(-z) = 1 - \mathcal{Q}(z) \quad \text{indecreasing function} \quad \mathcal{Q}(z) = \frac{1}{2} e^{\frac{x^{2}}{2}}} \leq \mathcal{Q}(z) \leq \frac{1}{2} e^{-\frac{x^{2}}{2}} \\ \bullet \mathcal{N}\left(0,\frac{1}{2}\right): \quad erf(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-x^{2}} dx \quad \text{indecreasing function} \quad \mathcal{Q}(z) = \frac{1}{2} erfc\left(\frac{z}{\sqrt{2}}\right) = \frac{1}{2} \left(1 - erf\left(\frac{z}{\sqrt{2}}\right)\right) \quad \text{indecreasing function} \quad \mathcal{Q}(z) = \frac{1}{2} erfc\left(\frac{z}{\sqrt{2}}\right) = \frac{1}{2} \left(1 - erf\left(\frac{z}{\sqrt{2}}\right)\right) \quad \text{indecreasing function} \quad \mathcal{Q}(z) = \frac{1}{2} erfc\left(\frac{z}{\sqrt{2}}\right) = \frac{1}{2} \left(1 - erf\left(\frac{z}{\sqrt{2}}\right)\right) \quad \text{indecreasing function} \quad \mathcal{Q}(z) = \frac{1}{2} erfc\left(\frac{z}{\sqrt{2}}\right) = \frac{1}{2} \left(1 - erf\left(\frac{z}{\sqrt{2}}\right)\right) \quad \text{indecreasing function} \quad \mathcal{Q}(z) = \frac{1}{2} erfc\left(\frac{z}{\sqrt{2}}\right) = \frac{1}{2} \left(1 - erf\left(\frac{z}{\sqrt{2}}\right)\right) \quad \text{indecreasing function} \quad \mathcal{Q}(z) = \frac{1}{2} erfc\left(\frac{z}{\sqrt{2}}\right) = \frac{1}{2} \left(1 - erf\left(\frac{z}{\sqrt{2}}\right)\right) \quad \text{indecreasing function} \quad \mathcal{Q}(z) = \frac{1}{2} erfc\left(\frac{z}{\sqrt{2}}\right) = \frac{1}{2} erfc\left(\frac{z}{\sqrt{2}}\right) = \frac{1}{2} erfc\left(\frac{z}{\sqrt{2}}\right) = \frac{1}{2} erfc\left(\frac{z$$

• Independent *N*-dim
$$\Rightarrow f_{\bar{Z}}(\bar{z}) = \frac{1}{(\pi\sigma^2)^N} e^{-\frac{\|\bar{z}\|^2}{\sigma^2}}, \ \bar{X}, \bar{Y} \sim \mathcal{N}\left(0, \frac{\sigma^2}{2}\right) \rightarrow \bar{Z} \sim \mathcal{C}\mathcal{N}\left(0, \sigma^2\right)$$

- Optimal detector: MAP (Maximum a posteriori)
 - $\hat{S}_{MAP} = \arg\max_{\overline{s} \in \{\overline{s},\}} P\left[\overline{S} = \overline{s}\right] f_{\overline{R}|\overline{s}}\left(\overline{r}|\overline{s}\right)$
 - $\hat{S}_{MAP} = \arg\max_{\{s_i\}} P\left[\vec{S} = \vec{s}_i \middle| \vec{R} = \vec{r}\right]$ (a posteriori probability); $\left(\frac{P\left[\vec{S} = \vec{s}_i\right] f_{\vec{R}|\vec{S}}\left(\vec{r}\middle| \vec{s}_i\right)}{f_{\vec{R}}\left(\vec{r}\right)}\right)$
- **Optimal decision regions**: $\vec{r} \in \mathcal{R}_i$ iff $P\left[\vec{S} = \vec{s}_i | \vec{R} = \vec{r}\right] \ge P\left[\vec{S} = \vec{s}_j | \vec{R} = \vec{r}\right] \forall j \neq i$, or equivalently, $P\left[\vec{S} = \vec{s}_i\right] f_{\vec{R}|\vec{S}}\left(\vec{r} | \vec{s}_i\right) \ge P\left[\vec{S} = \vec{s}_j\right] f_{\vec{R}|\vec{S}}\left(\vec{r} | \vec{s}_j\right) \quad \forall j \neq i$.
- ML: $\hat{S}_{ML} = \arg \max_{\vec{s} \in \{\vec{s}_i\}} \underbrace{f_{\vec{R}|\vec{S}}(\vec{r}|\vec{s})}_{\text{Likelihood Function}}$
- $f_{\vec{R}|\vec{S}}(\vec{r}|\vec{s}) = f_N(\vec{r}-\vec{s})$ for \vec{S} independent of \vec{N} .

•
$$N \sim \mathcal{N}\left(\vec{0}, \frac{N_0}{2}I\right)$$
, $f_{\bar{N}}\left(\vec{n}\right) = \frac{1}{\left(2\pi\right)^{\frac{M}{2}}\sigma^M} e^{-\frac{1}{2}\frac{\|\vec{n}\|^2}{\sigma^2}}$; or $N \sim \mathcal{C}\mathcal{N}\left(\vec{0}, N_0I\right)$

• The MAP Receiver for AWGN Channel (real or complex N) $\hat{\alpha}$ $\nabla [\vec{\alpha}, -\vec{\alpha}] \in (\vec{\alpha}, -\vec{\alpha})$

$$\hat{S}_{MAP} = \arg\max_{\bar{s}\in\{\bar{s}_i\}} P\left\lfloor \bar{S} = \bar{s} \rfloor f_N\left(\bar{r} - \bar{s}\right) = \arg\min_{\bar{s}\in\{s_i\}} \left(\left\|\bar{r} - \bar{s}\right\|^2 - N_0 \ln P\left\lfloor \bar{S} = \bar{s} \rfloor\right)\right)$$
$$= \arg\max_{\bar{s}\in\{s_i\}} \left(\operatorname{Re}\left\{\bar{s}^H\bar{r}\right\} + \frac{N_0}{2}\ln P\left\lfloor \bar{S} = \bar{s} \rfloor - \frac{\left\|\bar{s}\right\|^2}{2}\right)\right)$$

• The ML detector for AWGN Channel

•
$$\hat{S}_{ML}(\vec{R}=\vec{r}) = \arg\min_{\vec{s}\in\{s_i\}} \left(\|\vec{r}-\vec{s}\|^2\right) = \arg\max_{\vec{s}\in\{s_i\}} \left(\operatorname{Re}\left\{\vec{s}^H\vec{r}\right\} - \frac{\|\vec{s}\|^2}{2}\right)$$

• $P[\mathbf{C}|\vec{s}_i] = \left(1 - Q\left(\frac{a}{\sigma}\right)\right) \left(1 - Q\left(\frac{b}{\sigma}\right)\right); P[\mathbf{E}|\vec{s}_i] = 1 - P[C|\vec{s}_i]$
• $P[\mathbf{C}|\vec{s}_i] = \left(1 - Q\left(\frac{a}{\sigma}\right) - Q\left(\frac{b}{\sigma}\right)\right) \left(1 - Q\left(\frac{c}{\sigma}\right) - Q\left(\frac{d}{\sigma}\right)\right)$

- ML's minimax property: if $P_{ML} \left[\hat{S} \neq \vec{s}_i | \vec{S} = \vec{s}_i \right]$ is independent of *i*, then the ML receiver min the max error prob. for all possible priors $\left\{ p_i \triangleq P[\vec{s} = \vec{s}_i] \right\}$.
- $\|\vec{z}_1 \vec{z}_2\|^2 = (\vec{z}_1 \vec{z}_2)^H (\vec{z}_1 \vec{z}_2) = \|\vec{z}_1\|^2 + \|\vec{z}_2\|^2 2\operatorname{Re}\left\{\vec{z}_1^H \vec{z}_2\right\}$
- Invariance Properties of Error Probability ☑W.r.t. the translation of signal set ☑ W.r.t. the rotation of the signal points if the noise PDF is invariant when the axes of its arguments are rotated

