Sampling \& Reconstruction of continuous-time signals

- $\quad x[n]=x_{c}\left(n T_{S}\right)=x_{R}\left(n T_{R}\right) ;-\infty<n<\infty$
- $\hat{X}(\omega)=\sum_{k=-\infty}^{\infty}\left(\frac{1}{T_{S}} \hat{X}_{c}\left(\frac{\omega}{T_{S}}+k \frac{2 \pi}{T_{S}}\right)\right) \forall \omega, T_{S}$
- $\hat{X}(\omega)=\sum_{k=-\infty}^{\infty}\left(\frac{1}{T_{R}} \hat{X}_{R}\left(\frac{\omega}{T_{R}}+k \frac{2 \pi}{T_{R}}\right)\right) \forall \omega, T_{R}=\frac{1}{T_{R}} \hat{X}_{R}\left(\frac{\omega}{T_{R}}\right)-\pi \leq \omega \leq \pi$; repeat
- $x_{R}(t)=\frac{1}{2 \pi} \int_{-\frac{\pi}{T_{R}}}^{\frac{\pi}{T_{R}}} T_{R} \hat{X}\left(\Omega T_{R}\right) e^{j \Omega t} d \Omega ; \forall t=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{X}(\mu) e^{j \frac{\mu}{T_{R}} t} d \mu$

$$
=\sum_{n=-\infty}^{\infty} x[n] \frac{\sin \frac{\pi}{T}(t-n T)}{\frac{\pi}{T}(t-n T)} ; \forall t
$$

- $\hat{X}_{R}(\Omega)=T \hat{X}(\omega=\Omega T) p_{\frac{\pi}{T}}(\Omega)=\left.T\left(\hat{X}(\omega) p_{\pi}(\omega)\right)\right|_{\omega=\Omega T}$
- If $T_{R}=T_{S}=T, \Omega_{S}=\frac{2 \pi}{T_{S}}>2 \Omega_{m}$ or $T_{S}<\frac{\pi}{\Omega_{m}}$
- $\hat{X}(\omega)=\frac{1}{T} \hat{X}_{c}\left(\frac{\omega}{T}\right) ;-\pi \leq \omega \leq \pi$; repeat
- $\hat{X}_{c}(\Omega)=\hat{X}_{R}(\Omega)=T \hat{X}(\omega=\Omega T) p_{\frac{\pi}{T}}(\Omega)=\left.T\left(\hat{X}(\omega) p_{\pi}(\omega)\right)\right|_{\omega=\Omega T}$
- $\quad x_{c}(t)=x_{R}(t)$
- $\quad x[n]=x_{c}(n T) ;-\infty<n<\infty$
- $\quad x[n]$: sampling series representation for $x_{c}(t)$

- Deconstruction equation: $\hat{X}(\omega)=\sum_{k=-\infty}^{\infty}\left(\frac{1}{T} \hat{X}_{c}\left(\frac{\omega}{T}+k \frac{2 \pi}{T}\right)\right) \forall \omega, \mathrm{T}$ (D)
- \Rightarrow sum of scaled, shifted replicas of $\hat{X}_{c}(\Omega)$
- $\frac{1}{T} \hat{X}_{c}\left(\frac{\omega}{T}\right) \Rightarrow \Omega=\frac{\omega}{T} \Rightarrow$ what happens at $\Omega=\Omega_{0}$, happens at $\omega=\Omega_{0} T$
- Space between centers of replicas $\Rightarrow \Delta \Omega=\frac{2 \pi}{T} \Rightarrow \Delta \omega=\frac{2 \pi}{T} T=2 \pi$
- In general, replicas "collide" in ω-space

Proof $x_{c}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{X}(\Omega) e^{j \Omega t} d \Omega$
Sector the integration:

$$
x_{c}(t)=\frac{1}{2 \pi} \sum_{k=-\infty}^{\infty}\left(\int_{k \frac{2 \pi}{T}-\frac{\pi}{T}}^{k \frac{2 \pi}{T}+\frac{\pi}{T}} \hat{X}_{c}(\Omega) e^{j \Omega t} d \Omega\right)
$$

Then, let $\mu=\Omega-k \frac{2 \pi}{T} \Rightarrow d \mu=d \Omega$

$$
x_{c}(t)=\frac{1}{2 \pi} \sum_{k=-\infty}^{\infty}\left(\int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} \hat{X}_{c}\left(\mu+k \frac{2 \pi}{T}\right) e^{j\left(\mu+k \frac{2 \pi}{T}\right)} d \mu\right)
$$

Let $\omega=\mu T \Rightarrow d \omega=T d \mu$

$$
\begin{aligned}
x_{c}(t) & =\frac{1}{2 \pi} \sum_{k=-\infty}^{\infty}\left(\int_{-\pi}^{\pi} \frac{1}{T} \hat{X}_{c}\left(\frac{\omega}{T}+k \frac{2 \pi}{T}\right) e^{j\left(\frac{\omega}{T}+k \frac{2 \pi}{T}\right)} d \omega\right) \\
x_{c}(n T) & =x[n]=\frac{1}{2 \pi} \sum_{k=-\infty}^{\infty}\left(\int_{-\pi}^{\pi} \frac{1}{T} \hat{X}_{c}\left(\frac{\omega}{T}+k \frac{2 \pi}{T}\right) e^{j\left(\frac{\omega}{T}+k \frac{2 \pi}{T}\right) n T} d \omega\right) \\
& =\frac{1}{2 \pi} \sum_{k=-\infty}^{\infty}\left(\int_{-\pi}^{\pi} \frac{1}{T} \hat{X}_{c}\left(\frac{\omega}{T}+k \frac{2 \pi}{T}\right) e^{j n \omega} e^{i k \omega 2 \pi^{1}} d \omega\right) \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \underbrace{\left\{\sum_{k=-\infty}^{\infty}\left(\frac{1}{T} \hat{X}_{c}\left(\frac{\omega}{T}+k \frac{2 \pi}{T}\right)\right)\right\}}_{\hat{X}(\omega)} e^{j n \omega} d \omega
\end{aligned}
$$

Shannon-Nyquist Sampling Theorem

- From picture, for no aliasing \Rightarrow need $T_{s} \Omega_{m}<\pi$
- If $x(t)$ is Ω_{m}-bandlimited,
can recover $x(t)$ exactly from the discrete sequence of samples provided that $\Omega_{S}=\frac{2 \pi}{T_{S}}>2 \Omega_{m}$ or $T_{S}<\frac{\pi}{\Omega_{m}}=\mathbf{N y q u i s t ~ i n t e r v a l ~ f o r ~} x_{c}(t)$
- Ω_{m} : bandwidth of $x_{c}(t)$
- Given $x_{c}(t)$ with
- $\hat{X}_{c}\left(|\Omega| \geq \frac{\pi}{T}\right)=0$
- $T<\frac{\pi}{\Omega_{m}} ; \Omega_{m}:$ bandwidth of $x_{c}(t)$
$x_{c}(t)$ is determined completely by $x[n]=x_{c}(n T), \forall \mathrm{n}$
- $\hat{X}(\omega)=\frac{1}{T} \hat{X}_{c}\left(\frac{\omega}{T}\right) ;-\pi \leq \omega \leq \pi$
$\hat{X}_{c}(\Omega)=T \hat{X}(\Omega T) ;-\frac{\pi}{T} \leq \omega \leq \frac{\pi}{T}$
\Rightarrow no overlap
- $x_{c}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{X}_{c}(\Omega) e^{j \Omega t} d \Omega=\frac{1}{2 \pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} T \hat{X}(\Omega T) e^{j \Omega t} d \Omega$

$$
=\sum_{n=-\infty}^{\infty} x[n] \frac{\sin \frac{\pi}{T}(t-n T)}{\frac{\pi}{T}(t-n T)} ; \forall t
$$

