Continuous-time low-pass filter

Butterworth filter

• Nth-order Butterworth filter with cutoff frequency Ω_c :

$$\left|\hat{H}_{c}(\Omega)\right|^{2} = \frac{1}{1 + \left(\frac{\Omega}{\Omega_{c}}\right)^{2N}}$$

• Very flat @ 0 : (N-1) derivative = 0 @ 0

- Magnitude is monotonically decreasing in $|\Omega|$
- Passband error is worse near Ω_c

•
$$\left| \hat{H}_{c} \left(\Omega_{c} \right) \right| = \sqrt{\frac{1}{1 + \left(\frac{\Omega_{c}}{\Omega_{c}} \right)^{2N}}} = \sqrt{\frac{1}{2}} = 0.707$$

•
$$H_c(s) = \frac{\Omega_c^N}{\prod_{i=1}^N (s-s_i)}$$

• s_i : poles of $H_c(s)$
• Odd N: $\Omega_c \times \left(e^{jm\frac{p}{N}} \text{ that are in Re}\{s\} < 0 \right); \ 0 \le m < 2N$
• Even N: $\Omega_c \times \left(e^{j\left(\frac{p}{2N} + m\frac{p}{N}\right)} \text{ that are in Re}\{s\} < 0 \right); \ 0 \le m < 2N$
• ROC: region to the right of all poles
Fact: $\left| \hat{H}_c(\Omega) \right|^2 = H_c(-s)H_c(s)|_{s=j\Omega}$

•
$$H_{c}(s) = \frac{\Omega_{c}^{N}}{\prod_{i=1}^{N} (s-s_{i})}$$
$$H_{c}(-s)H_{c}(s) = \left(\frac{\Omega_{c}^{N}}{\prod_{i=1}^{N} (-s-s_{i})}\right)\left(\frac{\Omega_{c}^{N}}{\prod_{i=1}^{N} (s-s_{i})}\right) = \frac{\Omega_{c}^{2N}}{\left(\prod_{i=1}^{N} (-s-s_{i})\right)\left(\prod_{i=1}^{N} (s-s_{i})\right)}$$

From this equation, $H_c(-s)H_c(s)$ has 2N pole N s_i 's and N $-s_i$'s

Want $H_c(s)$ to be stable

 \Rightarrow have poles in Re{*s_i*} < 0

 \Rightarrow the left-half-plane poles is for $H_c(s)$;

(the right-half-plane poles is for $H_c(-s)$)

• From
$$\left|\hat{H}_{c}(\Omega)\right|^{2} = H_{c}(-s)H_{c}(s)|_{s=j\Omega} \Rightarrow H_{c}(-s)H_{c}(s) = \left|\hat{H}_{c}(\Omega)\right|^{2}|_{\Omega=\frac{s}{j}}$$

$$H_{c}(-s)H_{c}(s) = \left|\hat{H}_{c}(\Omega)\right|^{2}\Big|_{\Omega=\frac{s}{j}} = \frac{1}{1+\left(\frac{s}{j\Omega_{c}}\right)^{2N}} = \frac{1}{1+\frac{s^{2N}}{j^{2N}\Omega_{c}^{2N}}}$$
$$= \frac{1}{1+\frac{s^{2N}}{1+\frac{s^{2N}}{(-1)^{N}\Omega_{c}^{2N}}}} = \frac{\Omega_{c}^{2N}}{\Omega_{c}^{2N}+(-1)^{N}s^{2N}}$$

From this equation, $H_c(-s)H_c(s)$ has 2N pole at

$$\Omega_{c}^{2N} + (-1)^{N} s_{i}^{2N} = 0 \Longrightarrow s_{i}^{2N} = -(-1)^{N} \Omega_{c}^{2N}$$

• If N is odd, poles: $s_i^{2N} = \Omega_c^{2N}$

$$s_i = \Omega_c \times ((2N)^{th} \text{-roots of unity}) = \Omega_c \times e^{jm\frac{2p}{2N}}; \ 0 \le m < 2N$$

• If N is even, poles: $s_i^{2N} = -\Omega_c^{2N} = e^{j p} \Omega_c^{2N}$ $s_i = e^{j \left(\frac{p}{2N} + m \frac{2p}{2N}\right)} \Omega_c$

Chebyshev filter

Type I

• N^{th} -order Chebyshev filter with cutoff Ω_c type I

$$\left|\hat{H}_{c}(\Omega)\right|^{2} = \frac{1}{1 + \boldsymbol{e}^{2} V_{N}^{2} \left(\frac{\Omega}{\Omega_{c}}\right)}$$

• $V_N(x)$ = the N^{th} Chebyshev polynomial in x

•
$$V_{N+I}(x) = 2xV_N(x) - V_{N-I}(x)$$

• $\left|\hat{H}_c(\Omega_c)\right|^2 = \frac{1}{1 + e^2 V_N^2 \left(\frac{\Omega_c}{\Omega_c}\right)} = \frac{1}{1 + e^2} \approx 1$

- Eulripple in passband \Rightarrow error is distributed uniformly
 - To achieve a given passband max. error, require lower-order (N) than butterworth
- Monotonic in stopband

Type II

• Nth-order Chebyshev filter with cutoff Ω_c type II $\left|\hat{H}_c(\Omega)\right|^2 = \frac{1}{1 + \frac{1}{e^2 V_N^2 \left(\frac{\Omega_c}{\Omega}\right)}}$

- Monotonic in passband
- Equiripple in stopband

Elliptic filter

• N^{th} -order Elliptic filter with cutoff Ω_c :

$$\left|\hat{H}_{c}(\Omega)\right|^{2} = \frac{1}{1 + \boldsymbol{e}^{2} U_{N}^{2} \left(\frac{\Omega}{\Omega_{c}}\right)}$$

- $U_N(x) = N^{\text{th}}$ Jacobian elliptic function of x
- Equiripple both in passband and stopband
- Require smaller N than Chebychev to achieve max error in passband or stopband

Digital filter design Old-fashioned DSP paradigm

• Processing continuous-time signals with the aid of discrete-time systems

$$w_{c}(t) \rightarrow \underbrace{\begin{bmatrix} C'_{D} \\ T \end{bmatrix}}_{T} \xrightarrow{w[n]} \widehat{H}(\mathbf{w}) \xrightarrow{y[n]} \underbrace{D'_{C}}_{T} \xrightarrow{y_{R}(t)} \rightarrow y(t)$$

$$\hat{H}_{c}(\Omega)$$
Objective: Given $\hat{H}_{desired}(\Omega) = \hat{H}_{c}(\Omega)$, find T and $\hat{H}(\mathbf{w})$ so that
 $\hat{Y}(\Omega) \approx \hat{H}_{c}(\Omega) \hat{W}_{c}(\Omega)$
Restrict to band-limited input $w_{c}(t)$ and $T < \frac{\mathbf{p}}{\Omega_{m}}$
Solution: use $\hat{H}(\mathbf{w}) = \hat{H}_{c}\left(\frac{\mathbf{w}}{T}\right)$, $|\mathbf{w}| \le \mathbf{p}$

• Note: here, we are not sampling $h_c(t)$ to get h[n]. So, can't find the relationship using the deconstruction. h[n] is some signal that, when used, will make the whole discrete

system
$$\left(\underbrace{\mathcal{C}_{D}}, \widehat{H}(\mathbf{w}), \underbrace{\mathcal{D}_{C}} \right)$$
 act like $\widehat{H}_{c}(\Omega)$

