Renewal Theory

- The counting process $\{A(t)\}$, where t may be either discrete or continuous, is a renewal process if,
given the count has increased at time t^{*},
the process of future increments $\left\{A(s)-A\left(t^{*}\right), s>t^{*}\right\}$ and the process of past increments $\left\{A\left(t^{*}\right)-A(s), s<t^{*}\right\}$ are statistically independent.
- Markov counting processes, including both homogeneous and inhomogeneous Poison processes, are special cases of renewal processes.

For any Markov process, be it a counting process or not, we have independence of $\{A(s), s>t \mid A(t)\}$ from $\{A(s), s<t \mid A(t)\}$ for every t, and hence a fortiori independence of $\left\{A(s)-A\left(t^{*}\right), s>t^{*}\right\}$ and $\left\{A\left(t^{*}\right)-A(s), s<t^{*}\right\}$

Discrete Time Renewal Processes

- $A_{k}=\max \left\{n: \tau_{n} \leq k\right\}=$ number of renewals up to and including time k

At jump, $A_{k^{*}}$ takes the jumped (higher) value
$t_{i}=$ the $i^{\text {th }}$ gap length between renewals, $i \geq 2$
$\tau_{n}=t_{1}+t_{2}+\ldots+t_{n}=$ time of the $n^{\text {th }}$ renewal
$\gamma_{k}=\tau_{A_{k}+1}-k=$ residual lifetime at time k
$L_{k}=\tau_{A_{k}+1}-\tau_{A_{k}}=t_{A_{k}+1}=$ selected lifetime at time k

- At jump, $\gamma_{k^{*}}=L_{k^{*}}=t_{A_{k^{*}+1}}$
- Note that $\gamma_{k}, L_{k} \in \mathbb{N}$. Also, $\gamma_{k} \leq L_{k}$.
- Statistical assumptions
- t_{1}, t_{2}, \ldots are independent
- t_{1} has probability vector $\underline{g}=\left(g_{0}, g_{1}, \ldots\right)$

$$
g_{j}=P\left(t_{1}=j\right)
$$

- t_{i} for $i \geq 2$ has probability vector $\underline{f}=\left(f_{1}, f_{2}, \ldots\right)$ i.i.d.

$$
f_{j}=P\left(t_{i}=j\right) ; \forall i \geq 2
$$

moments of the distribution f

$$
m_{n}=E t_{i}^{n} \text { for } i \geq 2, n=1,2,3, \ldots
$$

We have assumed $f_{0}=0$ in order to preclude the possibility of batch arrivals in our renewal counting process.

- Renewal distribution $\Rightarrow h_{k}, k \geq 0 \Rightarrow h_{k}=P$ (a renewal occurs at time k)
- Not a probability distribution. Not sum to 1 in general. In most case of interest, sum $\rightarrow \infty$.
- Renewal equation: $h_{k}=g_{k}+\sum_{j=0}^{k-1} h_{j} f_{k-j} ; k \geq 0$
- $h_{0}=g_{0}+0$

For $k=0$, the sum is empty

- $h_{k}=P($ a renewal occurs at time k$)$ is the sum of 1$)$ the probability that this renewal at k is the first renewal and 2) the sum for all j probability that the last renewal occur at j, and then this one at k is the next renewal without any renewal occurs in between.
- The right-hand side of the renewal equation breaks down all the instances in which there is a renewal at time k into disjoint sets, the $j^{\text {th }}$ of which contains all those cases in which the renewal that immediately precedes the one at time k takes place at time $j<k$.
- Alternative form: $h_{k}=g_{k}+\sum_{i=1}^{k} f_{i} h_{k-i} ; k \geq 0$
derived by substituting $i=k-j$
- $\{A(k)\}$ is not a Markov chain unless the t_{i} are geometrically distributed.

This is because, in other than geometrically distributed cases, the residual lifetime γ_{k} at time k is statistically dependent on the time $L_{k}-\gamma_{k}$ that has elapsed since the most recent renewal.

