
EE 310 Prapun Suksompong
8/11/00 6:56 PM CS211 note API.doc

Wrapper Classes
• Character, Integer, Long, Float, and Double
• class names begin with an upper case letter
• they literally wrap the primitive data type in a class
• are used to provide constants and general methods for the

primitive data types.
• Integer.parseInt(String s)

Stream Classes
• stream → refers to any input source or output destination for

data
input of data → public BufferedReader(Reader in);
• InputStreamReader stream = new InputStreamReader (System.in);

BufferedReader keyboard = new BufferedReader(stream)
• BufferedReader keyboard = new

BufferedReader(new InputStreamReader(System.in));
• keyboard.readline()
• int intNumber = new Integer(keyboard.readline()).intValue();

output of data → public PrintWriter(OutputStream out, boolean
autoFlush);
• You are advised to set the autoflash argument to true,

otherwise, you may not get any information to appear on the
screen of a monitor

• PrintWriter screen = new PrintWriter(System.out, true);
• screen.println(“abc”);
• screen.print(“abc”); screen.flush();
Without the flush method, the output will not be displayed on the
screen until the next println statement is executed by the
computer.
FileReader
FileReader file-name1 = new FileReader("pathname");
BufferedReader inputFile = new BufferedReader(file-name1);
…
float-name = new Float(inputFile.readLine()).floatValue();
string-name = inputFile.readLine();
...
inputFile.close();
• the double backslash \\ in path name is necessary to avoid any

confusion with an escape character in the string.
• FileNotFoundException
FileWriter
FileWriter file-name2 = new FileWriter("pathname");
PrintWriter outputFile = new PrintWriter(file-name2);
…
outputFile.println();
…
outputFile.close();

File f = new File(“FileName.txt”);
FileInputStream fis = new FileInputStream(f);
BufferedReader input = new BufferedReader(fis);
Writing text files
• FileOutputStream outputFile = new

FileOutputStream(“FileName.txt”);
OutputStreamWriter outputStream = new
OutputStreamWriter(outputFile);
PrintWriter printWriter = new PrintWriter(outputStream, true);

• FileOutputStream outputFile = new
FileOutputStream(“FileName.txt”);
PrintWriter printWriter = new PrintWriter(outputFile, true);

• FileWriter fileWriter = new FileWriter(“info.txt”);
PrintWriter printWriter = new PrintWriter(fileWriter, true);

Reading Text Files
• FileInputStream inputFile = new

FileInputStream(“FileName.txt”);
InputStreamReader reader = new InputStreamReader(inputFile);

• FileReader fileReader = new FileReader(“info.txt”);

import java.io.*;
public class Class1
{
 public static void main(String args[]) throws
FileNotFoundException, IOException
 {

 File f = new File("x.txt");

 FileReader fr = new FileReader(f);
 BufferedReader br = new BufferedReader(fr);

 FileWriter fw = new FileWriter(f);
 PrintWriter pw = new PrintWriter(fw,true);

 pw.println("haha");
 System.out.println(br.readLine());
 }
}

StringTokenizer
public class StringTokenizer implements Enumeration
• public StringTokenizer(String str,String delim, boolean

returnTokens);
• public StringTokenizer(String str, String delim);
• public StringTokenizer(String str);
• public boolean hasMoreTokens();
• public String nextToken();

return a token delimited by any white space character.
• public String nextToken (String delim);

return a token specially delimited by the character delim.
o note that it requires a string argument and not a

character argument
• public boolean hasMoreElements();
• public Object nextElement();

• public int countTokens();
• If the token delimiter is not specified, then the delimiter is

assumed to be any white space character.
java.util.Random
Random()
• nextInt() → Returns the next pseudorandom, uniformly

distributed int value from this random number generator's
sequence

java.lang.Math
• abs(double)
• abs(float)
• abs(int)
• abs(long)
Class
public final class Class extends Object implements Serializable
java.lang.Class
• Instances of the class Class represent classes and interfaces

in a running Java application.
• Every array also belongs to a class that is reflected as a

Class object that is shared by all arrays with the same element
type and number of dimensions.

• The primitive Java types (boolean, byte, char, short, int,
long, float, and double), and the keyword void are also
represented as Class objects.

• Class has no public constructor.
• Class objects are constructed automatically by the Java Virtual

Machine as classes are loaded and by calls to the defineClass
method in the class loader.

method
• static Class forName(String className) throws

ClassNotFoundException → Returns the Class object associated
with the class or interface with the given string name.