• Union bound:
$$P\left[\mathcal{E}\left|\overline{S}=\overline{s}_{i}\right] = P\left[\overline{R} \notin \mathcal{R}_{i}\left|\overline{S}=\overline{s}_{i}\right] = P\left[\bigcup_{j\neq i} \overline{R} \in \mathcal{R}_{j}\left|\overline{S}=\overline{s}_{i}\right|\right] \leq \sum_{j\neq i} P\left[\overline{R} \in \mathcal{R}_{j}\left|\overline{S}=\overline{s}_{i}\right]\right]$$

 $\leq P_{BPSK}\left[\overline{S}=\overline{s}_{j}\left|\overline{S}=\overline{s}_{i}\right] = \sum_{j\neq i} Q\left(\frac{\left|\left|\overline{S}_{j}-\overline{S}_{i}\right|\right|\right)}{2\sigma}\right)$
• $E_{b} = \frac{E_{s}}{\log_{2}M}$
• **BPSK**: $\hat{S}_{MdP}(r) = \begin{cases} s_{1} \quad r \geq \tau_{*} \\ s_{0} \quad \text{otherwise}}, \quad \tau_{*} = \frac{\sigma^{2}}{s_{1}-s_{0}}\ln\frac{p_{0}}{p_{1}} + \frac{s_{1}+s_{0}}{2}$
 $P\left[\mathcal{E}\right] = p_{0}Q\left(\frac{\tau-s_{0}}{\sigma}\right) + p_{i}Q\left(-\frac{\tau-s_{1}}{\sigma}\right)$ | Binary, ML: $P\left[\mathcal{E}\right] = Q\left(\frac{\left|\overline{s}_{1}-\overline{s}_{0}\right|\right) = Q\left(\sqrt{\frac{2E_{b}}{N_{0}}}\right)$
 $|S \in \left\{s_{0} = -\sqrt{E_{b}}, s_{1} = \sqrt{E_{b}}\right\}$. $E_{s} = E_{b} = \frac{\Delta^{2}}{4}$.
• M -PAM: $M = 2^{m}$, $s \in \left\{\pm\frac{1}{2}\Delta, \pm\frac{3}{2}\Delta, \pm\frac{5}{2}\Delta, ..., \pm\frac{M-1}{2}\Delta\right\}$, $E_{s} = \Delta^{2}\frac{M^{2}-1}{12}$, $P\left[\mathcal{E}\right] = \frac{2(M-1)}{M}Q\left(\frac{\Delta}{\sqrt{2N_{0}}}\right)$
 $\frac{\Delta}{\sqrt{2N_{0}}} = \sqrt{\frac{6\log_{2}M}{M^{2}-1}}\frac{E_{b}}{N_{0}}$. $SNR_{norm} = \frac{\log_{2}M^{2}}{M^{2}-1}\frac{E_{b}}{N_{0}}$. $\frac{\Delta}{\sqrt{2N_{0}}} = \sqrt{3SNR_{norm}}$. $|\mathbf{4}$ -QAM: $E_{s} = \frac{\Delta^{2}}{2}$,
 $P\left[\mathcal{E}\right] = 1 - \left(1 - P_{M-PAM}\left[\mathcal{E}\right]\right)^{2} = \frac{4(M-1)}{M}Q - \frac{4(M-1)^{2}}{M^{2}}Q^{2}$. $SNR_{norm} = \frac{\log_{2}M^{2}}{M^{2}-1}\frac{E_{b}}{N_{0}}$.
 $\frac{\Delta}{\sqrt{2N_{0}}} = \sqrt{3\frac{\log_{2}M^{2}}{M^{2}-1}\frac{E_{b}}{N_{0}}} = \sqrt{3SNR_{norm}}$. $|\mathbf{M}$ -PSK: $E_{s} = \frac{\Delta^{2}}{4\sin^{2}}\left(\frac{\pi}{M}\right)$, $Q\left(\frac{\Delta}{\sqrt{2N_{0}}}\right) \leq P\left[\mathcal{E}\right] \leq 2Q\left(\frac{\Delta}{\sqrt{2N_{0}}}\right)$.

$$\frac{\Delta}{\sqrt{2N_0}} = \sqrt{2\sin^2\left(\frac{\pi}{M}\right)}\log_2 M \frac{E_b}{N_0} = \sqrt{2(M-1)\sin^2\left(\frac{\pi}{M}\right)}SNR_{norm} \cdot \left| \text{ M-ary Orthogonal Signals:} \right|_{I^{s}} = \left(0 \ 0 \ \cdots \ \sqrt{E_s} \ \cdots \ 0 \ 0\right)^T, \ E_s = \frac{\Delta^2}{2}, \ \mathcal{R}_i = \left\{\vec{r}, r_i > r_j, \forall j \neq i\right\},$$

$$p[\mathcal{E}] = p[\mathcal{E}|\vec{s}_1] = 1 - \int \left[\mathcal{Q}\left(\frac{-r_i}{\sigma}\right)\right]^{M-1} f(r_i|s_1) dr_i, \ f(r_i|s_1) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{1(r_i - \sqrt{E_i})^2}{\sigma^2}}, \ p[\mathcal{E}] \le (M-1)\mathcal{Q}\left(\sqrt{\frac{E_s}{N_0}}\right),$$

$$\frac{\Delta}{\sqrt{2N_0}} = \sqrt{\frac{E_s}{N_0}} = \sqrt{\frac{M}{2}\left(M^{\frac{2}{M}} - 1\right)}SNR_{norm}} \cdot \left| \text{ M-dim bi-orthogonal signals: } \vec{s}_i = \left(0 \ 0 \ \cdots \ \pm \sqrt{E_s} \ \cdots \ 0 \ 0\right)^T,$$

$$E_s = \frac{\Delta^2}{2}, \ p[\mathcal{E}|\vec{s}_1] = \int_0^\infty \left[1 - 2\mathcal{Q}\left(\frac{r_i}{\sigma}\right)\right]^{M-1} f(r_i|s_1)dr_i.$$
Pairwise error probability:
$$P[\vec{s}_i \rightarrow \vec{s}_j] = \mathcal{Q}\left(\frac{\|\vec{s}_i - \vec{s}_j\|}{2\sigma_{1D}}\right).$$
General cases:
$$d_{\min} = \min_{\substack{i,j \\ i\neq j}} \|\vec{s}_i - \vec{s}_j\|, \ d_i = \min_{\substack{i,j \\ i\neq j}} \|\vec{s}_i - \vec{s}_j\|, \ d_i = \min_{\substack{i,j \\ i\neq j}} \|\vec{s}_i - \vec{s}_j\|, \ d_i = \min_{\substack{i,j \\ i\neq j}} \|\vec{s}_i - \vec{s}_j\|, \ d_i = 1$$

$$\mathcal{Q}\left(\frac{\overline{d}_{\min}}{2\sigma_{1D}}\right).$$

$$v = \#$$
 signals with at least one

neighbor at $d_{min} \ge 2$. Small $P[\mathcal{E}]$ if large d_{min} , less number of nearest neighbor.

•
$$P\left[\vec{s}_i \to \vec{s}_j\right] \triangleq P\left[\hat{S} = \vec{s}_j \middle| \vec{S} = \vec{s}_i\right] \le \iiint \left(f_{\bar{R}|\bar{S}}\left(\vec{x} \middle| \vec{s}_j\right)\right)^{\lambda} \left(f_{\bar{R}|\bar{S}}\left(\vec{x} \middle| \vec{s}_i\right)\right)^{1-\lambda} d\vec{x}$$

- The Bhattacharyya Bound: $P\left[\vec{s}_i \rightarrow \vec{s}_j\right] \leq \iiint \sqrt{f_{\vec{R}|\vec{S}}\left(\vec{x} \mid \vec{s}_j\right) f_{\vec{R}|\vec{S}}\left(\vec{x} \mid \vec{s}_i\right) d\vec{x}}$.
- Binary **Random Coding**: *N*-Dim AWGN channel. $\vec{R} = \vec{S} + \vec{N}$, $\vec{R} = \vec{S} + \vec{N} \sim \mathcal{N}(0, \sigma^2 I)$ where \vec{S} is selected with equal probability from two randomly selected symbols $\{\vec{s}_0, \vec{s}_1\}$; $\vec{s}_0, \vec{s}_1 \sim q_{ND}(\vec{s})$. With

$$q_{ND}(\vec{s}) = \prod_{i=1}^{N} q(s_i), \ f_{\vec{R}|\vec{s}}(\vec{x}|\vec{s}) = \prod_{i=1}^{N} f(x_i|s_i), \ P[\vec{s}_0 \to \vec{s}_1] \le \left[\int_{x} \left[\int_{s} q(s) \sqrt{f(x|s)} \right]^2 \right]^N = 2^{-\gamma(q)N}.$$

