PMF
Random: R,

e P :% for 2 ={1,2,...,n}.

o classical game of chance / classical probability drawing at random
o fair gaming devices (well-balanced coins and dice, well shuffled decks of cards)
¢ high-rate coded digital data
e experiment where
o there are only n possible outcomes and they are all equally probable
o there is a balance of information about outcomes

Bernoulli: B(1,p)

e 2={01}po=q=1-p,p1=p
e EX=1p+0(1-p)=p

e EX=1p+0(1-p)=p
E[X?]=pl*+(1-p)0°=p
Var(X)=E[X*]-(EX) = p-p*=p(1-p)
Alternatively, Var(X)=p(1-p) +(1-p)(0-p)° = p(1-p)(1-p+p)=p(l-p).

Binomial: B(n,p)

D, :(?)p‘(l— p)” for ={0,1,2,...,n}

e X s the number of success in n Bernoulli trials and hence the sun of n independent,
identically distributed Bernoulli r.v.

e D, (u):(l— P+ pe’“)n

o, =efe (oo - 30 2]

iu n

= p)n(1+1pej j =(1-p+pet)

e EX=np



Pf. Method 1 EX=Zn:i[?j (1-p)" =(- pn,zn:'( j[ pj

n-1
P (P
(1-p) nl—p(l—p+] np
Method 2 o (u)=n(1-p+pe*)" jpe. EX =i, (u) =np.
du X du X

u=0

EX?= (np)2 +np(1-p)

Pf. Method 1 Zkz(n r :nr(r+1)"_1[1+(n—1)Lj

o \Kk r+1
oo oo el
1-p

=np(1+(n-1) p):(np)2 +np(1- p)
2
Method 2 %CDX (u)= jnp(j(l— P+ pej“)n_leiu +(n—1)(1— P+ peju)"—Zeju pjer)
:—np((l— p+pe”) " +p(n-1)(1-p+ pe” )n_ze"“)e"”

EX?=——0

=np(L+ p(n-1))=np(L+np—p)

u=0

=(np)" +np(1-p)
Var[X]=EX?—(EX) =np(1- p)
0 <p <1 = probability of single occurrence of ~ 5(1,p)

If have &, ..., & nunlinked repetition of £ and event A for & B(n,p) = the probability that A
occurs k times in &, ...,&,
Maximum probability value happens at knax = [(n+1)p | ~ np

e When (n+1)p is an integer, then the maximum is achieved at Kmax and Kmax-1.

B(l,%) = binomial that also random

Ex
e #heads in n toss of a coin (p = 0.5)



e #errors in n symbols of text
(p = the probability of an error in a single symbol of text)
Gaussian Approximation for Binomial Probabilities

Binomial random variable becomes difficult to compute directly for large n because of the
need to calculate factorial terms.

1 B (k—np)2
Pr[X =k] = ———x—e "7
J27znp(1-p)
Proof Binomial random variable X is a sum of iid Bernoulli random variables (which have
finite mean p and variance p(1- p)), by the Central limit theorem, its cdf approaches

that of a Gaussian random variable Y ~ W (ng,no®) = N (np,np(1- p)).

1

2 —#(x—np)2
Pr[X =k]:Pr|:k_%<Y<k+1 .[ e 2np(1-p) dx

B 1
2} - J2znp(1- p) he!

1 2
1 e’znpa—p)(k’””)

\2znp(1- p)

, Where the second approximation comes from appromiating the integral by the
product of the integrand at the center of the interval (at x = k) of integration and the
length of the interval of integration (1).

Geometric: G(f)

p=(1-8)8, Q=NuU{0}, 0<p<1

/;:m

m+1
Pr[X =k]=Pr[k failures followed by a success|

where m = average waiting time/ lifetime

= (Pr[failures]) Pr[success]

Pr[X >k]= "= the probability of having at least k initial failure = the probability of having
to perform at least k+1 trials.

o0 k+1
PriX >k]=> (1-8)8' =(1- ﬂ)lﬂ—ﬂ = B*** = the probability of having at least k+1
i=k+1 -
initial failure.