Proof

•
$$\hat{W}(\Omega T) = \frac{1}{T} \hat{W}_{c}(\Omega)$$
 for $|\Omega| \leq \frac{p}{T}$, assuming no aliasing
 $\hat{W}(\mathbf{w}) = \sum_{k=-\infty}^{\infty} \left(\frac{1}{T} \hat{W}_{c}\left(\frac{\mathbf{w}}{T} + k\frac{2p}{T}\right)\right)$
If no aliasing, $\hat{W}(\mathbf{w}) = \frac{1}{T} \hat{W}_{c}\left(\frac{\mathbf{w}}{T}\right)$; for $-\mathbf{p} \leq \mathbf{w} \leq \mathbf{p}$
or $\hat{W}(\mathbf{w}) p_{p}(\mathbf{w}) = \frac{1}{T} \hat{W}_{c}\left(\frac{\mathbf{w}}{T}\right)$
• $\hat{W}(\Omega T) = \sum_{k=-\infty}^{\infty} \frac{1}{T} \hat{W}_{c}\left(\Omega + k\frac{2p}{T}\right)$
 $= \frac{1}{T} \hat{W}_{c}(\Omega)$ for $|\Omega| \leq \frac{p}{T}$, assuming no aliasing

$$\hat{Y}_{R}(\Omega) = \hat{H}(\Omega T)\hat{W}_{c}(\Omega), \forall w$$
From $\hat{Y}(w) = \hat{H}(w)\hat{W}(w)$, and $\hat{Y}_{R}(\Omega) = T(\hat{Y}(w)p_{p}(w))\Big|_{w=\Omega T}$,
$$\hat{Y}_{R}(\Omega) = T(\hat{H}(w)\hat{W}(w)p_{p}(w))\Big|_{w=\Omega T}.$$
Substitute $\hat{W}(w)p_{p}(w) = \frac{1}{T}\hat{W}_{c}\left(\frac{w}{T}\right)$:
$$\hat{Y}_{R}(\Omega) = T\left(\hat{H}(w)\frac{1}{T}\hat{W}_{c}\left(\frac{w}{T}\right)\right)\Big|_{w=\Omega T} = \hat{H}(\Omega T)\hat{W}_{c}(\Omega)$$

• Thus, want $\hat{H}(\mathbf{w}) = \hat{H}_c\left(\frac{\mathbf{w}}{T}\right), |\mathbf{w}| \le \mathbf{p}$, or

$$\hat{H}(\Omega T) = \hat{H}_{c}(\Omega)$$
 at least for $|\Omega| \leq \frac{p}{T}$.

Don't need to worry about $|\Omega| > \frac{p}{T}$ since $\hat{W}_c(\Omega) = 0$ there.

New-fashioned DSP paradigm

• Given $\hat{H}_{des}(\omega)$.

Design an implementable discrete-time system with $\hat{H}(\omega) \approx \hat{H}_{des}(\omega)$

IIR filter design

- IIR \Rightarrow infinite-duration impulse response
- Always assume h[n] is real-valued

IIR filter design using impulse invariance

• Design a discrete-time low-pass filter $\hat{H}_{des}(\mathbf{w})$

(from available $\hat{H}_{c}(\Omega)$)

with cutoff \boldsymbol{w}_c

need to meet design specs

• Pick $T_d > 0$; d = design

• Via
$$\mathbf{w} = \mathbf{W}\mathbf{\Gamma}_{\mathbf{d}}$$
, translate $\hat{H}_{des}(\mathbf{w}) \rightarrow \hat{H}_{c,des}(\Omega)$; $\left(\Omega_{c} = \frac{\mathbf{w}_{c}}{T_{d}}\right)$ along with design specs

- Design $h_c(t)$ that meets the continuous-time design specs and
 - stable & causal
 - rational $H_c(s)$
- Set $h[n] = T_d h_c(nT_d)$. See whether this work.

•
$$\hat{H}(\mathbf{w}) = T_d \sum_{k=-\infty}^{\infty} \frac{1}{T_d} \hat{H}_c \left(\frac{\mathbf{w}}{T_d} + k \frac{2\mathbf{p}}{T_d}\right) = \sum_{k=-\infty}^{\infty} \hat{H}_c \left(\frac{\mathbf{w}}{T_d} + k \frac{2\mathbf{p}}{T_d}\right)$$

- $T_d > 0$ doesn't matter
- $\frac{\mathbf{p}}{T_d} > \Omega_c = \frac{\mathbf{w}_c}{T_d} \Rightarrow$ small aliasing if $\hat{H}_c(\Omega) \approx 0$ outside some bound (Ω_c)
- Aliasing might cause $\hat{H}(\mathbf{w})$ not to meet original design specs (especially if $\hat{H}_c(\Omega)$ barely does the job in continuous time) \Rightarrow If this occurs, then should over-design

•
$$\begin{cases} h_c(t) = \sum_{\ell} k_\ell e^{s_\ell t} u(t) \\ H_c(s) = \sum_{\ell} \frac{k_\ell}{s - s_\ell} ; \operatorname{Re}\{s\} > \max_{\ell} \operatorname{Re}\{s_\ell\} \end{cases} \rightarrow \begin{cases} h[n] = T_d \sum_{\ell} k_\ell (z_\ell)^n u[n]; z_\ell = e^{s_\ell T_d} \\ H(z) = T_d \sum_{\ell} \frac{k_\ell z}{z - z_\ell}; |z| > \max|z_\ell| \end{cases}$$

- $h_c(t)$ is stable, causal, and has rational $H_c(s) \Rightarrow h[n]$ is stable, causal, and has rational H(z)
- $h_c(t)$ is not band-limited \Rightarrow there is aliasing when convert to h[n]
- pole $H_c(s)$ @ $s_0 \Rightarrow$ pole H(z) @ $e^{s_0T_d}$

•
$$h_c(t) = \sum_{\ell} k_{\ell} e^{s_{\ell} t} u(t) \rightleftharpoons H_c(s) = \sum_{\ell} \frac{k_{\ell}}{s - s_{\ell}}; \quad \operatorname{Re}\{s\} > \max_{\ell} \operatorname{Re}\{s_{\ell}\}$$

• s_{ℓ} = poles of $H_c(s)$

• Stable iff all poles of rational H(s) lies in Re{s} < 0. So need Re{s_l} < 0, $\forall \ell$

•
$$h[n] = T_d h_c(nT_d) = T_d \sum_{\ell} k_{\ell} e^{s_{\ell} n T_d} u[n] = T_d \sum_{\ell} k_{\ell} (e^{s_{\ell} T_d})^n u[n] = T_d \sum_{\ell} k_{\ell} (z_{\ell})^n u[n]$$

• z_{ℓ} = poles of H(z) = $e^{s_{\ell}T_d}$

•
$$h[n] = T_d \sum_{\ell} k_\ell (z_\ell)^n u[n] \stackrel{Z}{\Longrightarrow} H(z) = T_d \sum_{\ell} \frac{k_\ell z}{z - z_\ell} = T_d \sum_{\ell} \frac{k_\ell z}{z - e^{s_\ell T_d}};$$

$$|z| > \max |z_{\ell}| = \max |e^{s_{\ell}T_d}|$$

•
$$\operatorname{Re}\{s_{\ell}\} < 0 \Longrightarrow |z_{\ell}| = |e^{s_{\ell}T_d}| < 1 \Longrightarrow \operatorname{stable}$$

• Reverse process is not uniquely determined

IIR filter design using bilinear transformation

- Want a discrete-time low-pass filter $\hat{H}_{des}(\mathbf{w})$ with cutoff ω_c need to meet design specs
- Pick any $T_d > 0$

• Via
$$\Omega = \frac{2}{T_d} \tan\left(\frac{\mathbf{w}}{2}\right)$$
, translate $\hat{H}_{des}(\mathbf{w}) \to \hat{H}_{c,des}(\Omega)$ (equal height); along with design specs

- Design $h_c(t) / H_c(s)$ that meets the continuous-time design specs and
 - stable & causal
 - rational $H_c(s)$

•
$$H(z) = H_c \left(s = \frac{2}{T_d} \frac{1 - z^{-1}}{1 + z^{-1}} \right)$$

See whether $\hat{H}(\mathbf{w}) = H \left(z = e^{j\mathbf{w}} \right)$ work.