Proof

$$
\begin{aligned}
x_{c}(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{X}_{c}(\Omega) e^{j \Omega t} d \Omega=\frac{1}{2 \pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} T \hat{X}(\Omega T) e^{j \Omega t} d \Omega \\
& =\frac{1}{2 \pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} T\left(\sum_{n=-\infty}^{\infty} x[n] e^{-j n \Omega T}\right) e^{j \Omega t} d \Omega \\
& =\sum_{n=-\infty}^{\infty}\left\{T x[n] \cdot\left(\frac{1}{2 \pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} e^{j \Omega(t-n T)} d \Omega\right)\right\}=\sum_{n=-\infty}^{\infty} x[n] \frac{\sin \frac{\pi}{T}(t-n T)}{\frac{\pi}{T}(t-n T)} ; \forall t
\end{aligned}
$$

- $\quad z_{\text {practical }}(t) \xrightarrow{\hat{H}(\Omega)=p_{\Omega_{m}}(\Omega)} c_{0} x(t)=\frac{2 a}{T_{0}} x(t)$
- $\quad z_{\text {ideal }}(t)=\xrightarrow{\hat{H}(\Omega)=T_{0} \cdot p_{\Omega_{m}}(\Omega)} x(t)$
- To find maximum T_{s} for signal that has high-frequency don't-care region \Rightarrow Interested in $\hat{X}_{c}(\Omega)$ when $|\Omega| \leq \Omega_{0}$, Don't care what happens when $\Omega_{0}<|\Omega| \leq \Omega_{m}$ And $\hat{X}_{c}(\Omega)=0$ when $|\Omega| \geq \Omega_{m}$.
- From $\hat{X}(\omega)=\sum_{k=-\infty}^{\infty}\left(\frac{1}{T_{S}} \hat{X}_{c}\left(\frac{\omega}{T_{S}}+k \frac{2 \pi}{T_{S}}\right)\right)$, we can see that the interesting region (in green) of $\hat{X}_{c}\left(\frac{\omega}{T}\right)$ ends at $\Omega_{0} T$, and $\hat{X}_{c}\left(\frac{\omega}{T}-\frac{2 \pi}{T}\right)$ start at $2 \pi-\Omega_{m} T$.

Note that we can allow the don't-care region (in yellow) to overlap, so only need $2 \pi-\Omega_{m} T>\Omega_{0} T$ so that the don't care region of $\hat{X}_{c}\left(\frac{\omega}{T}-\frac{2 \pi}{T}\right)$ will not overlap the interesting region of $\hat{X}_{c}\left(\frac{\omega}{T}\right) \Rightarrow 2 \pi>\Omega_{0} T+\Omega_{m} T \Rightarrow T<\frac{2 \pi}{\Omega_{0}+\Omega_{m}}$ also need $2 \pi-\Omega_{0} T>\Omega_{m} T$ so that the don't care region of $\hat{X}_{c}\left(\frac{\omega}{T}\right)$ will not overlap the interesting region of $\hat{X}_{c}\left(\frac{\omega}{T}-\frac{2 \pi}{T}\right) \Rightarrow T<\frac{2 \pi}{\Omega_{0}+\Omega_{m}}$.
In this case, since the regions of $\hat{X}_{c}(\Omega)$ are symmetric, both requirements yield the same result: $T<\frac{2 \pi}{\Omega_{0}+\Omega_{m}}$.
Usually, we need $T<\frac{\pi}{\Omega_{m}}$, here we can have T larger: as large as $\frac{2 \pi}{\Omega_{0}+\Omega_{m}}$.

$$
\Omega_{m}>\Omega_{0} \Rightarrow \frac{2 \pi}{\Omega_{0}+\Omega_{m}}>\frac{\pi}{\Omega_{m}}
$$

- $x[n] \rightarrow \underset{\substack{\uparrow \\ T}}{D_{R}} \xrightarrow{x_{R}(t)} p_{\Omega_{0}(\Omega)} \rightarrow y_{c}(t)$
$y_{c}(t)=x_{c}(t)$ only in the frequency region of interest

$$
\begin{aligned}
& \hat{X}_{\mathrm{R}}(\Omega)=\hat{X}_{\mathrm{c}}(\Omega) \text { for }|\Omega| \leq \Omega_{0}, \text { junk for } \Omega_{0}<|\Omega| \leq \Omega_{\mathrm{m}}, 0 \text { for }|\Omega|>\Omega_{\mathrm{m}} \\
& \hat{Y}_{c}(\Omega)=\hat{X}_{R}(\Omega) p_{\Omega_{0}}(\Omega)=\hat{X}_{c}(\Omega) p_{\Omega_{0}}(\Omega) \Rightarrow \text { no junk }
\end{aligned}
$$

Reconstruction of continuous-time signals

- $\quad x_{R}(t) \Rightarrow$ Sinc-function interpolation of $x[n]$

$$
\begin{align*}
& =\frac{1}{2 \pi} \int_{-\frac{\pi}{T_{R}}}^{\frac{\pi}{T_{R}}} T_{R} \hat{X}\left(\Omega T_{R}\right) e^{j \Omega t} d \Omega ; \forall t(\mathbf{R} \mathbf{1}) \underset{\substack{\uparrow=\Omega T_{R}}}{=} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{X}(\mu) e^{j \frac{\mu}{T_{R}} t} d \mu \\
& =\sum_{n=-\infty}^{\infty} x[n] \frac{\sin \frac{\pi}{T}(t-n T)}{\frac{\pi}{T}(t-n T)} ; \forall t \quad(\mathbf{R} 2) \tag{R2}\\
& =x_{c}(t) \text { if } T<\text { Nyquist interval for } x_{c}(t) \\
& = \\
& x[n] \frac{\text { the most parsimonious continuous time explanation for } x[n]}{\mathrm{D} / \mathrm{C}} \mathrm{~T}
\end{align*}
$$

- $\quad x_{R}(n T)=x[n]$
- $\hat{X}_{R}(\Omega)=T \hat{X}(\omega=\Omega T) p_{\frac{\pi}{T}}(\Omega)=\left\{\begin{array}{l}0 \quad ;|\Omega| \geq \frac{\pi}{T} \\ T \hat{X}(\Omega T) \quad ;|\Omega|<\frac{\pi}{T}\end{array}\right.$
$x_{R}(t)$ is the unique continuous-time signal that has both properties

$$
\text { - } \quad \hat{X}_{R}(\Omega)=\left.T\left(\hat{X}(\omega) p_{\pi}(\omega)\right)\right|_{\omega=\Omega T}
$$

Proof $\lim _{t \rightarrow n T} \frac{\sin \frac{\pi}{T}(t-m T)}{\frac{\pi}{T}(t-m T)}= \begin{cases}0 & \text { for } \mathrm{m} \neq \mathrm{n} \\ 1 & \text { for } \mathrm{m}=\mathrm{n}\end{cases}$
Proof $\quad x_{R}(t)=\frac{1}{2 \pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} T \hat{X}(\Omega T) e^{j \Omega t} d \Omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \underbrace{\left(T \hat{X}(\Omega T) p_{\frac{\pi}{T}}(\Omega)\right)}_{\hat{X}_{R}(\Omega)} e^{j \Omega t} d \Omega$