• public Constructor[] getConstructors() throws SecurityException
→ Returns an array containing Constructor objects reflecting
all the public constructors of the class represented by this
Class object. An array of length 0 is returned if the class has
no public constructors, or if the class is an array class, or
if the class reflects a primitive type or void.

• public String getName() → Returns the fully-qualified name of
the entity (class, interface, array class, primitive type, or
void) represented by this Class object, as a String.

To print the class name of an object:
void printClassName(Object obj)
{

System.out.println("The class of " + obj +
 " is " + obj.getClass().getName());
}
Interface Serializable
• public interface Serializable
• java.io
• Serializability of a class is enabled by the class implementing

the java.io.Serializable interface.
• Classes that do not implement this interface will not have any

of their state serialized or deserialized.

of their state serialized or deserialized.
• All subtypes of a serializable class are themselves

serializable.
• The serialization interface has no methods or fields and serves

only to identify the semantics of being serializable.
• ObjectOutputStream and ObjectInputStream can provide an

application with persistent storage for graphs of objects when
used with a FileOutputStream and FileInputStream respectively.

• Classes control how they are serialized by implementing either
the java.io.Serializable or java.io.Externalizable interfaces.

• Implementing the Serializable interface allows object
serialization to save and restore the entire state of the
object and it allows classes to evolve between the time the
stream is written and the time it is read.

ObjectOutputStream
• An ObjectOutputStream writes primitive data types and graphs of

Java objects to an OutputStream.
• The objects can be read (reconstituted) using an

ObjectInputStream.
• Persistent storage of objects can be accomplished by using a

file for the stream.
• If the stream is a network socket stream, the objects can be

reconsituted on another host or in another process.
• Only objects that support the java.io.Serializable interface

can be written to streams.
• The method writeObject is used to write an object to the

stream.
• Any object, including Strings and arrays, is written with

writeObject.
• Multiple objects or primitives can be written to the stream.
• The objects must be read back from the corresponding

ObjectInputstream with the same types and in the same order as
they were written.

• Primitive data types can also be written to the stream using
the appropriate methods from DataOutput. Strings can also be
written using the writeUTF method.

To write an object that can be read by the example in
ObjectInputStream:

FileOutputStream ostream = new FileOutputStream("t.tmp");
ObjectOutputStream p = new ObjectOutputStream(ostream);
p.writeInt(12345);
p.writeObject("Today");
p.writeObject(new Date());
p.flush();
ostream.close();

ObjectInputStream
• An ObjectInputStream deserializes primitive data and objects

previously written using an ObjectOutputStream.
• is used to recover those objects previously serialized.
• ObjectInputStream ensures that the types of all objects in the

graph created from the stream match the classes present in the
Java Virtual Machine. Classes are loaded as required using the
standard mechanisms.

• Only objects that support the java.io.Serializable or
java.io.Externalizable interface can be read from streams.

• The method readObject is used to read an object from the
stream. Java's safe casting should be used to get the desired
type.

• In Java, strings and arrays are objects and are treated as
objects during serialization. When read they need to be cast to
the expected type.

• Primitive data types can be read from the stream using the
appropriate method on DataInput.

• Reading an object is analogous to running the constructors of a
new object. Memory is allocated for the object and initialized
to zero (NULL). No-arg constructors are invoked for the non-
serializable classes and then the fields of the serializable
classes are restored from the stream starting with the
serializable class closest to java.lang.object and finishing
with the object's most specifiec class.

To read from a stream as written by the example in
ObjectOutputStream:
 FileInputStream istream = new FileInputStream("t.tmp");
 ObjectInputStream p = new ObjectInputStream(istream);
 int i = p.readInt();
 String today = (String)p.readObject();
 Date date = (Date)p.readObject();
 istream.close();
Class Constructor
java.lang.reflect.Constructor
Constructor provides information about, and access to, a single
constructor for a class.
Constructor permits widening conversions to occur when matching the
actual parameters to newInstance() with the underlying
constructor's formal parameters, but throws an
IllegalArgumentException if a narrowing conversion would occur.
public Object newInstance(Object[] initargs)
 throws InstantiationException,
 IllegalAccessException,
 IllegalArgumentException,
 InvocationTargetException
→ Uses the constructor represented by this Constructor object to
create and initialize a new instance of the constructor's declaring
class, with the specified initialization parameters.