Memoryless property:
e Pr[X=zk+c|X2k]=Pr[X2c]kc>0.

e Pr[X>k+c|X2k]=Pr[X >c]kc>0.



PrIX >k+cA X 2k] Pr[X=k+c] g

Pr[X>k]  Pr[Xx=k] p* =

Pf. Pr[X 2k +c|X >k]=

e If asuccess has not occurred in the first k trials (already fails for k times), then the
probability of having to perform at least j more trials is the same the probability of
initially having to perform at least j trials.

e Each time a failure occurs, the system “forgets” and begins anew as if it were performing
the first trial.

e Geometric r.v. is the only discrete r.v. that satisfies the memoryless property.
o Ex.

o lifetimes of components, measured in discrete time units, when the fail catastrophically
(without degradation due to aging)

e waiting times
o for next customer in a queue
e Dbetween radioactive disintegrations
e between photon emission

e number of repeated, unlinked random experiments that must be performed prior to the
first occurrence of a given event A

e number of coin tosses prior to the first appearance of a *head’
number of trials required to observe the first success

Poisson: P(A7)

¢ pi= e—(/”)(/l_r) ; Q=NU{0},0<Ar=«

° CDX (u):
k
) o /Ir)k . o (/lre'“)
(D — E iux — —Zr( iuk — -t
« (u)=Ee kZ:(;e o e =e kZ:(; O
— e—/ir Arel — eﬂT(elufl)
e EX=Ar
Pf. Method 1

—e M Are = At

k
= e"hxlrz (M-)
o k!

Method 2



. d
EX :_IECDX (u)u:0 =t

If Ais the rate, rdenotes a certain time period or certain region in space, then o = EX is the
average number of event occurrences in a specified time interval or region in space.

. VAR(X):/”Lr
Pf. Method 1

0 lk—l
Note that Zk

Z" (k-1)!

=e* +e’.

= (17)2 + At
Method 2
2 ) | .
%CDX (u)=—Are eh(e ) —(4 )ze'zu Ar(e" -1)
d? )
Exzzz_aag®x(u) =t +(A7)
u=0

VAR(X)=((27)" + A7)~ (e) = 27
e Ar = mean/average #counts
e 7 =observation time

e Jl=an event intensity / rate of occurrence/current
o iid Ny~P(u)—>N=> N, ~ P

@ ()= Ty, (0)=[T&" =>4

e Most probable value (i, )

Most probable value (i, ) | Associated max probability

O<axl 0 e
aeN a-la & e
al
la]
a>1, aeN ||a] T e




Pf. P _ _i. The denominator is positive and > 1. Therefore, for fixed «, Py is a non-

pp i+l p;

increasing function of i. Hence for o < 1, P _ % always < 1, and p, is always
p, i+

decreasing. For o >1, we search for Pia % <1 which yields i > a —1.
p, i+

1
eak value N ——
p Pra) =
Rare events limit of the binomial (large n, small p)

limp, = lim (Tj p'(1- p)”*i = e’”‘% where a =np.

n—o |

Example
e #photons emitted by a light source of intensity A [photons/second] in time =
e #atoms of radioactive material undergoing decay in time 7

o #clicks in a Geiger counter in zseconds when the average number of click in 1 second is
A

e #dopant atoms deposited to make a small device such as an FET

e #customers arriving in a queue or workstations requesting service from a file server in
time 7

e Counts of demands for telephone connections
e number of occurrences of rare events in time
e #soldiers kicked to death by horses

e Counts of defects in a semiconductor chip.

