Poisson Processes

- Used to model phenomena that occur at "purely random" instants in time.
- Characterization II supports this interpretation strongly.
- Define $\{X(t), t \in T\}$, where T is an interval of the real line (often $[0, \infty)$ or $(-\infty, \infty)$)

Def: $\{X(t)\}$ is a homogeneous Poisson process with rate λ
if it is a homogeneous Markov process with state space $S=\{0, \pm 1, \pm 2, \ldots\}$ (or sometimes $S=\{0,1,2, \ldots\}$) and transition rate matrix $q_{i, j}= \begin{cases}\lambda & \text { if } j=i+1 \\ -\lambda & \text { if } j=i \\ 0 & \text { otherwise }\end{cases}$

- $Q=\left(\begin{array}{cccccc}-\lambda & \lambda & 0 & 0 & \cdots & 0 \\ 0 & -\lambda & \lambda & 0 & \cdots & 0 \\ 0 & 0 & -\lambda & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & 0 & -\lambda & \lambda\end{array}\right)$
- Other useful characterizations:
$\{X(t), t \in T\}$ has integer-valued, right continuous sample paths.
I (a) For $t_{0}<t_{1}<\ldots<t_{n}$,
the random variable $X\left(t_{0}\right), X\left(t_{1}\right)-X\left(t_{0}\right), X\left(t_{2}\right)-X\left(t_{1}\right), \ldots, X\left(t_{\mathrm{n}}\right)-X\left(t_{\mathrm{n}-1}\right)$ are independent,
and
(b) For $s<t, X(t)-X(s) \sim \mathcal{P}(\lambda(t-s))$;

$$
\text { i.e., } P[X(t)-X(s)=k]=(\lambda(t-s))^{k} \frac{\mathrm{e}^{-\lambda(t-s)}}{k!}
$$

II Let $T=[0, \infty)$ and $X(0)=0$
Then $\{X(t), t \in T\}$ is Poisson with rate λ if and only if
(a) For $s<t$, given that $X(t)-X(s)=n$, the jump times of $\{X(\cdot)\}$ in $[s, t]$ are uniformly distributed over $\left\{t \in \mathbb{R}^{n}: s<\tau_{1}<\tau_{2}<\ldots<\tau_{n}<t\right\}$,

- For example,
- If given number of jump $=2$ during time s and t,

For each jump, the time that is occurs distributed according to $f_{J}(u)=\frac{1}{s-t}, s \leq u \leq t$ (i.i.d.)
The following plot shows the joint-pdf of the times of jump:, $f_{J, J^{\prime}}(u, v)=\frac{1}{(s-t)^{2}}, s \leq u, v \leq t$.

- If also numbered the jump, then the second jump has to occur after the first jump: $f_{J_{1}, J_{2}}\left(\tau_{1}, \tau_{2}\right)=\frac{1}{\frac{1}{2}(s-t)^{2}}, s \leq \tau_{1}<\tau_{2} \leq t$.

And
(b) For $s<t, X(t)-X(s) \sim \mathcal{P}(\lambda(t-s))$.

- Holding time T_{k} are i.i.d. $\mathcal{E}(\lambda)$ random variable.
$\mathrm{E} T=\frac{1}{\lambda}$
All states are transient (in fact, non-return)

- Examples
- Radioactive disintegrations (hence Geiger counter counts)
- Arrival times of customers
- Raindrop arrivals in a water glass.
- Packet arrivals at a data communication network node.
- The initial condition for the Poisson process is $p_{0}(0)=1$, and $p_{j}(0)=0$ for $j>0$. (At time 0 , start at state 0).
- Derivation of the state probabilities from the transition rate matrix.