- Rate *R* is **achievable** if there exists a sequence of constellations (codes) $\{\vec{s}_1, \dots, \vec{s}_M\}$, $M = 2^{NR}$ such that $\lim_{N \to \infty} P_{ML}[\mathcal{E}] = 0. (M \text{ symbols} = \log_2 M \text{ bits per } N \text{ dimensions. Thus, } R = \frac{\log_2 M}{N} \left[\frac{\text{bits}}{\text{dim}}\right])$
- Capacity is the maximum achievable rate.
- Capacity Lower Bound of memoryless channel $f_{\bar{R}|\bar{S}}(\bar{r}|\bar{s}) = \prod_{i=1}^{N} f(r_i|s_i)$:

$$R_{0} = \max_{q(s)} \left\{ -\log_{2} \int_{x} \left[\int_{s} q(s) \sqrt{f(x|s)} ds \right]^{2} dx \right\} \left[\frac{\text{bits}}{\text{dim}} \right]$$

• Union bound: $p[\mathcal{E}] = p[\mathcal{E}|\vec{s}_1] \leq \sum_{i=2}^M P[\vec{s}_1 \rightarrow \vec{s}_i].$

AWGN model. Independent channel. $r_i = s_i + n_i$. $n_i \stackrel{\text{i.i.d}}{\sim} \mathcal{N}\left(0, \frac{N}{2}\right)$. The transmitter uses some rate-*R* codebook $\vec{S} \in \{\vec{s}_1, \dots, \vec{s}_{2^{NR}}\}$ with equally likely codewords (ML).

- Antipodal Antipodal Signaling: $s_i \in \{\pm E_b\}$. $R_0 = -\log_2\left(\frac{1}{2} + \frac{1}{2}e^{-\frac{E_b}{N_0}}\right)$.
- Symmetric *M*-ary Signaling: $s \in \{s_i\} = \left\{\pm \frac{1}{2}\Delta, \pm \frac{3}{2}\Delta, \pm \frac{5}{2}\Delta, \dots, \pm \frac{M-1}{2}\Delta\right\}.$ $R_0(M) = -\log_2 \frac{1}{M^2} \left(\sum_{i=1}^M \sum_{j=1}^M e^{-(i-j)^2 \frac{3\log_2 M}{M^2 - 1} \frac{E_b}{N_0}}\right).$

• BPSK without fading: $P[\mathcal{E}] = Q\left(\sqrt{\frac{2E_b}{N_0}}\right) \sim \frac{1}{2}e^{-\frac{E_b}{N_0}}$

- BPSK Coherent Detection in Rayleigh Fading (complex)
 - ML, $\|\vec{s}_i\|^2 = E_b$, $\vec{R} = h\vec{S} + \vec{N}$, known $h \sim \mathcal{N}(0, \sigma^2) \Rightarrow f_h(h) = \frac{1}{\pi \sigma_h^2} e^{-\frac{|h|}{\sigma_h^2}}$.

•
$$\hat{S}_{ML} = \arg \max_{\vec{s} \in \{\vec{s}_0, \vec{s}_l\}} \operatorname{Re}\left\{h^* \vec{s}^H \vec{r}\right\} \boxtimes P[\boldsymbol{\mathcal{E}}|h] = Q\left(\frac{\|h\vec{s}_1 - h\vec{s}_0\|}{2\sqrt{\frac{N_0}{2}}}\right), P[\boldsymbol{\mathcal{E}}] = E[P[\boldsymbol{\mathcal{E}}|h]]$$

•
$$\vec{s}_1 = -\vec{s}_0$$
, $\|\vec{s}_i\| = E_b \Rightarrow P[\mathcal{E}|h] = Q\left(\sqrt{\frac{2E_b \|h\|^2}{N_0}}\right)$, $SNR = \gamma_0 = \frac{E_b \sigma_h^2}{N_0}$,

$$P[\mathcal{E}] = \iint Q\left(\sqrt{\frac{2E_b \|h\|^2}{N_0}}\right) \frac{1}{\pi \sigma_h^2} e^{-\frac{|h|^2}{\sigma_h^2}} dh_R dh_I = \frac{1}{2} \left(1 - \sqrt{\frac{\gamma_0}{1 + \gamma_0}}\right) \approx \frac{1}{4SNR}$$

• BPSK Noncoherent Receiver:
$$\hat{S}_{ML} = \arg \max_{\overline{S} \in \{\overline{s}_0, \overline{s}_1\}} f_{\overline{R}|\overline{S}}(\overline{r} | \overline{s}) = \arg \max_{\overline{S} \in \{\overline{s}_0, \overline{s}_1\}} | \overline{r}^H \overline{s} |$$

• For
$$\|\vec{s}_i\| = E_b$$
, and $\vec{s}_0^H \vec{s}_1 = \vec{s}_1^H \vec{s}_0 = 0$, $P[\mathcal{E}] = \frac{1}{2 + SNR}$. $SNR = \frac{E_b \sigma_h^2}{N_0}$.

• *L*-Diversity Reception: real:
$$\vec{r} = \vec{h}s + \vec{n}$$
, $N \sim \mathcal{N}\left(\vec{0}, \frac{N_0}{2}I\right)$, $\vec{h} \sim \mathcal{N}\left(\vec{0}, \sigma_h^2 I\right)$

•
$$\hat{S}_{ML} = \arg\min_{s \in \{s_i\}} \left(\left\| \vec{r} - \vec{hs} \right\|^2 \right) = \arg\max_{s \in \{s_i\}} \left(\vec{h}^T s \vec{r} - \frac{\left\| \vec{s} \right\|^2}{2} \right)$$

• If
$$s \in \left\{\pm \sqrt{E_b}\right\}$$
, then $\hat{S}_{ML} = \arg \max_{s \in \left\{\pm \sqrt{E_b}\right\}} \left(\vec{h}^T s \vec{r}\right) = \operatorname{sign}\left\{\vec{h}^T \vec{r}\right\} \sqrt{E_b}$.

Can implement $\vec{h}^T \vec{r}$ by discrete linear combiner (filter). $\vec{r} \rightarrow [\vec{h}] \rightarrow \langle \vec{r}, \vec{h} \rangle$.

$$P[\boldsymbol{\mathcal{E}}|h] = Q\left(\sqrt{\frac{2E_b \|h\|^2}{N_0}}\right) \cdot \boldsymbol{\boldsymbol{\boxtimes}} P[\boldsymbol{\mathcal{E}}] \leq \frac{1}{2(1+SNR)^L}$$

- Theorem of Reversibility. If function $T(\vec{r})$ is invertible, then the MAP detector based on $\vec{t} = T(\vec{r})$ minimizes the error probability.
- Given $f_{\bar{R}|\bar{s}}(\bar{r}|\bar{s})$, $T(\bar{R})$ is a sufficient statistic for \bar{s} if $f(\bar{r}|\bar{s},T(\bar{r}))$ is independent of \bar{s} . \square If $T(\bar{R})$ is a sufficient statistic, then $\hat{S}_{MAP}(T(\bar{R})) = \hat{S}_{MAP}(\bar{R})$.
- Neyman-Fisher Factorization Theorem: Given $f(\vec{r}|\vec{s})$, $\vec{t} = T(\vec{r})$ is a sufficient statistic for \vec{s} if and only if $f_{\vec{k}|\vec{s}}(\vec{r}|\vec{s}) = g(T(\vec{r}),\vec{s})h(\vec{r})$.
- Given $f(\vec{r}_1, \vec{r}_2 | \vec{s}) = f(\vec{r}_2 | \vec{r}_1, \vec{s}) f(\vec{r}_1 | \vec{s})$. Disregard \vec{r}_2 iff $f(\vec{r}_2 | \vec{r}_1, \vec{s}) = f(\vec{r}_2 | \vec{r}_1)$.