• Idea

Trapezoidal approximation

$$y(t) = \int w(t) dt \implies y(nT_d) - y((n-1)T_d) \approx \frac{T_d}{2} (w(nT_d) + w((n-1)T_d))$$
$$y[n] - y[n-1] \approx \frac{T_d}{2} (w[n] + w[n-1])$$
$$(1 - z^{-1})Y(z) \approx \frac{T_d}{2} (1 + z^{-1})W(z)$$
$$H(z) = \frac{Y(z)}{W(z)} \approx \frac{T_d}{2} \frac{1 + z^{-1}}{1 - z^{-1}}$$

Imaginary axis in s-space $(s = j\Omega)$ maps onto unit circle in z-space $(z = e^{jw})$

$$\Rightarrow j\Omega = \frac{2}{T_d} \frac{1 - e^{-jw}}{1 + e^{-jw}} \Rightarrow$$

$$\Omega = \frac{2}{jT_d} \frac{1 - e^{-jw}}{1 + e^{-jw}} = \frac{2}{jT_d} \frac{e^{-j\frac{w}{2}}}{e^{-j\frac{w}{2}}} \frac{e^{j\frac{w}{2}} - e^{-j\frac{w}{2}}}{e^{-j\frac{w}{2}} + e^{-j\frac{w}{2}}} = \frac{2}{\lambda T_d} \frac{\lambda \sin\left(\frac{w}{2}\right)}{\lambda \cos\left(\frac{w}{2}\right)} = \frac{2}{T_d} \tan\left(\frac{w}{2}\right)$$

• Note: Continuous-time integrator \Rightarrow H_I(s) = $\frac{1}{s}$

 All of Ω-space, ie, -∞ < Ω < ∞ maps onto

 $-\pi \le \omega \le \pi$ in ω -space (and 2π -periodic)

- No aliasing
- Non-linear mapping between ω and Ω
 - Not a big problem if $\hat{H}_{c,des}(\Omega) \approx$ piecewise-constant
- $\hat{H}_{c,des}(\Omega)$'s phase characteristics get dangerously twisted

•
$$s_0$$
 is a pole of $H_c(s) \Rightarrow z_0 = \frac{\frac{2}{T_d} + s_0}{\frac{2}{T_d} - s_0}$ is a pole of $H(z)$

- If $\operatorname{Re}\{S_0\} < 0$, then $|z_0| < 1$
- H(z) is rational and stable, if $H_c(s)$ is rational, causal, and stable

• Let
$$H(z) = H_c \left(s = \boldsymbol{b} \frac{1 - z^{-M}}{1 + z^{-M}} \right)$$

 $H_c(s)$ is rational & stable ($\operatorname{Re}\{s_0\} < 0$), **b** is real, and *M* is a non-zero integer.

Then

- H(z) is rational
- H(z) is stable $(|z_0| < 1)$ if β and M have same sign

Proof

$$s_{0} = \mathbf{b} \frac{1 - z_{0}^{-M}}{1 + z_{0}^{-M}} \Longrightarrow s_{0} + s_{0} z_{0}^{-M} = \mathbf{b} - \mathbf{b} z_{0}^{-M} \Longrightarrow z_{0}^{-M} = \frac{\mathbf{b} - s_{0}}{\mathbf{b} + s_{0}}$$

$$\begin{aligned} \left|z_{0}^{M}\right| &= \left|z_{0}\right|^{M} = \left|\frac{\mathbf{b} + s_{0}}{\mathbf{b} - s_{0}}\right| = \left|\frac{\mathbf{b} + \operatorname{Re}\left\{s_{0}\right\} + j\operatorname{Im}\left\{s_{0}\right\}\right|}{\mathbf{b} - \operatorname{Re}\left\{s_{0}\right\} - j\operatorname{Im}\left\{s_{0}\right\}\right|} \\ &= \sqrt{\frac{\left(\mathbf{b} + \operatorname{Re}\left\{s_{0}\right\}\right)^{2} + \left(\operatorname{Im}\left\{s_{0}\right\}\right)^{2}}{\left(\mathbf{b} - \operatorname{Re}\left\{s_{0}\right\}\right)^{2} + \left(\operatorname{Im}\left\{s_{0}\right\}\right)^{2}}} \\ \bullet \quad \text{For } M > 0 \text{ ; want } \left|z_{0}\right| < 1 \Rightarrow \left|z_{0}\right|^{M} < 1 \\ \left(\mathbf{b} + \operatorname{Re}\left\{s_{0}\right\}\right)^{2} + \left(\operatorname{Im}\left\{s_{0}\right\}\right)^{2} < \left(\mathbf{b} - \operatorname{Re}\left\{s_{0}\right\}\right)^{2} + \left(\operatorname{Im}\left\{s_{0}\right\}\right)^{2} \\ \mathbf{b}^{Z} + \mathbf{b}\operatorname{Re}\left\{s_{0}\right\} + \operatorname{Re}^{2}\left\{s_{0}\right\} < \mathbf{b}^{Z} - \mathbf{b}\operatorname{Re}\left\{s_{0}\right\} + \operatorname{Re}^{2}\left\{s_{0}\right\} \\ B\operatorname{Re}\left\{s_{0}\right\} < -\mathbf{b}\operatorname{Re}\left\{s_{0}\right\} \\ B\operatorname{Re}\left\{s_{0}\right\} < 0 \\ b > 0 \text{ ; Re}\left\{s_{0}\right\} < 0 \\ e \quad \text{For } M < 0 \text{ ; want } \left|z_{0}\right| < 1 \Rightarrow \left|z_{0}\right|^{M} > 1 \end{aligned}$$

$$(\mathbf{b} + \operatorname{Re}\{s_0\})^2 + (\operatorname{Im}\{s_0\})^2 > (\mathbf{b} - \operatorname{Re}\{s_0\})^2 + (\operatorname{Im}\{s_0\})^2$$

$$(\mathbf{b} + \operatorname{Re}\{s_0\})^2 + (\operatorname{Im}\{s_0\})^2 > (\mathbf{b} - \operatorname{Re}\{s_0\})^2 + (\operatorname{Im}\{s_0\})^2$$

$$(\mathbf{b} - \operatorname{Re}\{s_0\})^2 + (\operatorname{Im}\{s_0\})^2 > (\mathbf{b} - \operatorname{Re}\{s_0\})^2 + (\operatorname{Im}\{s_0\})^2$$

$$(\mathbf{b} - \operatorname{Re}\{s_0\})^2 + (\operatorname{Im}\{s_0\})^2 > (\mathbf{b} - \operatorname{Re}\{s_0\})^2 + (\operatorname{Im}\{s_0\})^2$$

$$(\mathbf{b} - \operatorname{Re}\{s_0\}) > (\mathbf{b} - \operatorname{Re}\{s_0\}) > (\mathbf{b} - \operatorname{Re}\{s_0\}) < (\mathbf{b} - \operatorname{Re}\{s_0\}) <$$