$\hat{X}_{c}(\Omega)$	A	Ω_{0}	$\frac{\Omega_{s}}{2}$	Ω_{s}
$\hat{X}(\omega)$	$A \frac{1}{T_{s}}$	$\omega_{0}=\Omega_{0} \mathrm{~T}_{\mathrm{s}}$	π	2π
$\hat{X}_{R}(\Omega)$	$A \frac{T_{R}}{T_{s}}$	$\frac{\omega_{0}}{T_{R}}=\Omega_{0} \frac{T_{s}}{T_{R}}$	$\frac{\Omega_{R}}{2}$	Ω_{R}

- Note: The amplitude doesn't really change when sampling followed by reconstruction (under no-aliasing assumption determined by T_{s}). This doesn't depend on the choice of T_{R} nor $T_{s} . x_{R}(t)$ will be equal to $x_{c}(t)$ if $T_{s}=T_{R}$. If T 's are different, $x_{R}(t)$ will be
$x_{c}(t)$ but expanded or shrinked in the time domain with all the height remains unchanged.
Can see this by the formula $x(a t) \stackrel{\Im}{\stackrel{3}{3^{-1}}} \frac{1}{|a|} \hat{X}\left(\frac{\Omega}{a}\right)$.
If no alising, $\hat{X}(\omega)=\frac{1}{T_{S}} \hat{X}_{c}\left(\frac{\omega}{T_{S}}\right) \Rightarrow \hat{X}_{R}(\Omega)=T_{R} \hat{X}\left(\omega=\Omega T_{R}\right)=\frac{T_{R}}{T_{S}} \hat{X}_{c}\left(\Omega \frac{T_{R}}{T_{S}}\right)$.
$x\left(\frac{T_{S}}{T_{R}} t\right) \stackrel{\Im}{\stackrel{\mathfrak{S}^{-1}}{\rightleftharpoons}} \frac{T_{R}}{T_{S}} \hat{X}_{c}\left(\Omega \frac{T_{R}}{T_{S}}\right)$

Ideal sampling

- shah function $\Perp_{\mathrm{T}}(\mathrm{t})=\sum_{n=-\infty}^{\infty} \delta(t-n T)$
- $x_{s}(t)=x_{c}(t) \sum_{n=-\infty}^{\infty} \delta\left(t-n T_{S}\right)=山$-sampled version of $x_{c}(t)=\sum_{n=-\infty}^{\infty} x[n] \delta\left(t-n T_{S}\right)$
- $\hat{X}_{s}(\Omega)$

$$
\begin{aligned}
& =\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n T}=\hat{X}(\omega=\Omega T) \\
& =\sum_{k=-\infty}^{\infty} \frac{1}{T_{s}} \hat{X}_{c}\left(\Omega-k \Omega_{s}\right) ; \Omega_{s}=\frac{2 \pi}{T_{s}}
\end{aligned}
$$

Proof $\quad x_{s}(t)=\sum_{n=-\infty}^{\infty} x[n] \delta\left(t-n T_{S}\right)$

$$
\begin{aligned}
\hat{X}_{s}(\Omega) & =\int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x[n] \delta\left(t-n T_{S}\right) e^{-j \Omega t} d t=\sum_{n=-\infty}^{\infty} x[n] \int_{-\infty}^{\infty} \delta\left(t-n T_{S}\right) e^{-j \Omega t} d t \\
& =\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n T_{S}}=\hat{X}\left(\omega=\Omega T_{S}\right)
\end{aligned}
$$

Know that $\hat{X}(\omega)=\sum_{k=-\infty}^{\infty}\left(\frac{1}{T} \hat{X}_{c}\left(\frac{\omega}{T}+k \frac{2 \pi}{T}\right)\right)$.
Therefore, $\hat{X}_{s}(\Omega)=\hat{X}\left(\omega=\Omega T_{S}\right)=\sum_{k=-\infty}^{\infty}\left(\frac{1}{T} \hat{X}_{c}\left(\frac{\Omega T}{T}+k \frac{2 \pi}{T}\right)\right)$
$=\frac{1}{T} \sum_{k=-\infty}^{\infty}\left(\hat{X}_{c}\left(\Omega+k \Omega_{S}\right)\right)$

- $\quad x_{S}(t) \xrightarrow{\hat{H}_{R}(\Omega)=T \cdot P_{\Omega_{m}}(\Omega)} x_{c}(t)$ if $T<\frac{\pi}{\Omega_{m}}$
- For $\Omega_{0}>2 \Omega_{m} \Rightarrow$ the shifted replicas don't overlap

$$
z(t) \xrightarrow{\hat{H}(\Omega)=T_{0} \cdot p_{\Omega_{m}}(\Omega)} x(t)
$$

Wheel example: sampled scene sequence

- If sample at every T sec, move at constant speed, want to find $\mathrm{X}_{\mathrm{c}}(\mathrm{t})=e^{j \Omega_{0} t}$.
n=

- Find the parsimonious ω_{0} first $\Rightarrow x[n]$ can $=e^{j \omega_{0} n}$
(Moving @ ω_{0} rad per 1 frame, in this case, $\omega_{0}=\frac{\pi}{2}$)
- Can find $x_{c}(t)=e^{j \Omega_{0} t}$ in two ways:
- $x[n]=e^{j \omega_{0} n}=e^{j \omega_{0} n}\left(e^{j 2 \pi}\right)^{k n}=e^{j\left(\omega_{0}+2 \pi k\right) n}$

But $x[n]=x_{c}(n T)=e^{j \Omega_{0} n T}$; thus $\Omega_{0} n T=\left(\omega_{0}+2 \pi k\right) n \Rightarrow \Omega_{0}=\frac{\omega_{0}}{T}+2 \pi \frac{k}{T}$

- Thinking in term of rev./sec:

Fundamentally, moving @ $x=\frac{\omega_{0}}{2 \pi}$ rev. per T sec
Can add k rev. more in 1 frame $=T$ sec.
So, Possibly moving at $x+k$ rev. in T sec

$$
\frac{\Omega_{0}}{2 \pi}=\frac{x}{T}+\frac{k}{T} \mathrm{rev} / \mathrm{sec} \Rightarrow \Omega_{0}=\frac{2 \pi x}{T}+2 \pi \frac{k}{T} \mathrm{rad} / \mathrm{sec}
$$

- note that positive ω corresponds to a counterclockwise rotation
- Represented by $e^{j\left(2 \pi \frac{x}{T}+2 \pi \frac{k}{T}\right)}=e^{j\left(2 \pi \frac{x}{T} t^{t}\right.}$ where $-\pi \leq\left\langle 2 \pi \frac{x}{T}\right\rangle \leq \pi$
- If $\left\langle 2 \pi \frac{x}{T}\right\rangle \neq 2 \pi \frac{x}{T}$
- aliasing has occurred.
- $e^{j\left(2 \pi \frac{x}{T}+2 \pi \frac{k}{T}\right) t}$ assumes the alias $e^{j\left(2 \pi \frac{x}{T}\right) t}$

One frequency example

- $x_{c}(t)=e^{j \Omega_{0} t} ; x[n]=e^{j \Omega_{0} n T}=e^{j \omega_{0} n}=e^{j\left(\omega_{0}+2 \pi k\right) n} ; \Omega_{0}=\frac{\omega_{0}}{T}+2 \pi \frac{k}{T}$
- $\quad x_{c}(t)=e^{j \Omega_{0} t} \stackrel{\mathfrak{3}}{\rightleftharpoons \mathfrak{S}^{-1}} \hat{X}(\Omega)=2 \pi \delta\left(\Omega-\Omega_{0}\right) \Rightarrow \Omega_{0}=\Omega_{m}$
$x[n]=e^{j \Omega_{0} T n}=e^{j \omega_{0} n}=e^{j\left(\omega_{0}+2 \pi k\right) n} \Rightarrow \omega_{0}=\Omega_{0} T-2 \pi k$

$$
x[n]=e^{j n \omega_{0}} \stackrel{\text { DTFT }}{\rightleftharpoons} \hat{X}(\omega)=2 \pi \sum_{k=-\infty}^{\infty} \delta\left(\omega-\left\langle\omega_{0}\right\rangle_{-\pi}^{\pi}+2 \pi k\right)
$$