Waveform

- Parseval Theorem: $\langle x(t), y(t) \rangle = \int x(t) y^*(t) dt = \vec{y}^H \vec{x} = \langle \vec{x}, \vec{y} \rangle.$
 - $\begin{aligned} \mathbf{Correlator receiver.} \\ \widehat{S}_{MAP}(t) &= \arg\min_{s(t)\in\{s_{i}(t)\}} \left(\int_{-\infty}^{\infty} |r(t)-s(t)|^{2} dt N_{0} \ln P[S(t)=s(t)] \right) \\ &= \arg\max_{s(t)\in\{s_{i}(t)\}} \left(\operatorname{Re}\left\{ \int_{-\infty}^{\infty} r(t)s^{*}(t) dt \right\} + \frac{N_{0}}{2} \ln P[S(t)=s(t)] \frac{E_{s(t)}}{2} \right) \\ \widehat{S}_{ML}(t) &= \arg\min_{s(t)\in\{s_{0}(t),\ldots\}} \|r(t)-s(t)\|^{2} = \arg\max_{s(t)\in\{s_{0}(t),\ldots\}} \left(\operatorname{Re}\left\{ \int_{-\infty}^{\infty} r(t)s^{*}(t) dt \right\} \frac{\|s(t)\|^{2}}{2} \right) \end{aligned}$
- Matched Filtering: Given (complex) s(t), the filter h(t) is matched to s(t) at time T if $h(t) = s^*(T-t)$.

$$r(t) \xrightarrow{s^*(T-t)} \xrightarrow{t=T} \int_{-\infty}^{\infty} r(t)s^*(t)dt$$

- Implement $(r(t)*h(t))\Big|_{t=T} = \int_{-\infty}^{\infty} r(t)s^*(t)dt$
- **PPM**: $s(t) \in \{s_0(t), s_1(t), ...\}, s_0(t) = p(t), s_i(t) = p(t i\Delta), r(t) = s(t) + n_w(t), \Rightarrow \text{constant } \|s_i(t)\|^2 = E.$
 - Can implement each $\int_{-\infty}^{\infty} r(t)s_i^*(t)dt$ of optimal detector with
 - $h_i(t) = s_i^*(T-t) = p^*(T-t-i\Delta)$ sampled at time *T*. or
 - $h(t) = s_0^*(T-t) = p^*(T-t)$ sampled at time $T + i\Delta$.
 - Large *T*, $\Delta = \frac{T}{2^{RT}}$. Encoding *RT* bit information into 2^{RT} starting position of the pulse (*T* sec). Rate $R < \frac{E}{TN_0} \frac{1}{2 \ln 2}$ bits/sec. can be achieved reliably.
- ML Binary signaling: $s_0(t)$, $s_1(t)$. AWGN $\sim \frac{N_0}{2}$. $P[\mathcal{E}] = Q\left(\frac{\|s_1(t) s_0(t)\|}{2\sqrt{\frac{N_0}{2}}}\right)$.

• $\left\{s_{1}(t),\ldots,s_{M}(t)\right\} \Rightarrow K \leq M \text{ orthonormal}\left\{\varphi_{1}(t),\ldots,\varphi_{K}(t)\right\}. \ s_{i}(t) = \sum_{j=1}^{K} s_{ij}\varphi_{j}(t) \Rightarrow \overline{s}_{i} = \left[s_{i1}\cdots s_{iK}\right]^{T}.$ $\left(\overline{s}_{i}\right)_{j} = \int_{-\infty}^{\infty} s_{i}(t)\varphi_{j}^{*}(t)dt. \ n_{w}(t) \sim \text{AWGN with } S(f) = N_{0}. \ \overline{r} = \overline{s} + \overline{n}$

$$r_{i} = \int_{-\infty}^{\infty} r(t) \varphi_{i}^{*}(t) dt , \ n_{i} = \int_{-\infty}^{\infty} n_{w}(t) \varphi_{i}^{*}(t) dt , \ \vec{n} \sim \mathcal{C}\mathcal{N}(0, N_{0}I)$$

• ML implementation: Vector (*K* dim): Get $r_i = \int_{-\infty}^{\infty} r(t) \varphi_i^*(t) dt$, then min $\|\vec{r} - \vec{s}_i\|$. \square Continuous (*M* dim):

$$\arg \max_{s(t) \in \{s_0(t),...\}} \left(\operatorname{Re}\left\{ \int_{-\infty}^{\infty} r(t) s^*(t) dt \right\} - \frac{\|s(t)\|^2}{2} \right).$$

• $\left[\int r(t) p(t - \Delta) dt = \left(r(t)^* p((T - t) - \Delta) \right) \Big|_{t=T} = \left(r(t)^* p(T - t) \right) \Big|_{t=T+\Delta} = \left(r(t)^* \delta(t + \Delta)^* p(T - t) \right) \Big|_{t=T} \right].$
• $n_w(t) \sim \operatorname{real} AWGN \text{ with p.s.d. } \frac{N_0}{2} \cdot n = \left[n_w(t)^* h(t) \right]_{t=T} \sim \mathcal{N}\left(0, \frac{N_0}{2} \int_{-\infty}^{\infty} h^2(s) ds \right).$

- Baseband-Passband: $x^*(t) \xleftarrow{\mathfrak{F}} X^*(-f)$. Re $\{x(t)\} \xleftarrow{\mathfrak{F}} \frac{1}{2} (X(f) + X^*(-f))$. If $x_b(t)$ is a baseband signal, then $\left(\sqrt{2}\left(\sqrt{2}\operatorname{Re}\left\{e^{j2\pi f_0 t}x_b(t)\right\}\right)e^{-j2\pi f_0 t}\right) * h_{LP}(t) = x_b(t)$.
- $x_{p}(t) = \sqrt{2} \operatorname{Re}\left\{x_{b}(t)e^{j2\pi f_{0}t}\right\}$. $X_{p}(f) = \frac{\sqrt{2}}{2}X_{b}(f-f_{0}) + \frac{\sqrt{2}}{2}X_{b}^{*}(-f-f_{0})$. $x_{p}(t)e^{-j2\pi f_{0}t} \xleftarrow{s} X_{p}(f+f_{0}) = \frac{\sqrt{2}}{2}X_{b}(f) + \frac{\sqrt{2}}{2}X_{b}^{*}(-f-2f_{0})$. $y_{b}(t) = \left(\sqrt{2}x_{p}(t)e^{-j2\pi f_{0}t}\right)*h_{LP}(t)$. $y_{b}(t) = x_{b}(t)$.

• Capacity for Bandlimited AWGN Channels: $C = B \log_2 \left(1 + \frac{P}{BN_0} \right)$.

•
$$\langle y[\cdot], x[\cdot] \rangle = \sum_{n=-\infty}^{\infty} x[n] y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) Y^*(e^{j\omega}) d\omega \cdot ||x[\cdot]||^2 = \sum_{k=-\infty}^{\infty} |x[k]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

• F1:
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{X}(\Omega) e^{j\Omega t} d\Omega = x(t) \underbrace{\xrightarrow{3}}_{\overline{3^{-1}}} \hat{X}(\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt.$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{X}(\omega) e^{jn\omega} d\omega \underbrace{\xrightarrow{DTFT}}_{\overline{3^{-1}}} \hat{X}(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-jn\omega}. \quad \hat{X}(\omega + 2k\pi) = \hat{X}(\omega).$$
$$\hat{X}(\omega) = \sum_{k=-\infty}^{\infty} \left(\frac{1}{T_s} \hat{X}_c \left(\frac{\omega}{T_s} + k\frac{2\pi}{T_s}\right)\right). \quad x[n] = x_c(nT) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left\{\sum_{k=-\infty}^{\infty} \left(\frac{1}{T} \hat{X}_c \left(\frac{\omega}{T} + k\frac{2\pi}{T}\right)\right)\right\} e^{jn\omega} d\omega.$$

• F2:
$$\int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df = x(t) \xrightarrow{\mathfrak{T}} X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} dt \cdot x^*(t) \xleftarrow{\mathfrak{T}} X^*(-f) \cdot x^*(-t) \xleftarrow{\mathfrak{T}} X^*(f) \cdot x^*(f) \cdot x^*(-f) \cdot x^*($$

$$X_{DTFT}(f) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X\left(\frac{f}{T} + \frac{n}{T}\right) \cdot x(t) \xrightarrow{\mathfrak{s}} g(f) \text{ iff } g(t) \xrightarrow{\mathfrak{s}} x(-f) \cdot \int_{-\infty}^{\infty} x(t) y^{*}(t) dt = \int_{-\infty}^{\infty} X(f) Y^{*}(f) df \cdot X(f) = \hat{X}(\Omega) \Big|_{\Omega = 2\pi f} \cdot \hat{X}(\Omega) = X(f) \Big|_{f = \frac{\Omega}{2\pi}} \cdot \hat{X}_{DTFT}(f) = \hat{X}(\omega) \Big|_{\omega = 2\pi f}.$$

If $x(t) \perp y(t)$, then $X(f) \perp Y(f)$.