PDF

Uniform: U(a,b)

0 Xx<ax>h 0 X<a,Xx>h

1
fl)=pzux-apb-x)= —bl- asxsh ' FO=IX2
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o Var[X]:(b_a)
12
) ( b—aj
Jpa SIN| U=

© D (u)=e P —p—

ui

2

e continuous generalization of R(n)
e use with caution to represent ignorance about a parameter taking value in [a,b]
o EX.
e phase of oscillators = [-w,x] or [0,27]
e phase of received signals in incoherent communications — usual broadcast carrier phase
¢~ U(-n,m)
e mobile cellular communication: multipath — path phases ¢ ~ U(-m,x)

Exponential: E(A)

e f (x)=2e"U(x);4>0

. Fx(x)=(1—e“)U(X):{f_e“ :8




-2 0 2 4 6
PrIX > x|=e u(x) +u(-x) e =1°  *0
r > X|= u(Xx)+u(—x) L.e = .
1 x<0

Continuous version of &(5)
Exponential distribution £(1) is T'(1,4).

Lack of memory property: Pr[ X >k +c|X >k |=Pr[X >c], fork, ¢ >0.

PrIX >k+cA X >k] Pr[X>k+c] e“
Pr[X > k] ©OPr[X>k] e
=e * =Pr[X >c]

Pf. Pr{X >k+c|X >k]=

e The future is independent of the past. The fact that it hasn't happened yet, tells us nothing
about how much longer it will take before it does happen

The exponential r.v. is the only continuous r.v. that satisfies the memoryless property.

o0 o0

Pf. @, (u)=E[e™ |= J;e‘“xf (x)dx = :[Oe‘“x(ie“u(x))dx

:ﬂTe—(i—iu)de:_ ﬂv e—(i—iu)xw_ ﬂv
0 A—iu o A-iu
EX:l
A
d A
(CDX(U)J (— Py 2(—')]
or, Ex ondu D, L AT ), 1
I I A
1
VAR(X):?




Ex

o lifetimes (continuous time) of components of systems that fail without aging
(memorylessness - eg wine glass)

e Wwaiting times between successive

e photon arrivals

e electron emissions from a cathode

¢ radioactive decays

e customer/packet arrivals

e dopant atoms arrival in an implant process
e duration of telephone or wireless call

Independent X; ~ £(4). Y is the minimum of these X;. (= Time till the first occurrence, if X;
denote time for each one to occur.)

Then, Y ~E(A); B=D 4.
i=1

Pf. R (y)=Pr[Y <y]=Pr[X,<yvX,<yv..vX, <y]

=1-Pr[X,; >y, X, >y, X, > y]=1-[ [ Pr[X; > y] =1-T [ (1- Fc (y))
i=1 i=1

i=1 i=1
*[iﬂi]y
=1l-e ‘" ;y>0
Half life: P(T <h)=P(T <h):1 N h:'”72

Pf. P(T<h)=1-e=toen_1_p_In2
2 2 2

Simulation of an exponential random variable from U ~ U(0,1)
To generate X whose Fx(x) = (l—e‘“)u(x) from U ~ U(0,1)

Use, X = —ilnu
A




Pf. Let G =F,*(U). Note that for Fx(x) = (1—e ™™ )u(x), F¢*(u):(0,1)—52—>(0,).

onto
PriG <x]=Pr[ F*(U) < x|=Pr[U < F, (x)]

Since U ~ %(0,1), Pr[U <u]=

Thus, Pr[G < x]=Pr[U < F, (x)]=Fy(x)

Hence, to generate X whose Fx(x) = (1— e‘“)u (x) from U ~(0,1)

Solving 1-e** =U for X yields X = —%In(l—u ). Since 1-U is also uniformly

distributed in [0,1], we can use the simpler expression X = —%Inu :

N independent sources into a system. Waiting time between arrivals for each source ~ E(\i).

Then
Waiting time between arrivals for system ~ £(X4;)

Given that a customer arrives at the system, Pr[this customer is from source k] =

A
!

i=1

time till next arrival for all sources.