- Theorem:

1) $\left\{\left(\gamma_{k}, L_{k}\right), k \geq 0\right\}$ is a homogeneous Markov chain.
2) If $G C D\left\{k: f_{k} \neq 0\right\}=1$, then this Markov chain is aperiodic.
3) If, in addition, $m_{1}<\infty$, the chain is ergodic.

Its equilibrium distribution, which is a limiting distribution in the ergodic case, is

$$
P[(\gamma, L)=(i, j)]=P(i, j)= \begin{cases}\frac{f_{j}}{m_{1}} & \text { if } 1 \leq i \leq j \\ 0 & \text { otherwise }\end{cases}
$$

- Remark
- $\quad P(L=j)=\frac{j f_{j}}{m_{1}}$

Proof. $P(L=j)=\sum_{i=1}^{j} P[(\gamma, L)=(i, j)]=\sum_{i=1}^{j} \frac{f_{j}}{m_{1}}=j \frac{f_{j}}{m_{1}}$

- Given that $L=j, \gamma$ is uniformly distributed over $\{1,2, \ldots, j\}$

$$
\text { Proof. } \begin{aligned}
P(\gamma=i \mid L=j) & =\frac{P[(\gamma, L)=(i, j)]}{P(L=j)}=\left\{\begin{aligned}
\frac{f_{j}}{m_{1}} / j \frac{f_{j}}{m_{1}} & \text { if } 1 \leq i \leq j \\
0 / \frac{f_{j}}{m_{1}} & \text { otherwise }
\end{aligned}\right. \\
& = \begin{cases}\frac{1}{j} & \text { if } 1 \leq i \leq j \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- Hence, it may help to think of $P[(\gamma, L)=(i, j)]=\frac{f_{j}}{m_{1}}$ as

$$
P(\gamma=i, L=j)=P(\gamma=i \mid L=j) \underset{\underbrace{P(L=j)}_{\text {choose gap }}}{P}=\frac{1}{j \frac{j f_{j}}{m_{1}}}=\frac{f_{j}}{m_{1}} .
$$

- $P(\gamma=i)=\frac{1}{m_{1}} \sum_{j=i}^{\infty} f_{j}=\frac{1-F(i-1)}{m_{1}} ; F(m)=\sum_{n=1}^{m} f_{n}$

Proof. $P(\gamma=i)=\sum_{j=1}^{\infty} P(i, j)=\sum_{j=1}^{\infty} \frac{f_{j}}{m_{1}}=\sum_{j=i}^{\infty} \frac{f_{j}}{m_{1}}$

$$
=\frac{f_{i}+f_{i+1}+\ldots}{m_{1}}=\frac{1-\left(f_{1}+f_{2}+\ldots f_{i-1}\right)}{m_{1}}=\frac{1-F(i-1)}{m_{1}}
$$

- $E[\gamma]=\frac{m_{2}+m_{1}}{2 m_{1}}$

Proof. $E\left[\gamma^{k}\right]=\sum_{i=1}^{\infty} i^{k} P(\gamma=i)=\sum_{i=1}^{\infty} i^{k} \frac{1}{m_{1}} \sum_{j=i}^{\infty} f_{j}=\frac{1}{m_{1}} \sum_{i=1}^{\infty} \sum_{j=i}^{\infty} i^{k} f_{j}=\frac{1}{m_{1}} \sum_{j=1}^{\infty} f_{j} \sum_{i=1}^{j} i^{k}$

$$
\text { For } k=1, E[\gamma]=\frac{1}{m_{1}} \sum_{j=1}^{\infty} f_{j} \sum_{i=1}^{j} i=\frac{1}{2 m_{1}} \sum_{j=1}^{\infty} f_{j}\left(j^{2}+j\right)=\frac{m_{2}+m_{1}}{2 m_{1}} \text {. }
$$