•

- $\text{PSD: w.s.s. } X(t) \to \boxed{h(\cdot)} \to \text{w.s.s. } Y(t). \ R_Y(\tau) = R_X(\tau) * h(\tau) * h^*(-\tau). \ S_Y(f) = S_X(f) |H(f)|^2.$ $h(\tau) * h^*(-\tau) = \int_{-\infty}^{+\infty} h(\mu) h^*(\mu - \tau) d\mu$. Let $y[k] = y(t)|_{t=kT}$ and $R_y[k] = E[y[m]y^*[m-k]]$, then $R_{y}[k] = R_{y}(kT)$.
- **Z-tranform**: $X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$; $0 \le R_a \le |z| \le R_b \le \infty$. $x[k] \xrightarrow{Z} X(z) = \sum_{k=-\infty}^{\infty} x[k] z^{-k} \xrightarrow{z=e^{i\omega}} X(e^{j\omega})$.
- $x^*[-k] \xrightarrow{Z} X^{\#}(z) = \sum_{k=-\infty}^{\infty} x^*[-k] z^{-k} = X^*\left(\frac{1}{z^*}\right) \xrightarrow{z=e^{i\omega}} X^*(e^{j\omega}) \cdot \left(X^{\#}(z)\right)^{\#} = X(z).$ $\left(X(z)Y(z) \right)^{\#} = X^{\#}(z)Y^{\#}(z) \cdot \left(X(z) + Y(z) \right)^{\#} = X^{\#}(z) + Y^{\#}(z) \cdot x[k] = x^{*}[-k] \implies X(z) = X^{\#}(z) \cdot x[k] = x^{*}[-k] \implies X(z) = X^{\#}(z) \cdot x[k] = x^{*}[-k] \implies X(z) = x^{*}[-k] \implies X($ $X^{\#}\left(\frac{1}{z_{*}^{*}}\right) = X^{*}(z_{0}) \cdot X^{\#}(z_{1}) = X^{*}\left(\frac{1}{z_{*}^{*}}\right).$

•
$$x[k] * y^{*}[-k] = \sum_{n=-\infty}^{\infty} x[n]y^{*}[n-k] \xrightarrow{Z} X(z)Y^{\#}(z) = \sum_{k=-\infty}^{\infty} \left(\sum_{n=-\infty}^{\infty} x[n]y^{*}[n-k]\right) z^{-k}$$

•
$$X(z_0) = 0 \implies X^{\#}\left(\frac{1}{z_0^*}\right) = 0$$
. $X^{\#}(z_1) = 0 \implies X\left(\frac{1}{z_1^*}\right) = 0$. $\left|\lim_{z \to z_0} X(z)\right| = \infty \Longrightarrow \left|\lim_{z \to \frac{1}{z_0^*}} X^{\#}(z)\right| = \infty$

 $\left|\lim_{z \to z_1} X^{\#}(z)\right| = \infty \Rightarrow \left|\lim_{z \to \frac{1}{z^*}} X(z)\right| = \infty$. If $X(z) = X^{\#}(z)$, then its poles and zeroes are located symmetrically

with respect to the unit circle.

• $H(z) = \frac{B(z)}{A(z)}$ is minimum phase \Leftrightarrow all its poles and zeros are inside the unit circles $|z| = 1 \Leftrightarrow$ both it and

its inverse $\frac{1}{H(z)}$ are stable. For a causal minimum phase h[k], the partial energy $\mathcal{E}[n] = \sum_{k=0}^{n} |h[k]|^2$ is

maximum for all *n* among all sequences with the same energy. Thus, minimum-phase signals are maximally concentrated toward time 0 among the space of causal signals for a given magnitude spectrum.

- A polynomial of the form $H(z) = h_0 + h_1 z^{-1} + \ldots + h_N z^{-N} = h_0 (1 z_1 z^{-1}) (1 z_2 z^{-1}) \cdots (1 z_N z^{-1})$ is minimum phase if all of its roots z_i are inside the unit circle, i.e. $|z_i| < 1$.
- **Monic** if h[0] = 1. Causal $\Rightarrow [\text{monic} \Leftrightarrow \lim_{|z| \to \infty} H(z) = 1]$.
- If g(z) is monic and causal, then g[#](z) is monic and anti-causal. If g(z) is SCAMP, then g⁻¹(z) is also SCAMP. If g(z) is SCAMP, then g⁻¹(z) is monic, anticausal, stable, and maximum phase.
- $x[n] \xrightarrow{DFT} x_k = \frac{1}{\sqrt{N}} X(e^{j\omega}) \Big|_{\omega=k\frac{2\pi}{N}} = \frac{1}{\sqrt{N}} x[n] e^{-j\frac{2\pi}{N}nk}$

Gap to Capacity Analysis

• Transmit signal from a constellation of M equally likely signals in T [sec]. Information (source) rate = $R = \frac{\log_2 M}{T} \left[\frac{\text{bit}}{\text{sec}} \right]$. Spectral/BW efficiency $v = \frac{R}{B} = \frac{\log_2 M}{TB}$. Transmitter (average) power = $P = E \left[\lim_{T \to \infty} \frac{1}{T} \int_{T} |s(t)|^2 dt \right]$. $E_s = E \left[\int_{-\infty}^{\infty} |s(t)|^2 dt \right]$. $E_b = \frac{PT}{\log_2 M} = \frac{E_s}{\log_2 M} = \frac{P}{R}$. $SNR = \frac{P}{N_0 B} = v \frac{E_b}{N_0}$. Power efficiency $= \frac{R}{P} = \frac{1}{E_b}$. $SNR \ge SNR_c = 2^v - 1$. Rate normalized $SNR: SNR_{norm} = \frac{SNR}{SNR_c} = \frac{SNR}{2^v - 1} = \frac{v}{2^v - 1} \frac{E_b}{N_0} > 1 = 0 \ dB$. $SNR_{norm} = \text{coding gain needed to make } P[\mathcal{E}] \to 0$.

To compare modulations, fix $P[\mathcal{E}]$, smaller SNR_{norm} indicates closer to capacity.

- If *N* = number of real dimension. Then, for PAM, QAM (complex PAM), *M*-PSK, and *M*-array orthogonal, *N* = 1, 2, 2, *M*, respectively. 2*BT* = *N*.
- Capacity of AWGN channel $C = B \log_2(1 + SNR) \ge R \left\lfloor \frac{\text{bit}}{\text{sec}} \right\rfloor$.
- Transmission of *N*-Dimensional complex vector $\vec{s} = [s[0],...,s[N-1]]^T \in \{\vec{s}_1,...,\vec{s}_M\}$.
- For AWGN channel $\vec{r} = \vec{s} + \vec{n}$ where $\vec{n} \sim \mathcal{CN}(0, N_0 I)$. If $R = \frac{\log_2 N}{N} < R_0 \left[\frac{\text{bit}}{\text{dim}}\right] = \left[\frac{\text{bit}}{\text{channel use}}\right]$, then reliable communication $\left(\lim_{N \to \infty} P[\hat{s}_{ML} \neq \vec{s}] = 0\right)$ is possible (using some good codebook.)
- For a channel with BW *B*, given total time T_m [sec] there are $2BT_m$ real dimensions or $N = BT_m$ complex dimensions. Thus, we can transmit *NR* [bits] in time T_m [s], which is $\frac{NR}{T_m} = \frac{BT_mR}{T_m} = BR \left[\frac{\text{bit}}{\text{sec}}\right]$.