Equalization

- Design $\hat{H}(w)$ to undo effect of $\hat{G}(w)$
- Can set $H(z) = \frac{1}{G(z)}$
 - Ex. work if $G(z) = \frac{z^{a \ge d}}{\text{polynomial } (z) \text{ degree } = d}$

$$H(z) = k_0 + k_1 z^{-1} + \dots$$
 and $h[n] = k_0 \delta[n] + k_1 \delta[n-1] + \dots$

- Not always get causal/stable answer
 - Ex. $G(z) = \frac{z^{a < d}}{\text{polynomial } (z) \text{ degree } = d}$

Get z^+ in H(z) and h[n] is not causal solution: design so that $H(z)G(z) = z^{a-d}$ and then the result is simply a delay

Phase

• In general, we have
$$\hat{H}(\mathbf{w}) = |\hat{H}(\mathbf{w})|e^{-jf(\mathbf{w})}$$

• f(w) is 2π -periodic,

not uniquely determined due to 2π -multiple ambiguity

- Causal real-valued h[n] cannot have zero phase $\hat{H}(\mathbf{w}) = |\hat{H}(\mathbf{w})|$ nor constant phase $\hat{H}(\mathbf{w}) = |\hat{H}(\mathbf{w})|e^{-jb}$ unless $h[n] = K_0 \mathbf{d}[n]$
 - $h[n] \text{ real} \Rightarrow \hat{H}(-\mathbf{w}) = \hat{H}^*(\mathbf{w})$

• Case when
$$\hat{H}(\mathbf{w}) = |\hat{H}(\mathbf{w})| e^{-jaw}$$
; $\mathbf{a} = \mathbf{n}_0$, a (positive) integer

• If
$$w[n] \rightarrow \|\hat{H}_{des}(\mathbf{w})\| \rightarrow y_{des}[n]$$
, then
 $w[n] \rightarrow \hat{H}(\mathbf{w}) = |\hat{H}_{des}(\mathbf{w})| e^{-jn_0 \mathbf{w}} \rightarrow y_{des}[n-n_0]$

 \Rightarrow simple time-delay

Proof

$$\hat{Y}_{des}(\mathbf{w}) = \hat{W}(\mathbf{w}) \left| \hat{H}_{des}(\mathbf{w}) \right|$$
$$\hat{Y}'(\mathbf{w}) = \hat{W}(\mathbf{w}) \left| \hat{H}_{des}(\mathbf{w}) \right| e^{-jn_0 \mathbf{w}} = \hat{Y}_{des}(\mathbf{w}) e^{-jn_0 \mathbf{w}} \xrightarrow{DTFT^{-1}} y_{des} [n - n_0]$$

by time-shift rule.

•
$$h[n] = h_{des}[n - n_0]$$

 $h_{des}[n] \xrightarrow{DTFT} \hat{H}_{des}(\mathbf{w}) = \left| \hat{H}_{des}(\mathbf{w}) \right|$
 $h[n] \xrightarrow{DTFT} \left| \hat{H}_{des}(\mathbf{w}) \right| e^{-jn_0 \mathbf{w}} \xrightarrow{DTFT^{-1}} h_{des}[n - n_0]$

• If $h_{des}[n]$ is FIR, then $h[n] = h_{des}[n - n_0]$ will be causal for n_0 large enough

•
$$e^{jn\mathbf{w}_0} \rightarrow \boxed{e^{-jn_0\mathbf{w}}} \rightarrow e^{-jn_0\mathbf{w}_0} e^{jn\mathbf{w}_0} = e^{j(n-n_0)\mathbf{w}_0}$$

• Case when $\hat{H}(\mathbf{w}) = |\hat{H}(\mathbf{w})| e^{-jaw}$; real **a**

•
$$\hat{H}(\mathbf{w}) = e^{-j\mathbf{a}\mathbf{w}} \xrightarrow{DTFT^{-1}} h[n] = \frac{1}{2\mathbf{p}} \int_{-\mathbf{p}}^{\mathbf{p}} e^{-j\mathbf{a}\mathbf{w}} e^{jn\mathbf{w}} d\mathbf{w} = \frac{\sin(\mathbf{p}(n-\mathbf{a}))}{\mathbf{p}(n-\mathbf{a})}$$

• for integer
$$\boldsymbol{a} = n_0$$
, $h[n] = \boldsymbol{d}[n - n_0]$

•
$$w[n] \rightarrow \underbrace{D/C}_{\stackrel{\uparrow}{T}} \xrightarrow{w_c(t)} e^{-jaT\Omega} \xrightarrow{y_c(t) = w_c(+aT)} \underbrace{C/D}_{\stackrel{\uparrow}{T}} \rightarrow y[n] = y_c(nT)$$

Proof

$$\hat{W}_{c}(\Omega) = \hat{W}_{R}(\Omega) = \begin{cases} T\hat{W}(\Omega T) & -\frac{p}{T} \leq \Omega \leq \frac{p}{T} \\ 0 & |\Omega| > \frac{p}{T} \end{cases}$$

$$\hat{Y}_{c}(\Omega) = \hat{W}_{c}(\Omega)e^{-jaT\Omega} = \begin{cases} Te^{-ja\Omega T}\hat{W}(\Omega T) & -\frac{p}{T} \leq \Omega \leq \frac{p}{T} \\ 0 & |\Omega| > \frac{p}{T} \end{cases}$$

$$\hat{Y}(\mathbf{w}) = \sum_{k=-\infty}^{\infty} \frac{1}{T}\hat{Y}_{c}\left(\frac{\mathbf{w}}{T_{d}} + k\frac{2p}{T}\right) = e^{-ja\mathbf{w}}\hat{W}(\mathbf{w}) ; |\mathbf{w}| \leq p$$

$$e^{jnw_{0}} \rightarrow \boxed{e^{-ja\mathbf{w}}} \rightarrow (e^{-jaw_{0}})e^{jnw_{0}} = e^{j(n-a)w_{0}}$$

$$e^{jnw_{0}} \rightarrow \boxed{\frac{D}{T}} \xrightarrow{e^{j\frac{t}{T}w_{0}}} \boxed{e^{-jaT\Omega}} \xrightarrow{e^{j\frac{t-aT}{T}w_{0}}} \underbrace{\frac{D}{T}}_{T} \rightarrow e^{j(n-a)w_{0}}$$

• Generalized linear phase: $\hat{H}(\mathbf{w}) = A(\mathbf{w})e^{-j(\mathbf{a}\mathbf{w}+\mathbf{b})}$

• Real $\boldsymbol{a}, \boldsymbol{b}, A(\boldsymbol{w})$

• Can be expressed with $\boldsymbol{b} = 0$ or $\frac{\boldsymbol{p}}{2}$ for real h[n]

Proof

$$h[n] \text{ is real} \Rightarrow \hat{H}(-\mathbf{w}) = \hat{H}^{*}(\mathbf{w})$$
$$A(-\mathbf{w})e^{-j(-\mathbf{a}\mathbf{w}+\mathbf{b})} = A(\mathbf{w})e^{j(\mathbf{a}\mathbf{w}+\mathbf{b})}$$
$$A(-\mathbf{w}) = A(\mathbf{w})e^{j2\mathbf{b}} \quad real$$

So e^{j2b} is real = trivial 0, 1, or -1

• If $e^{j2b} = 1$, $e^{jb} = \pm 1 \Rightarrow$ absorb e^{jb} into $A(\mathbf{w})$ and $\mathbf{b} = 0$

• If
$$e^{j2b} = -1$$
, $e^{jb} = \pm j \Rightarrow$ absorb sign into $A(w)$ and $e^{jb} = j \Rightarrow b = \frac{p}{2}$

- Truly linear phase when $\boldsymbol{b} = 0$ and $A(\boldsymbol{w}) \ge 0 \forall \boldsymbol{w}$
 - Let $A(\mathbf{w}) = |\hat{H}(\mathbf{w})|$, then $\hat{H}(\mathbf{w}) = |\hat{H}(\mathbf{w})|e^{-j\mathbf{a}\mathbf{w}}$

FIR filter design

FIR filter with generalized linear phase (g.l.p.)