().

N o)
Pr[next customer is from T, | =Pr| ([T, > T,] :I f. ()] [P[T, > tlt

i 0 i#k

i=k

fr (t) ( )dt _Iike AT et

i=k izk

T Pren e[iﬁ] 4
Pl

i=1

Pf. By memoryless property, time between arrivals for system is the minimum of the

Pf. Consider att = 0. Let T; = time from O till customer from source i arrive. Then T; ~

i=1 j=1 i=0 i=0

For S;, Ty iid Exp(a), P[isi >Z”:TJ:”“Z‘1(”+:“_1]£%)M > l(nH_ ][;

3

Pf. Method 1

Let A and B generate messages A; and B;respectively. At destination same for A and

B, time between arrival of Ai+1 and A; is Ti. Time between Bj+1 and B; is S;.
The set of times at which a message arrive is a Poisson process




and

a point in this process is equally likely to be an arrival of messages from A or B, with
independence between successive arrival.

Arrival at destination could be listed. Ex. A1, As, By, By, Az, A4, Ba.

Tohave )'S;>>'T,,wewantto have By, arrive after A,

i=1 j=1

Equivalently, we need to create a list similar to the example above but have B, after
An.

A, has to come after Aq, Ay, ..., An1, and
B, has to come after By, B, ..., By-1.
So, By, has to come after A, A, ..., A, By, By, ..., Bpa.

This means that By, is not among the first n+m-1 messages that arrive at
destination.

Note that to have B, arrive after A,, the first n+m-1 messages don’t have to have all
Bly BZI ey Bm—l-

We only need to have A, and not By, in the first n+m-1 messages.

In fact, we can have any amount of B’s messages from 0 to m-1. If we have less
than m-1 B’s messages arrive at destination for the first n+m-1 messages, then we
have Ay’s, i = n+1, n+2,..., in the first n+m-1 messages. Since By, has to be after
these, it is guaranteed to be after A,.

So, we consider m-1 cases. Where each case denotes numbers of B’s in the first
n+m-1 messages arrived at the destination.

If we have i B’s in the first n+m-1 messages,
then this i B’s can choose their places in the n+m-1 position.

n+
There are (
i

m-1
. ] possibilities.

Then, A; will fill up the rest of the positions.
However, each position can be A or B with equal probability.

n+m-1
The probability that it arrives according to one specific arrangement = [Ej :

Method 2
Consider i = 0 to m-1 For each i, find all combination of A; to A,.1 with the first i B’s.

n+i-1
There are ( . ] distinct sequences because we have to choose i positions for the
i
B’s from n-1+i positions. Now add A, to the end of each sequence, yielding sequence
of length n+i which happens with probability (Ej . The later part of the sequence is

irrelevant. Because By, has not yet been used in any of the sequence, each completed



sequence will surely have By, after A,. Hence, for each i, the probability that By,

o (n+i=1) 1\
comes after A, is . E )
i

Method 3

LetS= Zm:Si and T = Zn:Tj . Note that S and T are m-Erlang and n-Erlang r.v.
i=1 j=1

respectively.

Pr[S >T]=1-Pr[S <T]=[(1-F (1))  (t)dt

0

=]gm2‘i(/1t)k ot A"t e dt = A" mlﬂ_k]gtkmle—(u)tdt
vk k! (n-1)! (n—1)1&= k!

k
An mol gk (k+n—1)! mik+n-1) 1
(n—l)lzﬂw y

k=0

Method 4 (limited) Exp(1)

i s N

-AYt n

:T~--Te 'ZinH/le‘Mkdtl---dtn=T-~~Ie T ane % dt, - dt,
0 0 k=1 0

Ry R B )
=)



Pr[sl +8, > ZTn} = PrHSl+ S, > ZTn}/\{Sl > ZTnH
j=1 j=1 j=1
PrHSl +S, > ZTH} A {sl < ZTHH
j=1 j=1