- $T_{R}=T_{S}=T$

$$
\text { From } \omega_{0}=\Omega_{0} T-2 \pi k,\left\langle\frac{\omega_{0}}{T}\right\rangle_{\frac{\Omega_{s}}{2}}^{\frac{\Omega_{s}}{2}}=\left\langle\frac{\Omega_{0} T-2 \pi k}{T}\right\rangle_{-\frac{\Omega_{s}}{2}}^{\frac{\Omega_{s}}{2}}=\left\langle\Omega_{0}-k \frac{2 \pi}{T}\right\rangle_{-\frac{\Omega_{s}}{2}}^{\frac{\Omega_{s}}{2}}
$$

$$
=\left\langle\Omega_{0}-k \Omega_{s}\right\rangle_{-\frac{\Omega_{s}}{2}}^{\frac{\Omega_{s}}{2}}=\left\langle\Omega_{0}\right\rangle_{-\frac{\Omega_{s}}{2}}^{\frac{\Omega_{s}}{2}}
$$

- $T_{R} \neq T_{S}$

$$
\begin{gathered}
x_{R}(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} 2 \pi \delta\left(\mu-\left\langle\omega_{0}\right\rangle_{-\pi}^{\pi}\right) e^{j \frac{\mu}{T_{R}} t} d \mu=e^{j \frac{\left.j \omega_{0}\right\rangle_{-\pi}^{\pi}}{T_{R}} t} \\
\hat{X}_{R}(\Omega)=2 \pi T_{R} \delta\left(\Omega T_{R}-\left\langle\omega_{0}\right\rangle_{-\pi}^{\pi}\right) \xrightarrow{\Omega^{-1}} x_{R}(t)=e^{j \frac{\left\langle\omega_{0}\right\rangle_{-\pi}^{\pi} t}{T_{R}} t}=e^{j\left(\left\langle\Omega_{0} \frac{T_{S}}{T_{R}}\right\rangle_{\frac{\Omega_{R}}{2}}^{\frac{\frac{\Omega R}{2}}{2}}\right)^{t}} \\
\frac{\left\langle\omega_{0}\right\rangle_{-\pi}^{\pi}}{T_{R}}=\left\langle\frac{\omega_{0}}{T_{R}}\right\rangle_{-\frac{\pi}{T_{R}}}^{\frac{\pi}{T_{R}}}=\left\langle\frac{\Omega_{0} T_{S}-2 \pi k}{T_{R}}\right\rangle_{-\frac{\pi}{T_{R}}}^{\frac{\pi}{T_{R}}}=\left\langle\Omega_{0} \frac{T_{S}}{T_{R}}-\frac{2 \pi k}{T_{R}}\right\rangle_{-\frac{\pi}{T_{R}}}^{\frac{\pi}{T_{R}}} \\
=\left\langle\Omega_{0} \frac{T_{S}}{T_{R}}-k \Omega_{R}\right\rangle_{\frac{\Omega_{R}}{2}}^{\frac{\Omega_{R}}{2}}=\left\langle\Omega_{0} \frac{T_{S}}{T_{R}}\right\rangle_{-\frac{\Omega_{R}}{2}}^{\frac{\Omega_{R}}{2}}
\end{gathered}
$$

$$
\begin{aligned}
& x_{R}(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} 2 \pi \delta\left(\mu-\left\langle\omega_{0}\right\rangle_{-\pi}^{\pi}\right) e^{j \frac{\mu_{t}}{T}} d \mu=e^{j \frac{\left\langle\omega_{0}\right)_{-\pi}^{\pi_{t}}}{T}} \\
& x_{R}(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{X}(\mu) e^{j \frac{\mu}{T} t} d \mu \\
& \text { If }\left\langle\omega_{0}\right\rangle_{-\pi}^{\pi}=\omega_{0}, x_{R}(n T)=x[n] \\
& \hat{X}_{R}(\Omega)=2 \pi T \delta\left(\Omega T-\left\langle\omega_{0}\right\rangle_{-\pi}^{\pi}\right) \xrightarrow{s^{-1}} x_{R}(t)=e^{j \frac{\left.j\left(\omega_{0}\right)\right\rangle_{-\pi}^{\pi} t}{T}}=e^{\left.j\left(\Omega_{0}\right\rangle_{\frac{\Omega s}{2}}^{2}\right)} \\
& \hat{X}_{R}(\Omega)=\left.T\left(\hat{X}(\omega) p_{\pi}(\omega)\right)\right|_{\omega=\Omega T} \\
& \frac{\left\langle\omega_{0}\right\rangle_{-\pi}^{\pi}}{T}=\left\langle\frac{\omega_{0}}{T}\right\rangle_{-\frac{\pi}{T}}^{\frac{\pi}{T}}=\left\langle\frac{\omega_{0}}{T}\right\rangle_{-\frac{\Omega_{s}}{2}}^{\frac{\Omega_{s}}{2}}=\left\langle\frac{\omega_{0}}{T}\right\rangle_{-\frac{\Omega_{s}}{2}}^{\frac{\Omega_{s}}{2}}
\end{aligned}
$$

Downsampling

- $y[n]=x[n M]=M$-down sampled version of $x[n]$

$$
\begin{aligned}
& =\mathrm{a} \text { "compressed" version of } x[n] \\
& x[n] \xrightarrow[\text { M-compressor }]{M \downarrow} y[n]
\end{aligned}
$$

- $T^{\prime}=M T$
- $\hat{Y}(\omega)=\frac{1}{M} \sum_{\ell=0}^{M-1} \hat{X}\left(\frac{\omega}{M}-\ell \frac{2 \pi}{M}\right)$
- Let $z[n]=\left\{\begin{array}{l}x[n] ; \text { if } \frac{n}{M} \in I \\ 0 ; \text { if } \frac{n}{M} \notin I\end{array}\right.$

Then, can rewrite $z[n]$ as $z[n]=\left(\frac{1}{M} \sum_{\ell=0}^{M-1} e^{j 2 \pi \ell \frac{n}{M}}\right) x[n]=\frac{1}{M} \sum_{\ell=0}^{M-1} x[n] e^{j 2 \pi \ell \frac{n}{M}}$.
To see this, note that $\frac{1}{M} \sum_{\ell=0}^{M-1} e^{j 2 \pi \ell \frac{n}{M}}=\left\{\begin{array}{l}1 ; \text { if } \frac{n}{M} \in I \\ 0 ; \text { if } \frac{n}{M} \notin I\end{array}\right.$

$$
\left.\begin{array}{l}
\begin{array}{rl}
\sum_{\ell=0}^{M-1} e^{j 2 \pi \ell \frac{n}{M}} & =\sum_{\ell=0}^{M-1}\left(e^{j 2 \pi \frac{n}{M}}\right)^{\ell}=\frac{1-e^{j 2 \pi \frac{n}{M} M}}{1-e^{j 2 \pi \frac{n}{M}}}=\frac{1-e^{j 2 \pi n}}{1-e^{j 2 \pi \frac{n}{M}}} \\
& =0 \text { if } \frac{n}{M} \notin I \text { since } e^{j 2 \pi \frac{n}{M}} \neq 1
\end{array} \\
\text { If } \frac{n}{M} \in I, \sum_{\ell=0}^{M-1} e^{j 2 \pi \ell \frac{n}{M}}
\end{array}=\frac{1-\left(e^{j 2 \pi}\right)^{n}}{1-\left(e^{j 2 \pi}\right)^{\frac{n}{M}}}\right] \begin{aligned}
& 1-\left(e^{j 2 \pi}\right)^{n} \\
& \\
& =\lim _{x \rightarrow 1} \frac{\left.1-e^{j 2 \pi}\right)^{\frac{n}{M}}}{1-x^{\frac{n}{M}}}=\lim _{x \rightarrow 1} \frac{-n x^{n-1}}{-\frac{n}{M} x^{\frac{n}{M}-1}}=M
\end{aligned}
$$