• Every generalized-linear-phase FIR filter $\hat{H}(\mathbf{w}) = A(\mathbf{w})e^{-j(\mathbf{aw}+\mathbf{b})}$ is of one of these 4 types:

Туре	Ι	II	III	IV
h[M+m] = M = midpoint	$h_I[M-m]$	$h_{II}[M+1-m]$	$-h_{III}\left[M-m ight]$	$-h_{IV}[M+1-m]$
h[n] duration = N	odd	even	odd	even
Midpoint @	М	M, M+1	М	M, M+1
h[n] around midpoint	even	even	odd	odd
#unknown h[n] = η	N+1	\underline{N}	N-1	\overline{N}
	2	2	2	2
$A(\omega)$ about 0	even	even	odd	odd
Α(ω) @ 0	≠0	≠0	0	0
A(ω) about π	even	odd	odd	even
Α(ω) @ π	≠0	0	0	≠0
α	М	$M+\frac{1}{2}$	М	$M+\frac{1}{2}$
β	0	0	<u>p</u> 2	<u>p</u> 2
Think about A(ω) as	$\cos(\omega)$	$\cos\left(\frac{\mathbf{w}}{2}\right)$	sin(ω)	$\sin\left(\frac{w}{2}\right)$
filter	H,L	L		Н
After shifted by π in ω or $\times (-1)^n$ in n	Ι	IV	Ι	Π

•
$$A_{I}(\mathbf{w}) = h[M] + \sum_{m>0} \{2h[M+m]\cos(m\mathbf{w})\}$$

• $A_{II}(\mathbf{w}) = \sum_{m>0} \{2h[M+m]\cos\left(\left(m-\frac{1}{2}\right)\mathbf{w}\right)\}$
• $A_{III}(\mathbf{w}) = \sum_{m>0} \{2h[M+m]\sin(m\mathbf{w})\}$
• $A_{IV}(\mathbf{w}) = \sum_{m>0} \{2h[M+m]\sin\left(\left(m-\frac{1}{2}\right)\mathbf{w}\right)\}$

• Type I

• $h_{I}[n]$

- Odd duration *N*
- Even-symmetric about midpoint h[M]: $h_I[M + m] = h_I[M m], \forall m > 0$
- $\boldsymbol{a} = M, \, \boldsymbol{b} = 0$

•
$$A_{I}(\mathbf{w}) = h[M] + \sum_{m>0} \{2h[M+m]\cos(m\mathbf{w})\}$$

$$\hat{H}_{I}(\mathbf{w}) = \sum_{n} h[n]e^{-jn\mathbf{w}}$$

$$= h[M]e^{-jM\mathbf{w}} + \sum_{m>0} \left\{ h[M+m]e^{-j(M+m)\mathbf{w}} + h[M-m]e^{-j(M-m)\mathbf{w}} \right\}$$

$$= h[M]e^{-jM\mathbf{w}} + e^{-jM\mathbf{w}} \sum_{m>0} \left\{ h[M+m]e^{-jm\mathbf{w}} + h[M+m]e^{+jm\mathbf{w}} \right\}$$

$$= \left[h[M] + \sum_{m>0} \left\{ 2h[M+m]\cos(m\mathbf{w}) \right\} \right]e^{-jM\mathbf{w}}$$

• Even about $\boldsymbol{w} = 0$: $A(0 + \boldsymbol{w}) = A(0 - \boldsymbol{w})$ Proof $\cos(m(-\boldsymbol{w})) = \cos(m\boldsymbol{w})$

• Even about
$$\boldsymbol{w} = \pi : A(\boldsymbol{p} + \boldsymbol{w}) = A(\boldsymbol{p} - \boldsymbol{w})$$

Proof

$$\cos(m(\mathbf{p} + \mathbf{w})) = \frac{1}{2} \left(e^{j(m\mathbf{p} + m\mathbf{w})} + e^{-j(m\mathbf{p} + m\mathbf{w})} \right)$$
$$= \frac{1}{2} \left(e^{jm\mathbf{p}} e^{jm\mathbf{w}} + e^{-jm\mathbf{p}} e^{-jm\mathbf{w}} \right) = (-1)^m \cos(m\mathbf{w})$$
$$\cos(m(\mathbf{p} - \mathbf{w})) = \frac{1}{2} \left(e^{j(m\mathbf{p} - m\mathbf{w})} + e^{-j(m\mathbf{p} - m\mathbf{w})} \right)$$
$$= \frac{1}{2} \left(e^{jm\mathbf{p}} e^{-jm\mathbf{w}} + e^{-jm\mathbf{p}} e^{+jm\mathbf{w}} \right) = (-1)^m \cos(m\mathbf{w})$$

• Periodic with period
$$2\pi$$
: $A(\mathbf{w}+2\mathbf{p}) = A(\mathbf{w})$
Proof $\cos(m(\mathbf{w}+2\mathbf{p})) = \cos(m\mathbf{w}+m2\mathbf{p}) = \cos(m\mathbf{w})$

• Type II

- *h*[*n*]
 - Even duration N
 - Even-symmetric about midpoint h[M] = h[M+1]:

$$h_{II}[M+m] = h_{II}[M+1-m], \forall m > 0$$

•
$$a = M + \frac{1}{2}, b = 0$$

•
$$A_{II}(\mathbf{w}) = \sum_{m>0} \left\{ 2h[M+m]\cos\left(\left(m-\frac{1}{2}\right)\mathbf{w}\right) \right\}$$

$$\hat{H}_{II}(\mathbf{w}) = \sum_{n} h[n] e^{-jn\mathbf{w}}$$

$$= \sum_{m>0} \left\{ h[M+m] e^{-j(M+m)\mathbf{w}} + h[M+1-m] e^{-j(M+1-m)\mathbf{w}} \right\}$$

$$= e^{-j\left(M+\frac{1}{2}\right)\mathbf{w}} \sum_{m>0} \left\{ h[M+m] e^{-j\left(m-\frac{1}{2}\right)\mathbf{w}} + h[M+m] e^{+j\left(m-\frac{1}{2}\right)\mathbf{w}} \right\}$$

$$= \left[\sum_{m>0} \left\{ 2h[M+m] \cos\left(\left(m-\frac{1}{2}\right)\mathbf{w}\right) \right\} \right] e^{-j\left(M+\frac{1}{2}\right)\mathbf{w}}$$

• Even about $\boldsymbol{w} = 0$: $A(0 + \boldsymbol{w}) = A(0 - \boldsymbol{w})$

Proof
$$\cos\left(\left(m-\frac{1}{2}\right)(-\mathbf{w})\right) = \cos\left(\left(m-\frac{1}{2}\right)\mathbf{w}\right)$$

• Odd about
$$\boldsymbol{w} = \boldsymbol{\pi}$$
: $A(\boldsymbol{p} + \boldsymbol{w}) = -A(\boldsymbol{p} - \boldsymbol{w})$