= Pr[Sl >ZTJ+PrHSl+SZ >ZTH}/\{813 TH
j=1 j=1 j=1

We already know that P(Sl > ZTnJ = (%) :

=t

ersl +S,> ;T}A {Sl . ;T H
ol 5o %TH

S,

S| RN

j=

© ocjz:;‘tn a([ ; n]* ] —a
=... e ‘Z:;t ) ae “a'e ;t” ds,dt,---dt,
]

o], Ieza[" J[Zt Jo

0
n

(za)m—l = W

n+1

Pareto: Pax():heavy-tailed model/density

. = U 1) > 0; F(o)- (1X—£ju<x1>—{fia o



15

-0.5

e distribution of wealth

¢ flood heights of the Nile river

e designing dam height

o (discrete) sizes of files requested by web users

e Wwaiting times between successive keystrokes at computer terminals

o (discrete) sizes of files stored on Unix system file servers

e running times for NP-hard problems as a function of certain parameters

Laplacian: £(«)

. f(x)=%e‘“‘x‘ L a>0; F(x)=

x<0

15

-0.5

e EX=0
e Var[X]=—
2
a
e O, (u):a2+u2
e EX

e amplitudes of speech signals



o amplitudes of differences of intensities between adjacent pixels in an image

Normal/ Gaussian: N(m,o?)

1St

f — 2\ o
© =T
e E I:e*jvx :| _ imv~3 o
T 7Hxi‘/4H2
o N(m,Z,) - L e 2 g nexp{ 20° }—
(27)2 Jdet(A) (270°)?
1 o, U ﬂzn}
exps — XX+ X —
L
_ 1 (x-m)* A (x-m)
© eV S

Rayleigh

e F(x)= (1—e"”XZ )u(x) ; f(x)= 2axe’“x2u(x)

—at?
Pr[ X >t]=1—F(t)=t’ :28
<

e Let X be a Rayleighr.v., then Y = X? is an exponential r.v.
0, y<0

PF. 1, (y) = fo(ﬁpﬁfx(—ﬁ), y20

0, y<0
0 {0, y<0

=11 o 1 _ = -a
oy 2eve ) e y), y20 ey
e EX

e noise X at the output of AM envelope detector when no signal is present

ii.d.
e XY ~ N(0,0%): IfXand Y are independent, identically distributed, zero-mean normal

random variables, then R = v X?+Y? has a Rayleigh density.



20 o?

ii.d.
o X%Y?~ F(% 12) X2+Y2~F(1,a:21 ],exponential. VXZ+Y? isa

Rayleighr.v. a =

7"

e Alternatively, transformation from Cartesian coordinates (x,y) to polar coordinates
X r
r, — .
"9 (yj (ej
feo(r,0)=rf,, (rcosd,rsing)=r

1 >
:(ij 2r 12e 20°
27 20

Hence, the radius R and the angle ® are independent, with the radius R having a
Rayleigh pdf while the angle © is uniformly distributed in the interval (0,27).

_E(rcosejz 1 _E(rsinejz
2 o 2\ o

—F—==€
oN2rx

e

1
oN2r

Cauchy

a 1
° f(z)=— ,a> 0,
(2) rat+z?
e Mean and variance do not exist.

o o, (u)=e“.