Single carrier transmission

- For the complex passband channel with BW *B*, use time-shifted pulses $\{p(t), p(t-T), ..., p(t-(N-1)T)\}$.
- If we limit p(t) to BW B, the minimum spacing between two adjacent symbols is $\frac{1}{p}$ [sec].
- MLSD/MLSE: Maximum Likelihood Sequence Detection/Estimation

- $h(t) = p(t) * h_b(t)$
- Let $y(t) = \sum_{k=0}^{N-1} s[k]h(t-kT) + n(t)$, where n(t) is complex AWGN with PSD N_0 , then $\hat{S}_{ML} = \arg\min_{\bar{s}} - 2\operatorname{Re}\left\{\sum_{k=0}^{N-1} s^*[k]r[k]\right\} + \left(\sum_{k=0}^{N-1} \sum_{i=0}^{N-1} s[k]s^*[i]\rho[i-k]\right)$, where $r[k] = y(t)*h^*(-t)|_{t=kT}$ and $\rho[k] = h(t)*h^*(-t)|_{t=kT}$.

•
$$r[k] = \rho[k] * s[k] + w[k] \xrightarrow{z} r(z) = \rho(z)s(z) + w(z)$$
. $w[k] = (n(t) * h^*(-t))|_{k}$

- $\rho(t) = h(t) * h^*(-t) = \int h(\tau) h^*(\tau t) d\tau$. $\rho(-t) = \rho^*(t)$. $\rho(0) = \int |h(\tau)|^2 d\tau$ (always real). $\rho(t) \stackrel{\mathfrak{F}}{\longleftarrow} Q(f) = |H(f)|^2$.
- $\rho[k] = \rho(kT) = \int h(\tau)h^*(\tau kT)d\tau$. $\rho[-k] = \rho^*[k]$. $\rho(z) = \sum_{k=-\infty}^{\infty} \rho[k]z^{-k} \cdot z_0$ is a zero of $\rho(z)$ if and only if $\frac{1}{z_0^*} = \frac{1}{|z_0|} \left(\frac{z_0}{|z_0|}\right)$ is a zero of $\rho(z) \cdot z_0$ and $\frac{1}{z_0^*}$ form a pair symmetrical with respect to the unit circle. $\rho^*(z) = \rho(z) \cdot \rho[k] \xrightarrow{DTFT} Q_{DTFT}(f) = \frac{1}{T} \sum_{n=-\infty}^{\infty} Q\left(\frac{f}{T} + \frac{n}{T}\right) = \sum_{n=-\infty}^{\infty} \rho[n]e^{-jn2\pi f}$.
- If n(t) is white with PSD N_0 , then $R_{ww}[k] = N_0 \rho[k] \xrightarrow{Z} S_{ww}(z) = N_0 \rho(z)$. (Not white unless $\rho[k] = \delta[k]$.)
- The noise sequence w[k] can be generated by a white noise with PSD N_0 and a linear stable causal monic phase filter $\beta(z)$. Because $\rho(z) = \rho^{\#}(z)$, its poles and zeroes are located symmetrically with respect to the unit circle. Thus, can factorize.

- **The Nyquist Theorem**: $p[k] = p[0]\delta[k]$ iff $\frac{1}{T}\sum_{i=1}^{N}Q\left(f \frac{i}{T}\right) = \rho[0]$ and the MLSD is the same as symbolby-symbol ML detection. $\hat{S}_{ML} = \arg \min_{\bar{s}} \left(\sum_{k=0}^{N-1} \left| s[k] - \frac{r[k]}{\rho[0]} \right|^2 \right)$. The min BW (max $f - \min f$) required is $\frac{1}{T}$.
- **Raised cosine pulse** with roll-off factor α : $\rho_{\alpha}(t) = \frac{\sin \frac{\pi t}{T}}{\frac{\pi t}{T}} \frac{\cos \frac{\alpha \pi t}{T}}{1 \frac{4\alpha^2 t^2}{\pi^2}}$. Bandlimited to $\frac{1 + \alpha}{2T}$. $Q_{\alpha}(0) = T$, $Q_{\alpha}\left(\frac{1}{2T}\right) = \frac{T}{2} \cdot \rho[k] = \rho(kT) = \delta[k] \cdot Q_{\alpha}(f) = \frac{T}{2}\left(1 + \cos\left(\frac{\pi T}{\alpha}\left(|f| - \frac{1 - \alpha}{2T}\right)\right)\right), \frac{1 - \alpha}{2T} \le |f| \le \frac{1 + \alpha}{2T};$

$$T, 0 \le |f| \le \frac{1-\alpha}{2T}; 0, |f| \ge \frac{1+\alpha}{2T}$$
. Decay faster (flatter tail) for higher alpha.

Viterbi: given $\vec{r} = [r_0, r_1, ..., r_{N-1}], \ \vec{\rho} = [\rho_0, \rho_1, ..., \rho_L], \ \rho_k \neq 0 \text{ only for } -L \le k \le L, \ \boldsymbol{\mathcal{C}} = \{c_1, ..., c_c\}.$ $\hat{s}_{ML} = \arg\min_{\bar{s}\in \mathbf{C}^N} C_{N-1} \text{ where } \operatorname{Cost} C_t = \left| -2\operatorname{Re}\left\{\sum_{\ell=0}^t s_\ell^* r_\ell\right\} + \left(\sum_{\ell=0}^t \sum_{m=0}^t s_\ell^* s_m \rho_{\ell-m}\right) \right| = C_{t-1} + \Delta C(r_t, s_t; \pi_{t-1}). \text{ Define the}$ state at time t by $(s_t, \dots, s_{t-L+1}) \Rightarrow \pi_t = \underbrace{(s_t, \dots, s_{t-L+1})}_{t-L+1} \in \mathcal{C}^L$. For $t < L, \pi_t = (s_t, \dots, s_0)$. $\pi_0 = s_0$.

$$\overline{C_0 = -2\operatorname{Re}\{s_0^*r_0\} + |s_0|^2 \rho_0}. \ \Delta C(r_t, s_t; \pi_{t-1}) = -2\operatorname{Re}\{s_t^*r_t\} + 2\operatorname{Re}\{s_t^*\sum_{k=1}^{\min(t,L)} s_{t-k}\rho_k\} + |s_t|^2 \rho_0.$$

For L = 1, for t > 0, $\pi_t = s_t$: $C_t = C_{t-1} + \left(-2\operatorname{Re}\left\{s_t^* r_t\right\} + 2\operatorname{Re}\left\{s_t^* s_{t-1} \rho_1\right\} + \left|s_t\right|^2 \rho_0\right)$.

• For
$$L = 2$$
, $\pi_1 = (s_1, s_0)$: $C_1 = C_0 + \Delta C(r_1, s_1; \pi_0) = C_0 - 2\operatorname{Re}\{s_1^*r_1\} + 2\operatorname{Re}\{s_1^*s_0\rho_1\} + |s_1|^2\rho_0$
for $t > 1$, $\Delta C(r_t, s_t; \pi_{t-1}) = -2\operatorname{Re}\{s_t^*r_t\} + 2\operatorname{Re}\{s_t^*s_{t-1}\rho_1 + s_t^*s_{t-2}\rho_2\} + |s_t|^2\rho_0$.

- SER increases as the length increases.
- $K_1 \mathcal{Q}\left(\frac{d_{\min}}{\sqrt{2N_1}}\right) \le P[\mathcal{E}] \le K_2 \mathcal{Q}\left(\frac{d_{\min}}{\sqrt{2N_1}}\right) + o\left(\mathcal{Q}\left(\frac{d_{\min}}{\sqrt{2N_1}}\right)\right)$ where d_{\min} is the minimum distance between every

pair of paths.

Matched filter bound: single symbol s transmitted over a Baseband channel h(t) modeled by r(t) = sh(t) + n(t) where n(t) is the complex Gaussian noise with PSD N_0 .

$$K_1 Q\left(\sqrt{\frac{\xi_{\min}^2 E_h}{2N_0}}\right) \le P[\mathcal{E}] \le K_2 Q\left(\sqrt{\frac{\xi_{\min}^2 E_h}{2N_0}}\right) \text{ where } E_h = \int |h(t)|^2 dt \text{ is the channel energy, and } \xi_{\min} \text{ is the minimum distance of the symbol constellation}$$

minimum distance of the symbol constellation.

Define $\gamma_{MF} = \frac{\xi_{\min}^2 E_h}{2N_0}$, $\gamma_{MLSD} = \frac{d_{\min}^2}{2N_0}$ where d_{\min} is the minimum distance of any pair of sequences. • $\gamma_{MLSD} \leq \gamma_{MF}$. $Q(\sqrt{\gamma_{MLSD}}) \geq Q(\sqrt{\gamma_{MF}})$ because Q is a decreasing function.