From $z[n]=\frac{1}{M} \sum_{\ell=0}^{M-1} x[n] e^{j 2 \pi \frac{n}{M}}$, we have $\hat{Z}(\omega)=\frac{1}{M} \sum_{\ell=0}^{M-1} \hat{X}\left(\omega-\ell \frac{2 \pi}{M}\right)$ from frequency-shift rule. \Rightarrow aliasing is possible

- Let $y[n]=z[n M]=x[n M]$

Then $\hat{Z}(\omega)=\sum_{m=-\infty}^{\infty} z[m] e^{-j m \omega}=\sum_{n=-\infty}^{\infty} z[n M] e^{-j n M \omega}=\sum_{n=-\infty}^{\infty} y[n] e^{-j n M \omega}=\hat{Y}(M \omega)$

- $\hat{Y}(\omega)$ is an M-expanded version of $\hat{Z}(\omega)$

Or $\hat{Y}(\omega)=\hat{Z}\left(\frac{\omega}{M}\right)=\frac{1}{M} \sum_{\ell=0}^{M-1} \hat{X}\left(\frac{\omega}{M}-\ell \frac{2 \pi}{M}\right)$

- Now, let's take a closer look at $\hat{Y}(\omega)=\frac{1}{M} \sum_{\ell=0}^{M-1} \hat{X}\left(\frac{\omega}{M}-\ell \frac{2 \pi}{M}\right)$. It is a summation of $\frac{1}{M} \hat{X}\left(\frac{\omega}{M}-\ell \frac{2 \pi}{M}\right)$. Each $\hat{X}\left(\frac{\omega}{M}-\ell \frac{2 \pi}{M}\right)$ is an expanded and shifted version of $\hat{X}(\omega)$. Since $\hat{Y}(\omega)$ is 2π-periodic, we will try to find what part of $\hat{X}\left(\frac{\omega}{M}-\ell \frac{2 \pi}{M}\right)$ falls in the $-\pi$ to π range. First, note that the region from $-\pi$ to π of $\hat{X}(\omega)$ will be expanded to the range $-\mathrm{M} \pi$ to $\mathrm{M} \pi$ as shown in the figure below:

Each of the $\frac{1}{M} \hat{X}\left(\frac{\omega}{M}-\ell \frac{2 \pi}{M}\right)$ is indeed $\frac{1}{M} \hat{X}\left(\frac{\omega}{M}\right)$ shifted by $2 \pi \ell$
$\left(\frac{\omega}{M}-\ell \frac{2 \pi}{M}=0 \Rightarrow \omega=2 \pi \ell\right)$. Thus, $\hat{Y}(\omega)$ is the summation of all the $\frac{1}{M} \hat{X}\left(\frac{\omega}{M}-\ell \frac{2 \pi}{M}\right)$ as shown below:

Looking at only the part of $\hat{X}\left(\frac{\omega}{M}-\ell \frac{2 \pi}{M}\right)$ which falls in the $-\pi$ to π range, we see that $\hat{X}\left(\frac{\omega}{M}\right)$ is partitioned into M pieces, each pieces width equal $2 \pi . \hat{Y}(\omega)$ is the summation of all these pieces times $\frac{1}{M}$. Therefore, $\hat{Y}(\omega)$ is basically an average of all M pieces of $\hat{X}\left(\frac{\omega}{M}\right)$.

Note that if M is even, then the first land last π chunks of $\hat{X}\left(\frac{\omega}{M}\right)$ construct one 2π piece.

- $\hat{Y}(\omega+2 k \pi)=\hat{Y}(\omega)$

To see this, note that we want to have
$\frac{1}{M} \sum_{\ell^{\prime}=0}^{M-1} \hat{X}\left(\frac{\omega+2 k \pi}{M}-\ell^{\prime} \frac{2 \pi}{M}\right)=\frac{1}{M} \sum_{\ell=0}^{M-1} \hat{X}\left(\frac{\omega}{M}-\ell \frac{2 \pi}{M}\right)$
and that $\hat{X}\left(\frac{\omega+2 k \pi}{M}-\ell^{\prime} \frac{2 \pi}{M}+2 \pi n\right)=\hat{X}\left(\frac{\omega+2 k \pi}{M}-\ell^{\prime} \frac{2 \pi}{M}\right)$.
We will show that, given k, there exist one and only one integer ℓ^{\prime} for each ℓ that could make $\hat{X}\left(\frac{\omega+2 k \pi}{M}-\ell^{\prime} \frac{2 \pi}{M}+2 \pi n\right)=\hat{X}\left(\frac{\omega}{M}-\ell \frac{2 \pi}{M}\right)$, using appropriate n.
To have $\frac{\omega+2 k \pi}{M}-\ell^{\prime} \frac{2 \pi}{M}+2 \pi n=\frac{\omega}{M}-\ell \frac{2 \pi}{M}$, need
$k-\ell^{\prime}+n M=-\ell$ or $n=\frac{\ell^{\prime}-\ell-k}{M}$.
Thus, given k, to find which $\ell^{\prime} \in\{0,1, \ldots, M-1\}$ or which term of
$\hat{X}\left(\frac{\omega+2 k \pi}{M}-\ell^{\prime} \frac{2 \pi}{M}+2 \pi n\right)$ will be equal to $\hat{X}\left(\frac{\omega}{M}-\ell_{0} \frac{2 \pi}{M}\right)$, we need to find ℓ^{\prime} which give $n=\frac{\ell^{\prime}-\ell_{0}-k}{M}$ an integer value. There is one and only one ℓ^{\prime} that could do this, because $0 \leq \ell^{\prime} \leq M-1$. Only one of ℓ^{\prime} will give $\left(-\ell_{0}-k\right)+\ell^{\prime}$ that is divisible by M . This yields cyclic mapping between ℓ and ℓ^{\prime}, and thus each term of $\hat{X}\left(\frac{\omega+2 k \pi}{M}-\ell^{\prime} \frac{2 \pi}{M}\right)$'s is equal to one of $\hat{X}\left(\frac{\omega}{M}-\ell \frac{2 \pi}{M}\right)$. And therefore, the sum is equal.