Proof

$$\cos\left(\left(m-\frac{1}{2}\right)(\mathbf{p}+\mathbf{w})\right) = \cos\left(m\mathbf{p}-\frac{\mathbf{p}}{2}+m\mathbf{w}-\frac{\mathbf{w}}{2}\right)$$
$$= \operatorname{Re}\left\{e^{jm\mathbf{p}}e^{-j\frac{\mathbf{p}}{2}}e^{jm\mathbf{w}}e^{-j\frac{\mathbf{w}}{2}}\right\}$$
$$= \operatorname{Re}\left\{(-1)^{m}(-j)e^{jm\mathbf{w}}e^{-j\frac{\mathbf{w}}{2}}\right\}$$
$$= (-1)^{m}\sin\left(m\mathbf{w}-\frac{\mathbf{w}}{2}\right)$$
$$\cos\left(\left(m-\frac{1}{2}\right)(\mathbf{p}-\mathbf{w})\right) = \cos\left(m\mathbf{p}-\frac{\mathbf{p}}{2}-m\mathbf{w}+\frac{\mathbf{w}}{2}\right)$$
$$= \operatorname{Re}\left\{e^{jm\mathbf{p}}e^{-j\frac{\mathbf{p}}{2}}e^{-jm\mathbf{w}}e^{+j\frac{\mathbf{w}}{2}}\right\}$$
$$= \operatorname{Re}\left\{(-1)^{m}(-j)e^{-jm\mathbf{w}}e^{+j\frac{\mathbf{w}}{2}}\right\}$$
$$= (-1)^{m}\sin\left(-m\mathbf{w}+\frac{\mathbf{w}}{2}\right)$$
$$= -(-1)^{m}\sin\left(m\mathbf{w}-\frac{\mathbf{w}}{2}\right)$$

• Periodic with period 4π : A(w+4p) = A(w)

Proof
$$\cos\left(\left(m-\frac{1}{2}\right)(\mathbf{w}+4\mathbf{p})\right) = \cos\left(\left(m-\frac{1}{2}\right)\mathbf{w}+4m\mathbf{p}-2\mathbf{p}\right)$$
$$= \cos\left(\left(m-\frac{1}{2}\right)\mathbf{w}\right)$$

- Type III
 - *h*[*n*]
 - Odd duration N
 - h[M] = 0
 - Odd-symmetric about midpoint h[M] = 0: $h_{III}[M + m] = -h_{III}[M m], \forall m > 0$

•
$$\boldsymbol{a} = M, \, \boldsymbol{b} = \frac{\boldsymbol{p}}{2}$$

• $A_{III}(\boldsymbol{w}) = \sum_{m>0} \{2h[M+m]\sin(m\boldsymbol{w})\}$

$$\hat{H}_{III}(\mathbf{w}) = \sum_{n} h[n] e^{-jn\mathbf{w}}$$

$$= h[M] e^{-jM\mathbf{w}} + \sum_{m>0} \left\{ h[M+m] e^{-j(M+m)\mathbf{w}} + h[M-m] e^{-j(M-m)\mathbf{w}} \right\}$$

$$= e^{-jM\mathbf{w}} \sum_{m>0} \left\{ h[M+m] e^{-jm\mathbf{w}} - h[M+m] e^{+jm\mathbf{w}} \right\}$$

$$= \left[\sum_{m>0} \left\{ 2(-j)h[M+m] \sin(m\mathbf{w}) \right\} \right] e^{-jM\mathbf{w}}$$

$$= \left[\sum_{m>0} \left\{ 2h[M+m] \sin(m\mathbf{w}) \right\} \right] e^{-j\left(M\mathbf{w} + \frac{p}{2}\right)}$$
which event are $0 \leftarrow A(0 + m) = A(0 - m)$

- Odd about w = 0: A(0 + w) = -A(0 w)
- Odd about $\boldsymbol{w} = \boldsymbol{\pi} : A(\boldsymbol{p} + \boldsymbol{w}) = -A(\boldsymbol{p} \boldsymbol{w})$
- Periodic with period 2π : A(w+2p) = A(w)
- Type IV
 - *h*[*n*]
 - Even duration N
 - Odd-symmetric about midpoint h[m] = -h[m+1]: $h_{IV}[M+m] = -h_{IV}[M+1-m], \forall m > 0$

•
$$\boldsymbol{a} = M + \frac{1}{2}, \ \boldsymbol{b} = \frac{\boldsymbol{p}}{2}$$

• $A_{IV}(\boldsymbol{w}) = \sum_{m>0} \left\{ 2h[M+m]\sin\left(\left(m-\frac{1}{2}\right)\boldsymbol{w}\right) \right\}$

$$\hat{H}_{IV}(\mathbf{w}) = \sum_{n} h[n]e^{-jn\mathbf{w}}$$

$$= \sum_{m>0} \left\{ h[M+m]e^{-j(M+m)\mathbf{w}} + h[M+1-m]e^{-j(M+1-m)\mathbf{w}} \right\}$$

$$= e^{-j\left(M+\frac{1}{2}\right)\mathbf{w}} \sum_{m>0} \left\{ h[M+m]e^{-j\left(m-\frac{1}{2}\right)\mathbf{w}} - h[M+m]e^{+j\left(m-\frac{1}{2}\right)\mathbf{w}} \right\}$$

$$= \left[\sum_{m>0} \left\{ 2(-j)h[M+m]\sin\left(\left(m-\frac{1}{2}\right)\mathbf{w}\right) \right\} \right]e^{-j\left(M+\frac{1}{2}\right)\mathbf{w}}$$

$$= \left[\sum_{m>0} \left\{ 2h[M+m]\sin\left(\left(m-\frac{1}{2}\right)\mathbf{w}\right) \right\} \right]e^{-j\left(\left(M+\frac{1}{2}\right)\mathbf{w}+\frac{\mathbf{p}}{2}\right)}$$

• Odd about w = 0: A(0+w) = -A(0-w)

- Even about $\boldsymbol{w} = \pi : A(\boldsymbol{p} + \boldsymbol{w}) = A(\boldsymbol{p} \boldsymbol{w})$
- Periodic with period 4π : A(w+4p) = A(w)
- a =mid-location of the duration interval
- $\boldsymbol{b} = \frac{\boldsymbol{p}}{2}$ when having odd-symmetric h[n] about midpoint(s)

To see this, odd \Rightarrow negative sign in the middle \Rightarrow sin \Rightarrow -j

- A(0) = 0 (III and IV) \Rightarrow block DC \Rightarrow bad low-pass filter
- $A(\pi) = 0$ (II and III) \Rightarrow bad high-pass filter
- Type I isn't the best since pass $w = 0, \pi$

$$\hat{H}(\mathbf{w}) = \prod_{i} \hat{H}_{i}(\mathbf{w}) = \left(\prod_{i} A_{i}(\mathbf{w})\right) e^{-j\left(\left(\sum_{i} \mathbf{a}_{i}\right)\mathbf{w} + \sum_{i} \mathbf{b}_{i}\right)}$$

• Adding ("+") g.l.p FIR filters may not acts as a g.l.p FIR

To see this, consider the symmetry of resulted h[n]

Filter Design technique

• Given $\hat{H}_{des}(\mathbf{w})$

• Targeting FIR g.l.p. filters

Frequency-sampling Design

• Find real h[n] FIR g.l.p. filter with duration interval $0 \le n < N$

and
$$\left| \hat{H} \left(k \frac{2\mathbf{p}}{N} \right) \right| = \left| \hat{H}_{des} \left(k \frac{2\mathbf{p}}{N} \right) \right| \quad 0 \le k < N$$

(always exist)

- Step
 - 1) Given N
 - 2) Pick filter type according to the <u>magnitude</u> of $\hat{H}_{des}(\mathbf{w})$ around 0, π

 \Rightarrow know α , β

- 3) Set real $\widetilde{A}(\mathbf{w})$ which
 - has required symmetry for the targeted filter type
 - $\tilde{A}(\mathbf{w}) = \left| \tilde{A}(\mathbf{w}) \right| = \left| \hat{H}_{des}(\mathbf{w}) \right|$

4) Get N equations from:
$$A\left(k\frac{2p}{N}\right) = \tilde{A}\left(k\frac{2p}{N}\right)$$

Note that we now look at $\widetilde{A}(\mathbf{w})$ for $0 < \omega < 2\pi$

- 5) Do one of the following:
 - 5.1) Solve for h[n]-values from the above N equations, using linear algebra.