From $\underline{p}^{\prime}(t)=\underline{p}(t) Q$, we have

$$
\left[p_{0}^{\prime}(t), p_{1}^{\prime}(t), \ldots\right]=\left[p_{0}(t), p_{1}(t), \ldots\right]\left(\begin{array}{cccccc}
-\lambda & \lambda & 0 & 0 & \cdots & 0 \\
0 & -\lambda & \lambda & 0 & \cdots & 0 \\
0 & 0 & -\lambda & \lambda & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & 0 & 0 & -\lambda & \lambda
\end{array}\right) \text {. }
$$

Hence, $p_{0}^{\prime}(t)=-\lambda p_{0}(t)$, and $p_{j}^{\prime}(t)=-\lambda p_{j}(t)+\lambda p_{j-1}(t)$ for $j \geq 1$.
From $p_{0}^{\prime}(t)=-\lambda p_{0}(t)$, we have $p_{0}(t)=c e^{-\lambda t}$. The initial condition $p_{0}(0)=1$ requires that $c=1$. Hence, $p_{0}(t)=e^{-\lambda t}$.
We will show that $p_{j}(t)=\frac{(\lambda t)^{j}}{j!} e^{-\lambda t}$ by induction. We have already shown that this is true for the case $j=1$. Now assume that $p_{j}(t)=\frac{(\lambda t)^{j}}{j!} e^{-\lambda t}$ for $j=0,1, \ldots$,
$k-1$. Now, from $p_{k}^{\prime}(t)=-\lambda p_{k}(t)+\lambda p_{k-1}(t)=-{\underset{\alpha}{\alpha(t)}}_{\lambda} p_{k}(t)+\underbrace{\lambda \frac{(\lambda t)^{k-1}}{(k-1)!} e^{-\lambda t}}_{\beta(t)}$. The
solution for this differential equation is $p_{k}(t)=e^{-\int \alpha(t) d t} \int \beta(t) e^{\int \alpha(t) d t} d t+c e^{-\int \alpha(t) d t}$. Now, $\int \alpha(t) d t=\lambda t$. So we have

$$
p_{k}(t)=e^{-\lambda t} \int \lambda \frac{(\lambda t)^{k-1}}{(k-1)!} e^{-\lambda t} e^{\pi t} d t+c e^{-\lambda t}=e^{-\lambda t} \frac{\lambda^{k} t^{k}}{k!}+c e^{-\lambda t} .
$$

Using the initial condition $p_{k}(0)=0$, we have $c=0$, and hence,

$$
p_{k}(t)=e^{-\lambda t} \frac{\lambda^{k} t^{k}}{k!} .
$$

- State diagram:

At time t, consider the next $d t$ time unit.

- $\operatorname{Pr}[$ at least one jump occurs before $\mathrm{d} t]=\operatorname{Pr}\left[1^{\text {st }}\right.$ jump occurs before $\left.\mathrm{d} t\right]$
$=1-e^{-\lambda d t} \frac{(\lambda d t)^{0}}{0!}=1-e^{-\lambda d t}=1-(1-\lambda d t)+o(d t)=\lambda d t+o(d t)$.
$\lim _{d t \rightarrow 0} \frac{P\left[1^{\text {st }} \text { jump before } \mathrm{dt}\right]}{d t}=\lim _{d t \rightarrow 0} \frac{\lambda d t+o(d t)}{d t}=\lambda$
- $\lim _{d t \rightarrow 0} \frac{P\left[1^{s t} \text { jump before } \mathrm{dt}\right]}{d t}=\lim _{d t \rightarrow 0} \frac{1-e^{-\lambda d t}}{d t}=\lim _{d t \rightarrow 0} \frac{\frac{d}{d t}\left(1-e^{-\lambda d t}\right)}{\frac{d}{d t} d t}=\lim _{d t \rightarrow 0} \frac{\lambda e^{-\lambda d t}}{1}=\lambda$
- $P\left[2^{\text {nd }}\right.$ jump before dt $]$
$=P\left[1^{\text {st }}\right.$ jump before dt $] P\left[2^{\text {nd }}\right.$ jump before dt $1^{\text {st }}$ jump before dt $]$
We know that $P\left[2^{\text {nd }}\right.$ jump before dt $\mid 1^{\text {st }}$ jump before dt $] \leq P\left[1^{\text {st }}\right.$ jump before dt $]$ because the time interval is smaller.
Thus,

$$
\begin{aligned}
& P\left[2^{\text {nd }} \text { jump before dt }\right] \leq\left(P\left[1^{\text {st }} \text { jump before dt }\right]\right)^{2}=\left(1-e^{-\lambda d t}\right)^{2}=(\lambda d t)^{2} \\
& \lim _{d t \rightarrow 0} \frac{P\left[2^{\text {nd }} \text { jump before dt }\right]}{d t}=0
\end{aligned}
$$

- This is consistent with what we have in the Q matrix.