- Example:

$$
\begin{aligned}
& \hat{Y}(\omega-2 \pi)=\frac{1}{M} \sum_{\ell=0}^{M-1} \hat{X}\left(\frac{\omega-2 \pi}{M}-\ell \frac{2 \pi}{M}\right)=\frac{1}{M} \sum_{\ell=0}^{M-1} \hat{X}\left(\frac{\omega}{M}-\frac{2 \pi}{M}-\ell \frac{2 \pi}{M}\right) \\
& \\
& =\frac{1}{M} \sum_{\ell=0}^{M-1} \hat{X}\left(\frac{\omega}{M}-(\ell+1) \frac{2 \pi}{M}\right)=\frac{1}{M} \sum_{k=1}^{M} \hat{X}\left(\frac{\omega}{M}-k \frac{2 \pi}{M}\right) \\
& \\
& =\frac{1}{M}\left(\sum_{k=1}^{M-1} \hat{X}\left(\frac{\omega}{M}-k \frac{2 \pi}{M}\right)+\hat{X}\left(\frac{\omega}{M}-2 \pi\right)\right) \\
& \\
& =\frac{1}{M}\left(\sum_{k=1}^{M-1} \hat{X}\left(\frac{\omega}{M}-k \frac{2 \pi}{M}\right)+\hat{X}\left(\frac{\omega}{M}\right)\right)=\frac{1}{M} \sum_{k=0}^{M-1} \hat{X}\left(\frac{\omega}{M}-k \frac{2 \pi}{M}\right)=\hat{Y}(\omega) \\
& -\hat{Y}(\omega)=\frac{1}{M T} \sum_{k=-\infty}^{\infty}\left(\hat{X}_{c}\left(\frac{\omega}{M T}+k \frac{2 \pi}{M T}\right)\right)
\end{aligned}
$$

Think about going directly from $x_{c}(t)$ to $\mathrm{y}[n]$, then

- $\hat{Y}(\omega)=\sum_{k=-\infty}^{\infty}\left(\frac{1}{T^{\prime}} \hat{X}_{c}\left(\frac{\omega}{T^{\prime}}+k \frac{2 \pi}{T^{\prime}}\right)\right)$. Here $T^{\prime}=M T$. Therefore,

$$
\hat{Y}(\omega)=\frac{1}{M T} \sum_{k=-\infty}^{\infty}\left(\hat{X}_{c}\left(\frac{\omega}{M T}+k \frac{2 \pi}{M T}\right)\right)
$$

- Compare this to $\hat{Y}(\omega)=\frac{1}{M} \sum_{\ell=0}^{M-1} \hat{X}\left(\frac{\omega}{M}-\ell \frac{2 \pi}{M}\right)$. We know that $\hat{X}(\omega)=\frac{1}{T} \hat{X}_{c}\left(\frac{\omega}{T}\right)$ if no aliasing.
Thus, $\hat{X}\left(\frac{\omega}{M}-\ell \frac{2 \pi}{M}\right)=\frac{1}{T} \hat{X}_{c}\left(\frac{\frac{\omega}{M}-\ell \frac{2 \pi}{M}}{T}\right)=\frac{1}{T} \hat{X}_{c}\left(\frac{\omega}{M T}-\ell \frac{2 \pi}{M T}\right)$, and $\hat{Y}(\omega)=\frac{1}{M} \sum_{\ell=0}^{M-1} \hat{X}\left(\frac{\omega}{M}-\ell \frac{2 \pi}{M}\right)=\frac{1}{M T} \sum_{\ell=0}^{M-1} \hat{X}_{c}\left(\frac{\omega}{M T}-\ell \frac{2 \pi}{M T}\right)$ same result.
- If aliasing, still, $\hat{Y}(\omega)=\frac{1}{M T} \sum_{k=-\infty}^{\infty}\left(\hat{X}_{c}\left(\frac{\omega}{M T}+k \frac{2 \pi}{M T}\right)\right)$.

This is easy to see since $y[n]=x[M n]=x(n M T)$. Can get $y[n]$ but just sampling $x(t) @ M T$ period.

- Example (doing it directly)
- $y[n]=x[2 n]$

$$
\hat{Y}(\omega)=\sum_{n=-\infty}^{\infty} y[n] e^{-j \omega n}=\sum_{n=-\infty}^{\infty} x[2 n] e^{-j \omega n}
$$

Be careful here and notice that $\sum_{n=-\infty}^{\infty} x[2 n] e^{-j \omega n} \neq \sum_{m=-\infty}^{\infty} x[m] e^{-j \omega \frac{m}{2}}$.

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty} x[2 n] e^{-j \omega n}=\ldots+x[0]+x[2] e^{-j \omega 1}+x[4] e^{-j \omega 2}+\ldots \\
& \sum_{m=-\infty}^{\infty} x[m] e^{-j \omega \frac{m}{2}}=\ldots+x[0]+x[1] e^{-j \omega \frac{1}{2}}+x[2] e^{-j \omega 1}+\ldots
\end{aligned}
$$

We want $\sum_{m=-\infty}^{\infty} x[m] e^{-j \omega \frac{m}{2}}$ but only want the even term.
Use $\frac{1}{M} \sum_{\ell=0}^{M-1} e^{j 2 \pi \ell \frac{n}{M}}=\left\{\begin{array}{l}1 ; \text { if } \frac{n}{M} \in I \\ 0 ; \text { if } \frac{n}{M} \notin I\end{array}\right.$
$\Rightarrow \frac{1}{2} \sum_{\ell=0}^{1} e^{j 2 \pi \ell \frac{m}{2}}=\left\{\begin{array}{l}1 ; \text { if } \frac{m}{2} \in I \\ 0 ; \text { if } \frac{m}{2} \notin I\end{array}=\left\{\begin{array}{l}1 ; \text { if } m \text { even } \\ 0 ; \text { if } m \text { odd }\end{array}\right.\right.$

$$
\frac{1}{2} \sum_{\ell=0}^{1} e^{j 2 \pi \ell \frac{m}{2}}=\frac{1}{2} \sum_{\ell=0}^{1} e^{j \pi \ell m}=\frac{1}{2}\left(e^{0}+e^{j \pi m}\right)=\frac{1}{2}\left(1+(-1)^{m}\right)=\left\{\begin{array}{l}
1 ; \text { if } m \text { even } \\
0 ; \text { if } m \text { odd }
\end{array}\right.
$$

Thus, $\hat{Y}(\omega)=\sum_{n=-\infty}^{\infty} x[2 n] e^{-j \omega n}=\sum_{m=-\infty}^{\infty} \frac{1}{2}\left(e^{0}+e^{j \pi m}\right) x[m] e^{-j \omega \frac{m}{2}}$

$$
\begin{aligned}
& =\frac{1}{2} \sum_{m=-\infty}^{\infty} x[m] e^{-j m \frac{\omega}{2}}+\frac{1}{2} \sum_{m=-\infty}^{\infty} x[m] e^{\left.-j\left(\frac{\omega}{2}-\pi\right)\right)^{n}} \\
& =\frac{1}{2} \hat{X}\left(\frac{\omega}{2}\right)+\frac{1}{2} \hat{X}\left(\frac{\omega}{2}-\pi\right)
\end{aligned}
$$

Same as using the formula $\hat{Y}(\omega)=\frac{1}{M} \sum_{\ell=0}^{M-1} \hat{X}\left(\frac{\omega}{M}-\ell \frac{2 \pi}{M}\right)$, letting $M=2$

- Basically, this is $x_{c}(t)$, sampled @ $T^{\prime}=M T \Rightarrow$ To recover $x_{c}(t)$ from $y_{c}(t)$ completely, need $M T<\frac{\pi}{\Omega_{m}} \Rightarrow$ more stringent

Upsampling

- 2-step process:

$$
x[n]-\frac{D / C}{T} \rightarrow q(t)-\underset{\substack{T \\ T}}{\substack{T \\ T^{\prime}=\frac{T}{L}}} \rightarrow y[n]
$$