5.2) Set
$$\hat{G}[k] = \tilde{A}\left(k\frac{2\boldsymbol{p}}{N}\right)e^{-j\left(ak\frac{2\boldsymbol{p}}{N}+b\right)}; 0 \le k < N$$

$$h[n] = \frac{1}{N}\sum_{k=0}^{N-1}\hat{G}[k]\boldsymbol{y}_{N}^{+nk}; 0 \le n < N$$

Time-domain least-squares design

- Minimize $\sum_{\ell=0}^{L-1} \left\| \hat{H}(\boldsymbol{w}_{\ell}) \right\| \left| \hat{H}_{des}(\boldsymbol{w}_{\ell}) \right\|$ for general set of \boldsymbol{w} -points: ω_{ℓ} , $0 \le \ell < L$; L can > N
 - Match (approximately) at a general set of *w*-points: w_{ℓ} , $0 \le \ell < L$ not necessarily uniformly spaced \Rightarrow can prioritize matching regions

• Find
$$h[n], 0 \le n < N$$
, such that $\sum_{\ell=0}^{L-1} |A(\boldsymbol{w}_{\ell}) - \widetilde{A}(\boldsymbol{w}_{\ell})|$ is minimized

• Let
$$\alpha_{\ell} = \widetilde{A}(\mathbf{w}_{\ell}), \ \underline{h} = \begin{pmatrix} h[first] \\ \vdots \\ h[first + \mathbf{h} - 1] \end{pmatrix}, \ \underline{a} = \begin{pmatrix} \mathbf{a}_{1} \\ \vdots \\ \mathbf{a}_{k} \end{pmatrix}$$

 $\Gamma_{L \times h}$ = matrix with entries from coefficients on *h*'s

• \Rightarrow Minimize $\|\Gamma \underline{h} - \underline{a}\|^2 \rightarrow \hat{\underline{h}} = (\Gamma^T \Gamma)^{-1} \Gamma^T \underline{a}$

Weighted time domain least squares filter design

• Given weights $\boldsymbol{\varepsilon}_{\ell} > 0$. LHW $\begin{pmatrix} \boldsymbol{e}_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \boldsymbol{e}_L \end{pmatrix}$

• Choose h to minimize
$$\sum_{\ell=0}^{L-1} \boldsymbol{e}_{\ell} | [\Gamma \underline{h}]_{\ell} - \boldsymbol{a}_{\ell} |^2$$
 or $(\Gamma \underline{h} - \underline{\boldsymbol{a}})^T E(\Gamma \underline{h} - \underline{\boldsymbol{a}}) \Rightarrow$
 $\underline{\hat{h}} = (\Gamma^T E \Gamma)^{-1} \Gamma^T E \underline{\boldsymbol{a}}$

Windowing

• Minimize $\frac{1}{2\boldsymbol{p}} \int_{-\boldsymbol{p}}^{\boldsymbol{p}} |\hat{H}(\boldsymbol{w}) - \hat{H}_{des}(\boldsymbol{w})|^2 d\boldsymbol{w}$ by

Windowing $h_{des}[n]$ with **rectangular** windowing function $\Box_L[n] = \begin{cases} 1 & |n| < L \\ 0 & |n| \ge L \end{cases} \Rightarrow$

$$h[n] = \Box_L[n]h_{des}[n] = \begin{cases} h_{des}[n] & |n| < L \\ 0 & |n| \ge L \end{cases} = \text{truncated version of } h_{des}[n]$$

Proof Use Parseval Identity:

$$\frac{1}{2p} \int_{-p}^{p} \left| \hat{H}(\mathbf{w}) - \hat{H}_{des}(\mathbf{w}) \right|^{2} d\mathbf{w} = \sum_{n=-\infty}^{\infty} \left| h[n] - h_{des}[n] \right|^{2}$$
$$= \sum_{n=-(L-1)}^{L-1} \left| h[n] - h_{des}[n] \right|^{2} + \sum_{|n| \ge L} \left| 0 - h_{des}[n] \right|^{2}$$

To minimize, set $h[n] = h_{des}[n]$; -L < n < L

• h[n] isn't causal \Rightarrow shift it by (L-1) $\rightarrow 0 \le n < 2L-1$

•
$$\hat{H}(\mathbf{w}) = \sum_{n=-(L-1)}^{(L-1)} h_{des}[n]e^{-jn\mathbf{w}} = a \text{ partial sum of } \hat{H}_{des}(\mathbf{w}), \text{ which is } \sum_{n=-\infty}^{\infty} h_{des}[n]e^{-jn\mathbf{w}}$$

• $\hat{\Pi}(\mathbf{w}) = \frac{\sin\left(\left(L - \frac{1}{2}\right)\mathbf{w}\right)}{\sin\left(\frac{\mathbf{w}}{2}\right)} = \frac{\sin\left(\frac{N}{2}\mathbf{w}\right)}{\sin\left(\frac{\mathbf{w}}{2}\right)}$

Proof

$$\sum_{k=0}^{(2L-1)^{-1}} d[n-k] \xleftarrow{DTFT} e^{-j\frac{2L-1-1}{2}w} \left(\frac{\sin\left(\frac{2L-1}{2}w\right)}{\sin\left(\frac{1}{2}w\right)} \right)$$

$$\sum_{k=-(L-1)}^{L-1} d[n-k] \xleftarrow{DTFT} e^{-j(L-1)w} \left(\frac{\sin\left(\frac{2L-1}{2}w\right)}{\sin\left(\frac{1}{2}w\right)} \right) e^{j(L-1)w} ; \text{ time-shift rule}$$
• $\hat{\mathbf{n}}(w) = \frac{\sin\left(\left(L-\frac{1}{2}\right)w\right)}{\sin\left(\frac{w}{2}\right)} = 0 \text{ iff } \left(L-\frac{1}{2}\right)w = m\mathbf{p}, m \neq 0 \Rightarrow$

$$w = \frac{m\mathbf{p}}{L-\frac{1}{2}} = \frac{2m\mathbf{p}}{N}, m \neq 0$$
• Central lobe's width $= \frac{2\mathbf{p}}{1} = \frac{4\mathbf{p}}{2L-1} = \frac{4\mathbf{p}}{N} \Rightarrow \text{ decrease as N increase}$

• I۷ $L-\frac{1}{2}$

Area under one side of first side-lobe = •

$$\frac{\frac{2p}{L-\frac{1}{2}}}{\int\limits_{-\frac{1}{2}}^{\frac{p}{2}}\frac{\sin\left(\left(L-\frac{1}{2}\right)\mathbf{w}\right)}{\sin\left(\frac{\mathbf{w}}{2}\right)}d\mathbf{w} = \int\limits_{-\frac{1}{N}}^{\frac{4p}{N}}\frac{\sin\left(\frac{N}{2}\mathbf{w}\right)}{\sin\left(\frac{\mathbf{w}}{2}\right)}d\mathbf{w}$$

 \Rightarrow roughly the same @ -0.868 as N increases

- $h[n] = \Box_L[n]h_{des}[n] \xrightarrow{DTFT} \hat{H}(\mathbf{w}) = \frac{1}{2\mathbf{p}} \int_{-\mathbf{p}}^{\mathbf{p}} \hat{H}_{des}(\mathbf{m})\hat{\Box}(\mathbf{w} \mathbf{m})d\mathbf{m}$
 - $\hat{H}(\mathbf{w}) = \frac{1}{2\mathbf{p}} \int_{-\mathbf{p}}^{\mathbf{p}} \hat{H}_{des}(\mathbf{m}) \hat{\mathbf{u}}(\mathbf{w} \mathbf{m}) d\mathbf{m}$

Start with w = 0 and increasing it.