Gamma distribution:T'(q, 1)

g-1  x
X —
A% | 2(Ax) e (aj ¢

e Gammadistribution:I"(q,4). f, (X = = 7 4,9>0.
R O IR )
x>0forg>1,>0forq<1.
1
¢ O ()=
(-3
A
o 0y a-14-2X q ® ) q
Pf. CDX(u):Iei“XlX ¢ gx=2 je‘“"“)quldx=l_i)q.
o T(a) r(a)s F(a) (2-iu)
o Ex=4
A
Pf icD (u)z—q(l—iEJql(—i)l. EX=—iiCD (u) _4
du * y) p) du "V, 4




. Var[X]:%

e Exponential distribution £(4) is T'(1,1).
e Chi-square random variable with k degrees of freedom: F(géj
e The m-Erlang r.v. is obtained when q = m, a positive integer.

imxm—le—ix /lmxm—le—/ix

)= o

e Let X, ~Exp(4), S=) X, isanm-Erlang r.v.

i=1

Pf. F(s)=Pr[S<s]= P{ X, < s] Let N; be the Poisson r.v. for the number of event

in s seconds. Note that » X, <s=N,>m.

Il
JUN

m—l(ls)k »
Thus, Fg(s)=Pr[N, >m]=1-Pr[N, <m]=1- e
k=0 .
_d _X (/ls)k_l s, N (ﬂs)k s
fs(s)_EFS(S)__kzok 0 Qe +k:0/‘t T

e Let X; ~T'(q;,4), independent. Then
o Z = X, and Z, = X, + X, are independent. Z, =
X+ X, X+ X,

Z,=X,+X,~TI(0,+0,,4). Note that Z, (0,1).

- ﬂ‘hﬂz (Z)

o Z,=X,+X,and Z, _ X are independent, Z3 is a beta prime distribution with
XZ

parameters (q,,q, ).

i v % —1a =A%
_A'x e

r(q)

Pf. f, (%) . By independence,




ﬂv‘h qulfle*’{"a l% qu *1e*/“2 /’thﬂb Xfl*]-X% 71971)(1971)(2
f y = f f = 2 — 2
Xl,Xz(Xl XZ) Xl(Xl) Xz( 2) F(ql) F(qz) F(ql)r(%)

.Then, X,=UV and X, =U -UV =U(1-V).

LetU=X,+X, andV = X,
X, + X,

0 0
—uv —uv

|det J| = det ou

Zu(1-v) %u(l—v)

=|-vu—u+uv|=|-u|=u
Hence, f,, (u,v)= f, (uv,u(1-v))|det]|
A (u)* " (u(1-v))* g AuY) .
ACHACH
ey eie (g +q,)
o P(w+g)  T(a)r()
Pf. U =X, + X, andW:ﬁ.Then xlzuL,x J

Ve (1-v)® -

X, Wl 2wl
o 0w o w W u(W+1)—W
i oY w+1 1)
|det J| = |det ou wHl ow w+l)|_ge (w+1)
ou 0w 1
ouw+l  oww+1 w+1 (w+1)2
w u 1 1 | u | u
= ;7 Tu 2 = 2| = 2
wHl(w+1)’ (wrl)’ Wl |[(w1)| (wed)
wou
fU,W (U,W): fX,Y (Um,m]kjet\”
FLAL" (U w J%_l(u 1 jqz_lewwvileiuwil
_ w+1 w+1 u
T'(q,)r(a,) (W+1)2

B i%*%u%*%*le—iu F(ql + qz)
I(g+d,) T(%)r(a,)

Wl (W n 1)*(q1+q2)

e By induction, > X, ~F(Zqi,/1j.

Ex.

The time required to service customers in queueing systems
Lifetime of devices and systems in reliability studies




o Defect clustering behavior in VLSI chips.

Beta distribution

_ T(g,+0q,)

‘r(ql)r(qz)Zq“l(l—z)qz_l; 2¢(0.)

e Betadistribution: p(z)= 4, . (2)

Beta prime distribution

F(ql + qz) -1 (o +a)
f o (X)=———x""(x+1 .X>0.
x( ) F(ql)F(qz) ( )

o Let X, ~ F(qi,ﬂ), independent. Then % is a beta prime distribution with parameters
2

(0,0)-

o Let X; ~&(4), independent. Then X = % is a beta prime distribution with parameters
2