- So, $y[n]$ is $x[n]$ added with the parsimonious approximation, using the information from $x[n]$
- $y[n]=\sum_{m=-\infty}^{\infty} x[m] \frac{\sin \pi\left(\frac{n}{L}-m\right)}{\pi\left(\frac{n}{L}-m\right)}$
- $\hat{Y}(\omega)=L \hat{X}(L \omega) p_{\frac{\pi}{L}}(\omega)=\left\{\begin{array}{ll}L \hat{X}(\omega L) & ;|\omega|<\frac{\pi}{L} \\ 0 & ;|\omega| \geq \frac{\pi}{L}\end{array}\right.$ for $|\omega| \leq \pi$
- Replicate $L \hat{X}(L \omega)$ over each $\omega=k 2 \pi$
- T doesn't matter
- View 1

$$
x[n]-\frac{D / C}{T} \rightarrow q(t)-\underset{T}{C / D} \rightarrow y[n]
$$

Note that we have two sets of variables:
$x_{c}(t), \hat{X}(\Omega), x[n], \hat{X}(\omega), x_{R}(t), \hat{X}_{R}(\Omega)$
$q(t), \hat{Q}(\Omega), y[n], \hat{Y}(\omega)$

- $q(t)=x_{R}(t)=\sum_{m=-\infty}^{\infty} x[m] \frac{\sin \frac{\pi}{T}(t-m T)}{\frac{\pi}{T}(t-m T)}$
- $y[n]=q\left(n T^{\prime}\right)=q\left(n \frac{T}{L}\right)=\sum_{m=-\infty}^{\infty} x[m] \frac{\sin \pi\left(\frac{n}{L}-m\right)}{\pi\left(\frac{n}{L}-m\right)}$
- From $\hat{X}_{R}(\Omega)=T \hat{X}(\omega=\Omega T) p_{\frac{\pi}{T}}(\Omega)$,

$$
\left(\Omega_{m}\right)_{\hat{Q}}=\left(\Omega_{m}\right)_{\hat{X}_{k}}=\frac{\pi}{T}
$$

- $y[n]$ is a sampled version of $q(t)=x_{R}(t)$. Thus,

$$
\hat{Y}(\omega)=\sum_{k=-\infty}^{\infty}\left(\frac{1}{T^{\prime}} \hat{Q}\left(\frac{\omega}{T^{\prime}}+k \frac{2 \pi}{T^{\prime}}\right)\right)=\sum_{k=-\infty}^{\infty}\left(\frac{L}{T} \hat{Q}\left(\frac{L \omega}{T}+k \frac{2 \pi L}{T}\right)\right)
$$

No overlap between $\frac{L}{T} \hat{Q}\left(\frac{L \omega}{T}+k \frac{2 \pi L}{T}\right)$ if $\Omega_{s}^{\prime} \geq 2\left(\Omega_{m}\right)_{\hat{Q}} \Rightarrow \frac{2 \pi}{T^{\prime}} \geq 2 \frac{\pi}{T} \Rightarrow T^{\prime} \leq T$
If $L>1, T^{\prime}=\frac{T}{L} \leq T$, definitely no overlap,
and $\hat{Y}(\omega)=\frac{L}{T} \hat{Q}\left(\frac{L \omega}{T}\right)=\frac{L}{T} \hat{X}_{R}\left(\frac{L \omega}{T}\right)$ for $-\pi \leq \omega \leq \pi$

- replicate $\frac{L}{T} \hat{X}_{R}\left(\frac{\omega L}{T}\right)$ over each $\omega=k 2 \pi$

Since $\hat{X}_{R}(\Omega)=\left.T\left(\hat{X}(\omega) p_{\pi}(\omega)\right)\right|_{\omega=\Omega T}$,

$$
\begin{aligned}
& \hat{X}_{R}\left(\frac{L \omega}{T}\right)=\left.T\left(\hat{X}(\omega) p_{\pi}(\omega)\right)\right|_{\omega=\frac{L \omega}{T} T}=\left.T\left(\hat{X}(\omega) p_{\pi}(\omega)\right)\right|_{\omega=L \omega} \\
&=\left.T\left(\hat{X}(\omega) p_{\pi}(\omega)\right)\right|_{\omega=L \omega} \\
& \hat{Y}(\omega)=\frac{L}{T} \hat{X}_{R}\left(\frac{L \omega}{T}\right)=\left.\frac{L}{T} T\left(\hat{X}(\omega) p_{\pi}(\omega)\right)\right|_{\omega=L \omega}=\left.L\left(\hat{X}(\omega) p_{\pi}(\omega)\right)\right|_{\omega=L \omega} \\
& \quad \text { for }-\pi \leq \omega \leq \pi
\end{aligned}
$$

Thus, for $|\omega| \leq \pi \quad \hat{Y}(\omega)=L \hat{X}(L \omega) p_{\frac{\pi}{L}}(\omega)= \begin{cases}L \hat{X}(\omega L) & ;|\omega|<\frac{\pi}{L} \\ 0 & ;|\omega| \geq \frac{\pi}{L}\end{cases}$

- View 2
- $z_{u}[n]=L$-expanded $x[n]= \begin{cases}x\left[\frac{n}{L}\right] & ; \frac{n}{L} \in I \\ 0 & ; \frac{n}{L} \notin I\end{cases}$
- $\hat{Z}(\omega)=\hat{X}(L \omega)=\sum_{k=-\infty}^{\infty}\left(\frac{1}{T} \hat{X}_{R}\left(\frac{\omega L}{T}+k \frac{2 \pi}{T}\right)\right)$
\Rightarrow replicate $\frac{1}{T} \hat{X}_{R}\left(\frac{\omega L}{T}\right)$ over each $\omega=k \frac{2 \pi}{L}$

$$
\begin{aligned}
\hat{Z}(\omega) & =\sum_{n=-\infty}^{\infty} z[n] e^{-j \omega n}=\sum_{\substack{n=-\infty \\
\frac{n}{L} \in I}}^{\infty} z[n] e^{-j \omega n}=\sum_{m=-\infty}^{\infty} z[L m] e^{-j \omega L m} \\
& =\sum_{m=-\infty}^{\infty} x[m] e^{-j(L \omega) m} \\
\hat{Z}(\omega) & =\hat{X}(L \omega)
\end{aligned}
$$

- Example $z[n]= \begin{cases}x\left[\frac{n}{2}\right] & \mathrm{n} \text { even } \\ 0 & \mathrm{n} \text { odd }\end{cases}$

$$
\begin{aligned}
\hat{Z}(\omega) & =\sum_{n=-\infty}^{\infty} z[n] e^{-j \omega n}=\sum_{\substack{n=-\infty \\
\text { neven }}}^{\infty} z[n] e^{-j \omega n}=\sum_{m=-\infty}^{\infty} z[2 m] e^{-j 02 m} \\
& =\sum_{m=-\infty}^{\infty} x[m] e^{-j(2 \omega) m}=\hat{X}(2 \omega)
\end{aligned}
$$

- $\hat{Y}(\omega)=\hat{Z}(\omega) \cdot\left(L p_{\frac{\pi}{L}}(\omega)\right.$ for $|\omega| \leq \pi$

- If $T \leq \frac{\pi}{\Omega_{m}}, q(t)=x_{c}(t)$ and $y_{R}(t)=x_{c}(t)$ because $\frac{T}{L}<T$

Practical sampling

- $r(t)=\sum_{n=-\infty}^{\infty} p_{a}\left(t-n T_{0}\right)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}=\sum_{k=-\infty}^{\infty}\left(\frac{\sin \left(a k \omega_{0}\right)}{k \pi}\right) e^{j k \omega_{0} t} ; c_{0}=\frac{2 a}{T_{0}} ; \Omega_{0}=\frac{2 \pi}{T_{0}}$
- Rectangular pulse train; height $=1$