Assume that the side lobes beyond the first one don't contribute too much.

• First, central and two first-side-lobe of $\hat{\Box}(w-m)$ is in the passband of

$$\hat{H}_{des}(\mathbf{m})$$
, so IQMI UD $\approx \begin{pmatrix} \text{area under} \\ \text{main lobe} \end{pmatrix} - 2 \begin{pmatrix} \text{area under} \\ \text{first-side-lobe} \end{pmatrix}$

• Next, the right first-side-lobe is going out of $\hat{H}_{des}(\mathbf{m})$'s passband so the integral increase until all of the right first-side-lobe is gone out of $\hat{H}_{des}(\mathbf{m})$'s

passband. Then, integral
$$\approx \begin{pmatrix} \text{area under} \\ \text{main lobe} \end{pmatrix} - \begin{pmatrix} \text{area under} \\ (\text{left}) \text{first-side-lobe} \end{pmatrix}$$

so, height of the overshoot is proportional to the area of the first-side lobe

- Then, Central lobe start going out of $\hat{H}_{des}(\mathbf{m})$'s passband so the integral start to decrease again (big decrease). This is where the transition region occurs and it is proportional to the width of the main lobe.
- Finally, all of the main lobe is gone out of $\hat{H}_{des}(\mathbf{m})$'s passband. The left firstside lob starts to get out, so the integral increases again because less negative part is included.
- Gibbs Phenomenon (9% overshoot) at jump
- Bigger N \Rightarrow narrower central lobe \Rightarrow narrower transition region
- Same first-side-lobe area \Rightarrow same peak overshoot (Gibbs); $\forall N$

	$\Box_L[n]$ for $-L < n < L$	PDQ-CREH	WIG - OREH
	$(=0 \text{ for } \mathbf{n} \ge \mathbf{L})$	ZIOWK	KHJKWWCH-
			REHDIND
5 HFWQI XOU		4 p	- G
		N	
7 UDQI XODU	n	8 p	- G
%DUNDIW	$-\frac{1}{L}$	N	
+DQQ	1 1 n p	8 p	- G
+DQQQ	$\frac{-}{2} + \frac{-}{2} \cos \frac{-}{2}$	\overline{N}	
Hamming	$54 \pm 46\cos^{-n}\mathbf{p}$	8 p	- G
	2	N	

0 IQP D() IOM GHMJ Q

• $W_c = \text{cutoff}$

 $\boldsymbol{w}_p = \text{last } \boldsymbol{w} < \boldsymbol{w}_c \text{ (in passband) where } \hat{H}(\boldsymbol{w}) = 1$

 $\boldsymbol{w}_{s} = \text{first } \boldsymbol{w} > \boldsymbol{w}_{c} \text{ (in stopband) where } \hat{H}(\boldsymbol{w}) = 0$

 \boldsymbol{w}_{s} - \boldsymbol{w}_{p} ~ transition region width

- d_1 = passband ripple max
- d WRSEDQGUSSOPP D

- 3 URVRVVS LIEDSURE OPP
 - DHALJ QDGXUDAARQ -1),5 IICAMU
 - transition region width w_s - w_p < a specific amount
 - minimizes the maximum of d_1 and d_2
- 3 URSHUMHARI VROXWRQ
 - Equiripple in both passband and stopband
 - *d d*
 - number of ripples between 0 and w_c is N
 - HJJHU $l \Rightarrow$ PDOOHU d d UHISSON

Signal flow graph

- Any signal flow graph describing filter is a realization of the filter
- Minimal/canonical realization \Rightarrow fewest possible delay branch " $\xrightarrow{z^{-1}}$ "
- #delay branches \approx amount of memory required via the given signal flow graph

• In general,
$$H(z) = \frac{p(z)}{q(z)} = \underbrace{p(z)}_{FIR} \underbrace{\left(\frac{1}{q(z)}\right)}_{IIR}$$
, a proper rational function

- Order of the filter = degree of q(z) = N (assume fraction is in lowest terms)
 Ex.
- Filter is FIR $\Leftrightarrow q(z) = z^n$
- Minimal realization have # delay branches = Order of the filter = N
- $y[n] + a_1 y[n-1] + a_2 y[n-2] = b_0 w[n] + b_1 w[n-1] + b_2 w[n-2]$

$$H(z) = \frac{b_0 z^2 + b_1 z + b_2}{z^2 + a_1 z + a_2} \implies N=2$$

Direct Form II: Controllable canonical realization

•
$$Y(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} W(z) = (b_0 + b_1 z^{-1} + b_2 z^{-2}) \underbrace{\left(\frac{W(z)}{1 + a_1 z^{-1} + a_2 z^{-2}}\right)}_{Q(z)}$$

• $Q(z) = \frac{W(z)}{1 + a_1 z^{-1} + a_2 z^{-2}}$

$$Q(z) + a_1 z^{-1} Q(z) + a_2 z^{-2} Q(z) = W(z)$$

$$q[n] + a_1 q[n-1] + a_2 q[n-2] = w[n]$$

• $q[n] = w[n] - a_1q[n-1] - a_2q[n-2]$

• $H(z) = \frac{1}{1 + a_1 z^{-1} + \ldots + a_N z^{-N}}$

Transposed Direct Form II: Observable canonical realization

• $y[n] = b_0 w[n] + (b_1 w[n-1] - a_1 y[n-1]) + (b_2 w[n-2] - a_2 y[n-2])$

- Guarantees that it also realizes H(z)
- To get from direct form II, just reverse all the arrows and switch roles of *w*[*n*] and *y*[*n*]
- ' ILHAMKUP ,
- QRQP IQP DOHDOLD DWRQ
- $g[n] = b_0 w[n] + b_1 w[n-1] + b_2 w[n-2] = y[n] + a_1 y[n-1] + a_2 y[n-2]$

- **Cascade Realization**: a chain of direct form realizations of the individual 1st- and 2nd- order factors
- 3DUMHRUP

• ([SDQG
$$\frac{H(z)}{z}$$
 XVJ SDWACDDFVRQV

- 5 H00] HHDFKSIEFHGUEFWØ
- HRRNXS IQSD HODD
- Cascade of an FIR system with an IIR system

$$H(z) = \frac{p(z)}{q(z)} = \underbrace{p(z)}_{FIR} \underbrace{\left(\frac{1}{q(z)}\right)}_{IIR}$$

• (Causal) **FIR Filters**

- FIR filters with generalized linear phase
 -) **R**1 **R**CG , ,,,

use -1 for odd symmetric h[n] (III)

•) **R**1 HMHQ ,, ,9

use -1 for odd symmetric h[n] (IV)