• Correlation and Correlation Spectrum: Given WSS x[n], y[n],

$$R_{xy}[k] = E[x[n]y^*[n-k]] \xrightarrow{Z} S_{xy}(z) \stackrel{!}{=} \hat{E}[X(z)Y^{\#}(z)] \text{ power spectrum density.}$$

$$R_{xy}[k] = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{xy}(e^{j\omega}) e^{jk\omega} d\omega \stackrel{DTFT}{\longrightarrow} S_{xy}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} R_{xy}[n] e^{-jn\omega} \cdot R_{yx}^{*}[-k] = R_{xy}[k] \cdot S_{yx}^{\#}(z) = S_{xy}(z) \cdot R_{xx}[-k] = R_{xy}[k], \quad S_{yx}^{\#}(z) = S_{xy}(z) \cdot R_{xx}[-k] = R_{xx}^{*}[k], \quad S_{xx}^{\#}(z) = S_{xx}(z) \cdot S_{xx}(e^{j\omega}) \text{ is real.}$$

- White process $x[k] \Rightarrow S_{xx}(z) = E_x = E \lfloor |x[n]|^2 \rfloor$
- $R_{xx}[0] = E\left[\left|x[k]\right|^2\right] = \int_{2\pi} \left|S_{xx}\left(e^{j\omega}\right)\right|^2 d\omega.$
- WSS $x[k] \rightarrow h[\cdot] \rightarrow$ WSS y[k]. $R_{Y}[k] = R_{X}[k] * h[k] * h^{*}[-k]$. $S_{yy}(z) = H(z)H^{\#}(z)S_{xx}(z)$. $S_{yy}(e^{j\omega}) = |H(e^{j\omega})|^{2} S_{xx}(e^{j\omega})$.
- For an FIR filter with white input $\left(S_{xx}(z) = E_x = E\left[\left|x[n]\right|^2\right]\right)$, $S_{yy}(z) = E_x H(z) H^{\#}(z)$, and the PSD of the output has zeros symmetrical around the unit circle.
- Spectral Factorization: Let x[k] be a stationary process with $S_{xx}(z) = E[X(z)X^{*}(z)]$. If

 $\int_{-\pi}^{\pi} \ln S_{xx}(e^{j\omega}) d\omega > -\infty$, then there exists a $\gamma > 0$ and a unique stable, causal, monic, and minimum phase

(SCAMP) filter $g[k] \xrightarrow{Z} G(z)$ such that $S_{xx}(z) = \gamma G(z) G^{\#}(z)$, $\gamma = e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln S_{xx}(e^{j\omega}) d\omega}$. We can generate $\tilde{x}[k]$ (same spectrum as x[k]) using a linear filter G(z) with white input.

- Whittle's Construction: If $\ln S_{xx}(z)$ is analytic in $\rho < |z| < \frac{1}{\rho}$ ($\rho < 1$), then it has the Laurent expansion $\ln S_{xx}(z) = \sum_{k=-\infty}^{\infty} c_k z^{-k}$ where $c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln S_{xx}(e^{j\omega}) e^{jk\omega} d\omega \xrightarrow{\text{DTFT}} \ln S_{xx}(e^{j\omega})$. c_k is real and even. Then $S_{xx}(z) = e^{c_0} e^{\sum_{k=1}^{\infty} c_k z^{-k}} e^{\sum_{k=1}^{\infty} c_{-k} z^{k}}$. $\gamma = e^{c_0} = e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln S_{xx}(e^{j\omega}) d\omega}$. $G(z) = e^{\sum_{k=1}^{\infty} c_k z^{-k}}$.
- The Whitening Filter: $S_{xx}(z) = \gamma G(z) G^{\#}(z), \ \gamma = e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln S_{xx}(e^{j\omega}) d\omega}$. If x[k] be the input of a SCAMP filter, then, among the set of SCAMP filters, the whitening filter $\alpha(z) = \frac{1}{G(z)}$ minimizes the output variance. In particular, the output y[k] is a white sequence and $E[|y[k]|^2] = \gamma$.

$$\gamma = e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln S_{yy}(e^{j\omega})d\omega} \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{\ln S_{yy}(e^{j\omega})}d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{yy}(e^{j\omega})d\omega = E\left[\left|y[k]\right|^{2}\right].$$

• Optimal Linear Prediction: given $x[t-1], x[t-2], \dots S_{xx}(z) = \gamma \beta(z) \beta^{\#}(z)$. Find a stable linear predictor A(z) (causal, $a_0 = 0$), $\hat{x}[t] = \sum_{k=1}^{\infty} a_k x[t-k] \xrightarrow{Z} \hat{X}(z) = A(z) X(z)$.

 $e[t] = x[t] - \hat{x}[t] \xrightarrow{z} X(z)(1 - A(z)) = X(z)\alpha(z); \ \alpha(z) = 1 - A(z), \text{ such that the mean square error}$ $\mathcal{E} = E\left[\left|e[t]\right|^2\right] \text{ is minimized by a causal monic and stable } \alpha(z). \ A_{opt}(z) = 1 - \frac{1}{\beta(z)}.$

- MMSE Linear Equalizer: scalar: $\hat{s} = fy$. e = s fy. Want to minimize $E[|e|^2] = E[|s fy|^2]$.
 - Completing the squares solution: $\mathcal{E} = E[|\hat{s} s|^2] = |f|^2 R_{yy} + R_{ss} fR_{ys} f^*R_{sy}$. $(f - R_{sy}R_{yy}^{-1})R_{yy}(f - R_{sy}R_{yy}^{-1})^* = \mathcal{E} - R_{ss} + R_{sy}(R_{yy}^{-1})^*R_{ys}$. $f_{MMSE} = R_{sy}R_{yy}^{-1}$. $\mathcal{E}_{MMSE} = R_{ss} - R_{sy}(R_{yy}^{-1})^*R_{ys}$.
 - Geometrical solution: $e \perp y \equiv E[ey^*] = 0$. $f_{MMSE} = R_{sy}R_{yy}^{-1}$. $E[\mathcal{E}_{MMSE}] = E[|e|^2] = E[|s|^2] - E[|f_{MMSE}y|^2] = R_{ss} - R_{sy}R_{yy}^{-1}R_{ys}$. R_{yy} is real.
- **MMSE-DFE**: Causal b(z), b[0] = 0 $\left(\lim_{|z|\to\infty} b(z) = 0\right)$. $b(z) = b_1 z^{-1} + b_2 z^{-2} + \cdots$. $\min_{f(z),b(z)} E\left[\left|v[k] s[k]\right|^2\right]$. Assumption: $\hat{s}[k] \approx s[k]$. $v(z) = r(z)f(z) - b(z)\hat{s}(z) \approx r(z)f(z) - b(z)s(z)$. $e(z) = v(z) - s(z) = r(z)f(z) - \beta(z)s(z)$. $\beta(z) = b(z) + 1$ is IIR, causal, stable, and monic. $e(z) \perp r(z)$. $f(z) = \frac{S_{sr}(z)}{S_{rr}(z)}\beta(z)$. $e(z) = \beta(z)\tilde{e}(z)$. $\beta(z)$ from spectral factorization of $S_{\tilde{e}\tilde{e}}(z) = S_{ss}(z) - \frac{S_{sy}(z)}{S_{ss}(z)}S_{ys}(z)$ (to minimize

$$E\left[\left|e(z)\right|^{2}\right]$$
.)

Discrete-time Equivalent Channel. $S_{ss}(z) = E_s$. $S_{ww}(z) = \rho(z)N_0$. $S_{rr}(z) = \rho(z)(\rho(z)S_{ss}(z) + N_0)$.

• Linear MMSE:
$$f_{MMSE}(z) = \frac{S_{ss}(z)}{\rho(z)S_{ss}(z) + N_0} = \frac{E_s}{\rho(z)E_s + N_0}$$
.
 $S_{ee}(z) = \frac{N_0 S_{ss}(z)}{\rho(z)S_{ss}(z) + N_0} = \frac{N_0 E_s}{\rho(z)E_s + N_0}$. $\mathcal{E}_{L-MMSE} = E\left[\left|e[k]\right|^2\right] = E_s \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{\rho(e^{j\omega})\frac{E_s}{N_0} + 1} d\omega$.
 $SNR_{L-MMSE} = \frac{E_s}{\mathcal{E}_{L-MMSE}}$. $SNR_{L-MMSE} = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{\rho(e^{j\omega})\frac{E_s}{N_0} + 1} d\omega\right)^{-1}$.