1

11). f,(Xx)=———,x>0.
02 100~
Chi-sqaure
. x~N(o,az).ThenY=x2~r(1, 1j.Then p(y)=——1 e_é,y>0
2 20 2ryo
1
CD(u):—l.
(1- j2uc?)?
0, y<0
Pf. f,(y)=4 1 1
Y mfx(\/y)'mex(—\/y), yZO
0, y<0 [0, y<0
=11 1 5% 1 1 5% =y 1 3%
— e  +——e°", y>0 e ‘e >0
2&@0‘ 2\/§ 2ro y 2ryo y

1
1 5y 1 a1 2 Ly
Note that ———e¢ = = ( 2] e 2 .

J2ryo rmyz

o LetX~MNMud®): fy(X)=——




e Chi-square: xii'ifyv(o,az). Y :Zn:Xf.Then

i=1
1 e
P(Y)=—F—7 ¥’ e =F£
(zUZ)er
2

Var[Y]=2nc*.

1
207

],yZO. CD(u):(l_ j2ug2)’%_ E[Y]:naz,

NS

Pf. We know that X? ~ iid F(l, 12) Hence, > X7 ~ F(E, 12)
2 20 -y 2 20
e Chi-square random variable with k degrees of freedom: F(%%}

e The sum of k mutually independent, squared zero-mean unit-variance Gaussian random
variables.

2rm
2
Student’s t-distribution

n+1

f, (v)= [1+‘ﬂ_2 F(nZHJ

o
2
e Let X be a 0-mean, unit-variance Gaussian r.v., and let Y be a chi-square r.v. with n degrees
of freedom. Assume that X and Y are independent. Let V = L W =Y. Then X :V\/ﬂ.
n

\F
n
E,]_ _1
iv\/ﬂ iv\/E \/E L W 1 _w@yjz ezy
det 8\/6 ! awa " |=det| \'n 2</wn :\/:'fxv(x’y)z e’ '
n .
1

—W —W 0
ov oW




2
n+1 n+1
I —— I —=
1 (ZJ 1 (ZJ

= n+l n+l = n+l
2 Jor( N 2\ n 2\ 72
2 n”r(zj 1 [1+V ] nnl‘(z (1+V]
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Binomial, Geometric, Exponential, Poisson
e Suppose N, the number of event occurrences in a T-second time interval is being counted.
Divide the time interval into a very large number, n, of subintervals of length T/n. Each

subinterval can be viewed as a Bernoulli trial with probability of success p = a/n, if the
following conditions hold:

1) At most one event can occur in a subinterval, that is, the probability of more than one
event occurrence is negligible.

2) The outcomes in different subintervals are independent

3) The probability of an event occurrence in a subinterval is p :ﬁ, where « is the average
n

number of events observed in a T-second interval.
e N~ binomialB(n,gj.
n

o is fixed.
e Rare events limit of the binomial (large n, small p)

limp, = lim (Tj p'(1- p)”_i = e‘“O_l—l where « =np.
n—o n—ow |_

Pf. Keep o =np fixed. Then Iim[gj p°(L-p) " =lim(1-p)' = Iim(l—gj =e”,

QHZ&ZJ“H“‘”MJ_ oo (1a)w

o (paeer CIEE 1]

| n
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Hence, lim g P _

e op (i41) i+l




Thus, the limiting probabilities satisfy p, =e™ and p,, :% p, . By induction, this
i+

is the Poisson pmf.

The number of subintervals M until (but not including) the occurrence of an event is a
geometric r.v. (Still a geometric r.v. but different one if include the event’s subinterval.)