Proof of the theorem:
Consider the case when $\gamma_{k}=1$, then L_{k} will end at time $k+1$, where upon L_{k+1} will be chosen according to the distribution \underline{f}, and $\gamma_{k+1}=L_{k+1}$. Notationally, $\left(\gamma_{k}, L_{k}\right)=(1, j) \Rightarrow \gamma_{k+1}=L_{k+1} \sim \underline{f}$.
Therefore, $P_{\gamma_{k+1}, L_{k+1} \mid \gamma_{k}, L_{k}}\left(i^{\prime}, j^{\prime} \mid i, j\right)=f_{j^{\prime}} \delta_{i^{\prime}, j^{\prime}} \quad$ for $i=1$
\Rightarrow given that $\gamma_{k}=1$, then $\gamma_{k+1}=i^{\prime}$ has to equal $L_{k+1}=j^{\prime}$, and the probability that they are not equal is 0 , thus having $\delta_{i^{\prime}, j^{\prime}}$.

On the other hand, if $\gamma_{k}>1$, then $L_{k+1}=L_{k}$ and $\gamma_{k+1}=\gamma_{k}-1$ (one time step
closer). $\left(\gamma_{k}, L_{k}\right)=(i>1, j) \Rightarrow\left(\gamma_{k+1}, L_{k+1}\right)=(i-1, j)$.
Since we want $j^{\prime}=j$ and $i^{\prime}=i-1$,

$$
P_{\gamma_{k+1}, L_{k+1} \mid \gamma_{k}, L_{k}}\left(i^{\prime}, j^{\prime} \mid i, j\right)=\delta_{j^{\prime}, j} \delta_{i^{\prime}, i-1} \quad \text { for } i>1 .
$$

So, the general entry in one-step transition matrix is

$$
P_{\gamma_{k+1}, L_{k+1} \gamma_{k}, L_{k}}\left(i^{\prime}, j^{\prime} \mid i, j\right)=\left\{\begin{array}{ll}
f_{j^{\prime}} \delta_{i^{\prime}, j^{\prime}} & \text { for } i=1 \\
\delta_{j^{\prime}, j} \delta_{i^{\prime}, i-1} & \text { for } i>1
\end{array}=f_{j^{\prime}} \delta_{i^{\prime}, j^{\prime}} \delta_{i, 1}+\delta_{j^{\prime}, j} \delta_{i^{\prime}, i-1}\left(1-\delta_{i, 1}\right) .\right.
$$

Note that it does not depend on the time k, so the Markov chain is homogeneous. To verify that the distribution $P(i, j)$ in the theorem statement is the equilibrium distribution corresponding to the transition matrix $P\left(i^{\prime}, j^{\prime} \mid i, j\right)$, we need to show that

1) $\sum_{(i, j)} P(i, j)=1$, and
2) $\sum_{(i, j)} P\left(i^{\prime}, j^{\prime} \mid i, j\right) P(i, j)=P\left(i^{\prime}, j^{\prime}\right)$

Property (1) is trivial because

$$
\sum_{(i, j)} P(i, j)=\sum_{j=1}^{\infty} \sum_{i=1}^{j} \frac{f_{j}}{m_{1}}=\frac{1}{m_{1}} \sum_{j=1}^{\infty} j f_{j}=\frac{m_{1}}{m_{1}}=1 .
$$

To prove (2), let $g\left(i^{\prime}, j^{\prime}\right)=\sum_{(i, j)} P\left(i^{\prime}, j^{\prime} \mid i, j\right) P(i, j)$.