• MMSE-DFE: If $S_o(z) = \rho(z)E_s + N_0 = \gamma_0 g_0(z)g_0^{\#}(z)$, then $\beta(z) = g_0(z)$. $E[|e(z)|^2] = \frac{N_0 E_s}{\gamma_0}$.

$$\gamma_{0} = N_{0}e^{\frac{1}{2\pi}\int_{-\pi}^{\pi}\ln\left(\rho(e^{j\omega})\frac{E_{s}}{N_{0}}+1\right)d\omega}. \quad f(z) = f_{L-MMSE}(z)\beta(z) = \frac{E_{s}}{\rho(z)E_{s}+N_{0}}\beta(z) = \frac{E_{s}g_{0}(z)}{\rho(z)E_{s}+N_{0}}.$$

$$b_{MMSE-DFE}(z) = \beta(z) - 1 = g_{0}(z) - 1. \quad \mathcal{E}_{MMSE-DFE} = \frac{E_{s}}{e^{\frac{1}{2\pi}\int_{-\pi}^{\pi}\ln\left(\rho(e^{j\omega})\frac{E_{s}}{N_{0}}+1\right)d\omega}}. \quad SNR_{MMSE-DFE} = \frac{E_{s}}{\mathcal{E}_{MMSE-DFE}}$$

$$= e^{\frac{1}{2\pi}\int_{-\pi}^{\pi}\ln\left(\rho(e^{j\omega})\frac{E_{s}}{N_{0}}+1\right)d\omega}.$$

• Linear zero-forcing equalizer: $f_{L-ZF}(z) = \frac{1}{\rho(z)}$. $e(z) = r(z)f(z) - s(z) = \frac{w(z)}{\rho(z)}$. $S_{ee}(z) = \frac{N_0}{\rho(z)}$.

$$\boldsymbol{\mathcal{E}}_{L-ZF} = E\left[\left|\boldsymbol{e}\left[\boldsymbol{k}\right]\right|^{2}\right] = R_{ee}\left[\boldsymbol{0}\right] = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{ee}\left(\boldsymbol{e}^{j\omega}\right) d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{N_{0}}{\rho\left(\boldsymbol{e}^{j\omega}\right)} d\omega .$$
$$SNR_{L-ZF} = \frac{E_{s}}{\boldsymbol{\mathcal{E}}_{L-ZF}} = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{\frac{E_{s}}{N_{0}}} \rho\left(\boldsymbol{e}^{j\omega}\right)} d\omega\right)^{-1} .$$

- $\mathcal{E}_{L-ZF} \ge \mathcal{E}_{L-MMSE} \ge \mathcal{E}_{MMSE-DFE}$ and $SNR_{L-ZF} \le SNR_{L-MMSE} \le SNR_{MMSE-DFE}$.
- $\lim_{E_s \to 0} SNR_{MMSE-DFE} = 1$ and $\lim_{E_s \to 0} SNR_{L-ZF} = 0$.

Multicarrier Transmission

• If $p(t-mT) \perp p(t-nT)$, then $P(t)e^{j2\pi tmT} \perp P(t)e^{j2\pi tmT}$. Basic functions $\left\{P(t)e^{j2\pi t\frac{k}{B}}\right\}$. k = 0, ..., N-1.

•
$$r_k = H_k s_k + w_k; r[n] = h[n] \circledast s[n] + w[n]$$

• Circular and linear convolution: h[n] = 0 for n < 0 and n > v. s[n] = $\begin{bmatrix} s[N-1], \dots, s[0] \end{bmatrix}^T$. Cyclic prefix: $\tilde{s}[n] = \begin{cases} s[n], & 0 \le n \le N-1 \\ s[n+N], & -v \le n \le -1 \end{cases}$.
Then $(h \circledast s)[n] = (h \ast \overline{s})[n]$ for $n = 0, \dots, N-1$.

• Transmit *N* samples $s_0, ..., s_{N-1}$ at a time. $s_k \xrightarrow{IDFT} s[n]$. Add cyclic prefix $\overline{s} = [s[N-v], ..., s[N-1], s[0], ..., s[N-1]]$. FIR channel model $x[n] = \sum_{i=0}^{2} h[i]\overline{s}[n-i] + w[n]$ where $w[k] \stackrel{i.i.d.}{\sim} \mathcal{CN}(0, N_0)$. (Using MATLAB,) have x[n] = [p[N-v], ..., p[N-1], r[0], ..., r[N-1]]. Remove cyclic prefix, get r[n] ([r[0], ..., r[N-1]]). $r[n] \xrightarrow{DFT} r_k \cdot r_k = H_k s_k + w_k$.

•
$$\sum_{n=0}^{N-1} e^{j2\pi n \frac{k}{N}} = \begin{cases} N ; \text{ if } \frac{k}{N} \in I \\ 0 ; \text{ if } \frac{k}{N} \notin I \end{cases} . w_k \overset{i.i.d.}{\sim} \mathcal{CN}(0, N_0).$$

• Matrix Formulation: Let $W_N = e^{-j\frac{2\pi}{N}}$. DFT: $\vec{X} = Q\vec{x}$. IDFT: $\vec{x} = Q^H \vec{X}$.

$$\begin{bmatrix} X_{N-1} \\ \vdots \\ X_1 \\ \vdots \\ X_0 \\ \bar{x} \end{bmatrix} = \underbrace{\frac{1}{\sqrt{N}} \begin{bmatrix} W_N^{(N-1)^2} & W_N^{(N-1)(N-2)} & \cdots & 1 \\ \vdots & \vdots & W_N^{(N-j)(N-i)} & \vdots \\ W_N^{(N-1)} & W_N^{(N-2)} & \cdots & 1 \\ 1 & 1 & \cdots & 1 \end{bmatrix}_{N \times N} \begin{bmatrix} x[N-1] \\ \vdots \\ x[1] \\ x[0] \\ \bar{x} \end{bmatrix}}_{\bar{x}}$$

- Q is a unitary matrix, i.e. $Q^{H}Q = QQ^{H} = I \cdot (Q^{-1} = Q^{H}) \cdot \vec{x}_{2}^{H}\vec{x}_{1} = \vec{X}_{2}^{H}\vec{X}_{1} \cdot \|\vec{x}\| = \|\vec{X}\| \cdot \|\vec{x}_{1} \vec{x}_{2}\| = \|\vec{X}_{1} \vec{X}_{2}\|$.
- Circulant matrix $H_{c} = \begin{bmatrix} h[0] & h[1] & h[2] & 0 & 0 \\ 0 & h[0] & h[1] & h[2] & 0 \\ 0 & 0 & h[0] & h[1] & h[2] \\ h[2] & 0 & 0 & h[0] & h[1] \\ h[1] & h[2] & 0 & 0 & h[0] \end{bmatrix} h[2]$ • $QH_{c}Q^{H} = \begin{bmatrix} H_{N-1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & H_{0} \end{bmatrix}$

•
$$\vec{x} = Q^H \vec{s} \cdot \vec{y} = H_C \vec{x} + \vec{w} \cdot \vec{r} = Q \vec{y} = Q H_C \vec{x} + Q \vec{w} = \begin{bmatrix} H_{N-1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & H_0 \end{bmatrix} \vec{s} + \vec{w}'$$

•
$$\hat{s}_{ML} = \arg\min_{\vec{s}} \left\| \vec{r} - \begin{bmatrix} H_{N-1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & H_0 \end{bmatrix} \vec{s} \right\|^2 \Leftrightarrow \hat{s}_{ML} [k] = \arg\min_{s} |r_k - H_k s_k|$$

• Water filling: $\gamma_k = \frac{|H_k|^2}{\sigma^2}$. $SNR_k = \frac{|H_k|^2 E_k}{\sigma^2} = E_k \gamma_k$. Total power constraint $E = \sum_i E_i$. Maximize rate of

reliable transmission by $E_k + \frac{1}{\gamma_k} = \text{constant}.$

Din