Each pulse width $=2 \mathrm{a}$
Centered at $0, \pm \mathrm{T}_{0}, \pm 2 \mathrm{~T}_{0}, \ldots$

$T_{0}>\operatorname{small} a>0$

- $=\sum_{n=-\infty}^{\infty} p_{a}\left(t-n T_{0}\right)$
- $=\sum_{k=-\infty}^{\infty}\left(\frac{\sin \left(a k \Omega_{0}\right)}{k \pi}\right) e^{j k \Omega_{0} t}$

Proof $\quad c_{k}=\int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} r(t) e^{-j k \Omega_{0} t} d t=\int_{-a}^{a} e^{-j k \Omega_{0} t} d t=\frac{\sin \left(a k \Omega_{0}\right)}{k \pi}$
Proof $\quad c_{0}=\lim _{k \rightarrow 0} \frac{\sin \left(a k \Omega_{0}\right)}{k \pi}=\frac{a \Omega_{0}}{\pi} \lim _{k \rightarrow 0} \frac{\sin \left(a k \Omega_{0}\right)}{a \Omega_{0} k}=\frac{a \Omega_{0}}{\pi} 1=\frac{a 2 \not \lambda}{\not \lambda T_{0}}=\frac{2 a}{T_{0}}$
Proof 2 Can see from the graph that $E[r(t)]=\frac{2 a}{T}=c_{0}$.

- $\hat{R}(\Omega)=\sum_{k=-\infty}^{\infty} 2 \pi c_{k} \delta\left(\Omega-k \Omega_{0}\right)=\sum_{k=-\infty}^{\infty} \frac{2 \sin \left(a k \Omega_{0}\right)}{k} \delta\left(\Omega-k \Omega_{0}\right)$

To see this, recall that $r(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \Omega_{0} t} \frac{\Im}{\stackrel{\mathcal{S}^{-1}}{\rightleftharpoons}} \hat{R}(\Omega)=\sum_{k=-\infty}^{\infty} 2 \pi c_{k} \delta\left(\Omega-k \Omega_{0}\right)$

- $z(t)=$ a practically sampled version of $x(t)=x(t) r(t)$
each width $=2 \mathrm{a}$
centered at $0, \pm \mathrm{T}_{0}, \pm 2 \mathrm{~T}_{0}, \ldots$
height $=0$ or height of $x(t)$
- $\hat{Z}(\Omega)=\sum_{k=-\infty}^{\infty} c_{k} \hat{X}\left(\Omega-k \Omega_{0}\right) ; \Omega_{0}=\frac{2 \pi}{T_{0}}$
$\hat{Z}(\Omega)=$ the sum of scaled shifted replicas of $\hat{X}(\Omega)$
$c_{k}=$ the $k^{t h}$ fourier coefficient of the pulse train $r(t)$

Proof

$$
z(t)=x(t) r(t) \underset{\mathfrak{3}^{-1}}{\stackrel{3}{\rightleftharpoons}} \hat{Z}(\Omega)=\frac{1}{2 \pi} \hat{X}(\Omega) * \hat{R}(\Omega)
$$

$$
\begin{aligned}
\hat{Z}(\Omega) & =\frac{1}{2 \pi} \hat{X}(\Omega) * \hat{R}(\Omega)=\frac{1}{2 \pi t} \hat{X}(\Omega) *\left(\sum_{k=-\infty}^{\infty} 2 \pi c_{k} \delta\left(\Omega-k \Omega_{0}\right)\right) \\
& =\sum_{k=-\infty}^{\infty} c_{k} \hat{X}(\Omega) * \delta\left(\Omega-k \Omega_{0}\right)=\sum_{k=-\infty}^{\infty} c_{k} \hat{X}\left(\Omega-k \Omega_{0}\right)
\end{aligned}
$$

- For $\Omega_{0}>2 \Omega_{m} \Rightarrow$
the shifted replicas don't overlap

$$
z(t) \xrightarrow{\hat{H}(\Omega)=p_{\Omega_{m}}(\Omega)} c_{0} x(t)=\frac{2 a}{T_{0}} x(t)
$$

- If define $r(t)=\sum_{n=-\infty}^{\infty} \frac{1}{a} p_{\frac{a}{2}}(t-n T)$
- $\lim _{a \rightarrow 0} r(t)=\Perp_{T}(t)$
- $x_{s}(t)=\lim _{a \rightarrow 0} r(t) x_{c}(t)$
- $\quad x_{s}(t)=\sum_{n=-\infty}^{\infty} x[n] \delta(t-n T)$

Practical reconstruction; Interpolation

- $x_{R}(t)=\sum_{n=-\infty}^{\infty} x[n] h_{R}(t-n T)=h_{R}(t) *\left(\sum_{n=-\infty}^{\infty} x[n] \delta(t-n T)\right)=h_{R}(t) * x_{s}(t)$
- $\hat{X}_{R}(\Omega)=\hat{H}_{R}(\Omega) \cdot \hat{X}_{s}(\Omega)=\hat{H}_{R}(\Omega) \cdot \sum_{k=-\infty}^{\infty} \frac{1}{T_{s}} \hat{X}_{c}\left(\Omega-k \Omega_{s}\right)$
- $h_{R}(t)=$ interpolating function
- Staircase or zero-order hold interpolation
$h_{\square}(t)=p_{\frac{T}{2}}(t) \underset{\mathfrak{S}^{-1}}{\rightleftharpoons} \hat{H}(\Omega)=\frac{2 \sin \left(\Omega \frac{T}{2}\right)}{\Omega}$
$\Rightarrow x_{R}(t)=x(n T)$ for $n T-\frac{T}{2}<t<n T+\frac{T}{2}$
- $\underbrace{x[n]}_{\substack{\gamma \\ \text { constant }}} \delta(t-n T) * p_{\frac{T}{2}}(t)=x[n] p_{\frac{T}{2}}(t-n T)$
- $\hat{H}_{R}(\Omega)=0$ when $\Omega=k \Omega_{s} \Rightarrow$ killed high-freq replicas

$$
\left(\hat{X}_{s}(\Omega)=\sum_{k=-\infty}^{\infty} \frac{1}{T_{s}} \hat{X}_{c}\left(\Omega+k \Omega_{s}\right)\right)
$$

- $\hat{H}_{R}(\Omega)=T$ when $\Omega \rightarrow 0 \Rightarrow$ cancel $\frac{1}{T}$ from $\hat{X}_{s}(\Omega)=\sum_{k=-\infty}^{\infty} \frac{1}{T_{s}} \hat{X}_{c}\left(\Omega+k \Omega_{s}\right)$
- Linear interpolation : connect-the-dot

$$
h_{\Delta}(t)=\frac{1}{T} h_{\square}(t) * h_{\square}(t) \underset{\mathfrak{S}^{-1}}{\mathscr{S}} \hat{H}_{\Delta}(\Omega)=\frac{1}{T}\left(\frac{2 \sin \left(\Omega \frac{T}{2}\right)}{\Omega}\right)^{2}
$$

- $\quad p_{\frac{T}{2}}(t) * p_{\frac{T}{2}}(t)= \begin{cases}0 & |t| \geq T \\ T-|t| & 0 \leq|t|<T\end{cases}$

- $h(t)=T_{0} \frac{\sin \left(\frac{\omega_{0}}{2} t\right)}{\pi t} \underset{\mathfrak{s}^{-1}}{\stackrel{\Im}{\rightleftharpoons}} \hat{H}(\omega)=T_{0} p_{\frac{\omega_{0}}{2}}(\omega)$