$$
\begin{aligned}
g\left(i^{\prime}, j^{\prime}\right) & =\sum_{(i, j)} P\left(i^{\prime}, j^{\prime} \mid i, j\right) P(i, j) \\
& =\sum_{j=1}^{\infty} \sum_{i=1}^{j}\left(f_{j^{\prime}} \delta_{i^{\prime}, j^{\prime}} \delta_{i, 1}+\delta_{j^{\prime}, j} \delta_{i^{\prime}, i-1}\left(1-\delta_{i, 1}\right)\right) \frac{f_{j}}{m_{1}} \\
& =\sum_{j=1}^{\infty} \frac{f_{j}}{m_{1}}\left(f_{j^{\prime}} \delta_{i^{\prime}, j^{\prime}} \sum_{i=1}^{j} \delta_{i, 1}+\delta_{j^{\prime}, j} \sum_{i=1}^{j} \delta_{i^{\prime}, i-1}\left(1-\delta_{i, 1}\right)\right) \\
& =\sum_{j=1}^{\infty} \frac{f_{j}}{m_{1}}\left(f_{j^{\prime}} \delta_{i^{\prime}, j^{\prime}}+\delta_{j^{\prime}, j} \sum_{i=1}^{j} \delta_{i^{\prime}, i-1}\left(1-\delta_{i, 1}\right)\right) \\
& =\frac{f_{j^{\prime}}}{m_{1}} \delta_{i^{\prime}, j^{\prime}}+\frac{f_{j^{\prime}}}{m_{1}} \sum_{i=1}^{j^{\prime}} \delta_{i^{\prime}, i-1}\left(1-\delta_{i, 1}\right)
\end{aligned}
$$

The first term will be zero if $i^{\prime} \neq j^{\prime}$. The second terms will be zero if $i^{\prime} \geq j^{\prime}$. To see this, assume $i^{\prime} \geq j^{\prime}$. Note that the sum goes from $i=1$ to j^{\prime}. So,

$$
0 \leq i-1 \leq j^{\prime}-1<j^{\prime} \leq i^{\prime},
$$

i.e. $i-1$ will never equal to (always less than) i^{\prime}. Because of $\delta_{i^{\prime}, i-1}$, the sum is zero. Hence, we conclude that $g\left(i^{\prime}, j^{\prime}\right)=(a) \frac{f_{j^{\prime}}}{m_{1}}$ if $i^{\prime}=j^{\prime}$, (b) $\frac{f_{j^{\prime}}}{m_{1}} \sum_{i=1}^{j^{\prime}} \delta_{i^{\prime}, i-1}\left(1-\delta_{i, 1}\right)$ if $i^{\prime}<j^{\prime}$, and (c) 0 if $i^{\prime}>j^{\prime}$.

Note the factor of $f_{j^{\prime}}$. This implies that the result is zero for $j^{\prime}<1$. So we concern only with $j^{\prime} \geq 1$.
Consider the sum $\frac{f_{j^{\prime}}}{m_{1}} \sum_{i=1}^{j^{\prime}} \delta_{i^{\prime}, i-1}\left(1-\delta_{i, 1}\right)$. Because i is between 1 and j^{\prime}, if $i^{\prime}<0$ there is no i such that $i-1=i^{\prime}$. This is because $0 \leq i-1 \leq j^{\prime}$ and $j^{\prime} \geq 1$. Hence, the cases when $i^{\prime}<0$ yields zero due to the existence of $\delta_{i^{\prime}, i-1}$. The case when $i^{\prime}=0$ also yields zero because $\delta_{i^{\prime}, i-1}$ requires $i=1$ which would make $1-\delta_{i, 1}$ zero. So, nonzero result is possible only when $i^{\prime} \geq 1$. Combining $i^{\prime}<j^{\prime}$ and $i^{\prime} \geq 1$, we know that there exists i such that $i-1=i^{\prime}$ and $i \neq 1$; hence,
$\frac{f_{j^{\prime}}}{m_{1}} \sum_{i=1}^{j^{\prime}} \delta_{i^{\prime}, i-1}\left(1-\delta_{i, 1}\right)=\frac{f_{j^{\prime}}}{m_{1}}$.
Finally we have
(a) when $i^{\prime}=j^{\prime}, g\left(i^{\prime}, j^{\prime}\right)=\frac{f_{j^{\prime}}}{m_{1}}$ if $1 \leq i^{\prime}=j^{\prime}, 0$ otherwise.
(b) when $i^{\prime}<j^{\prime}, g\left(i^{\prime}, j^{\prime}\right)=\frac{f_{j^{\prime}}}{m_{1}}$ if $j^{\prime}, i^{\prime} \geq 1,0$ otherwise.
(c) when $i^{\prime}>j^{\prime}, g\left(i^{\prime}, j^{\prime}\right)=0$.