The time until the occurrence of the first eventis X =M I

Pr[X >t]= Pr[l\/l > nﬂz(l_ p)n% _((1%”};

t

lim Pr[ X >t]=e_a?.

n—oo
Thus, the exponential r.v. is obtained as a limiting form of the geometric random variable.
e This result implies that for a Poisson random variable, the time between events is an

exponentially distributed random variable with parameter A :% [events/sec]

Etc.

iid
Exponential and normal distribution: X,, X, ~A(0,0°). Then X/ + X ~ Exp(zl zj'
o

2 1 1
Pf. X2+ X2~T| =, = EX .
! ? (2 202] p(ZO'ZJ

Example

The total number of defects X on a chip is a Poisson r.v. with mean «. Suppose that each
defect has a probability p of falling in a specific region R and that the location of each defect
is independent of the locations of all other defects. Find the pmf of the number of defects Y
that fall in the region R.

Solution:
k

We have P[X :k]:e’“%,and P[Y = j|X :k}=(ﬂpj(l— p)’ for 0< j<k.Note

that for k <j, P[Y = j|X =k = 0. Hence, from P[Y = j]=iP[Y = j|X =k]P[X =K],
k=0
we have



Thus, Y is a Poisson r.v. with mean ap.

The number of customers that arrive at a service station during a time interval t is a Poisson
r.v. with parameter St . The time T required to service each customer is an exponential r.v.

with parameter «. Assume that the customer arrivals are independent of the customer service
time. Find the pmf for the number of customers N that arrive during the service time T of a
specific customer.

Solution
k
We have P[T =t]= e “'u(t), and P[N =k|T :t]:e"“@. Hence,
k!
0 k k oo
P[N =k]=] L W/ [emtkdt
A ki d
=aﬂk k! _ aﬂk __«a ( p ]k
Kl (B+a)™ (Bra)™ Bra\f+a

Let N = the random number of packets that arrive at A during the time interval [0,1]. Assume
N is a Poisson random variable with mean A. Each packet arriving at A is immediately sent to
B with probability p or to C with probability q = 1-p, independently from packet to packet.

Let L =number of packets sent to B during [0,1]
R = number of packets sent to C during [0,1]

Then,
o . . (Ap)e**
e L isaPoisson random variable with mean Ap: Pr[L =/] = TR
Proof.
0 ifn<?
First, note that Pri L=/¢{N=n|=<(n} , , .
[ | ] [Jp“q’” ifn>/



:ipr[l_qu :n]Pr[N =
n=0

(@ J Z[ )

e L and R are statistically independent

Proof.

PrlL=¢,R=r]=Pr[L=¢,N=(+r]=Pr[L=(N=¢+r]Pr[N=/+r]

(e o

= A=
¢ (0+7)! e P M
A A
=(p€') (q) —Pr[L=]g*" Pr[R=r] 5"
Table
Model Pi

Random 1. ,_
R Ech {1,2,....n}

n .
Binomial (kj pk(l— p) X ;Q=Np1;0<p<l
$B(n,p)

e Bernoulli is 8B(1,p)
Geometric (1-B)B“ ;Q=N;0<p<1
10) k = #failures before (excluding) first success
Poisson ot A
—;Q=N,0<A
P(A) il
Model fy (%) Fy (x)

0 Xx<a,x>b 0 x<a,x>b
Uniform U(a,b) 1 a<x<b X=8 __v<p

b-a
Exponential &(a) ae U (x); o>0 (1—e’“X)J (x)




1
Pareto Pax(c) ax “U(x-1) ;a>0 (l—FjU (x-1)
o le”‘X x<0
Laplacian £(a) ) 2 L
2 1-=e® x>0
2
_1fxem)® X—m
Normal ¥(m,c?) ! . 2( g J 6>0 erf(
o2 o
Gamma distribution A9 le
I'(a,4) r'(q)
: . : k 1
e Chi-square r.v. with k degrees of freedom is " 25
Model E[X] Var[X] @, (X)
n-1 n? -1 1-e""
Random R — .
" 2 12 nil—e"
Binomial $B(n,p) np np(1-p) (1— p+ pe’“)
: p p 1-5
Geometric PR i
i 1- -5y 1 pe
Poisson £(1) Py pile"-1)
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1 1
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