This is the same as saying $g\left(i^{\prime}, j^{\prime}\right)=\left\{\begin{array}{ll}\frac{f_{j^{\prime}}}{m_{1}} & \text { if } 1 \leq i^{\prime} \leq j^{\prime} \\ 0 & \text { otherwise }\end{array}\right.$, which equals $P\left(i^{\prime}, j^{\prime}\right)$ as was to be shown.

Some facts about Continuous Time Renewal Processes

- Def:
t_{1}, t_{2}, \ldots are independent, t_{1} has $\operatorname{cdf} G$, and the t_{k} for $k \geq 2$ are i.i.d. with $\operatorname{cdf} F$. $\tau_{n}=\sum_{k=1}^{n} t_{k}$ denote the time of occurrence of the $n^{\text {th }}$ renewal.
The renewal counting process $\{A(t), t \geq 0\}$ is defined by $A_{t}=\max \left\{n: \tau_{n} \leq t\right\}$.
The residual lifetime at t is $\gamma_{t}=\tau_{\mathrm{A}_{\mathrm{t}}+1}-t$.
The selected lifetime at t is $L_{t}=\tau_{\mathrm{A}_{+}+1}-\tau_{\mathrm{A}_{\mathrm{t}}}=t_{\mathrm{A}_{\mathrm{t}}+1}$. $H(t)=E\left[A_{\tau}\right]=$ Expected number of renewals up to (and including) time t. $m_{k}=$ the $k^{\text {th }}$ moment of F.
- Continuous time renewal equation: rate $\frac{d}{d t} H(t)=h(t)=g(t)+\int_{0}^{t} h(t-s) f(s) d s$.
- A distribution is said to be lattice if its points of increase are contained in the set of integral multiples of some real number r; otherwise it is non-lattice.
- Blackwell's Renewal Theorem: Suppose F is non-lattice. The for fixed $h>0$,

$$
\lim _{t \rightarrow \infty} \frac{H(t+h)-H(t)}{h}=\frac{1}{m_{1}} .
$$

Loosely stated, Blackwell's theorem says that in non-lattice cases the renewal process eventually "forgets" about initial conditions (i.e., about where the time origin is) in the sense that, at any randomly chosen time t in the remote future, renewals are occurring in the vicinity of t at a rate versus time of m_{1}^{-1}.

- $\lim _{t \rightarrow \infty} \operatorname{Pr}\left[\gamma_{t} \leq x, L_{t} \leq y\right]=F_{\gamma, L}(x, y)$ exists.
- $f_{\gamma}(x)=\frac{1-F(x)}{m_{1}}, x \geq 0$. If F has density f, then $f_{\gamma}(x)=\int_{x}^{\infty} \frac{f(y)}{m_{1}} d y$.
- If F has density f, then $f_{\gamma, L}(x, y)=\left\{\begin{array}{ll}\frac{f(y)}{m_{1}}, & 0 \leq x \leq y \\ 0, & \text { otherwise }\end{array}\right.$.
- If F has density f, then $f_{L}(y)=\frac{y f(y)}{m_{1}}, y \geq 0$

Proof. $\quad f_{L}(y)=\int_{-\infty}^{\infty} f_{\gamma, L}(x, y) d x=\left\{\begin{array}{ll}\int_{0}^{y} \frac{f(y)}{m_{1}} d x, & y \geq 0 \\ 0, & \text { otherwise }\end{array}= \begin{cases}\frac{y f(y)}{m_{1}}, & y \geq 0 \\ 0, & \text { otherwise }\end{cases}\right.$

- $E\left[L^{k}\right]=\frac{m_{k+1}}{m_{1}}$

Proof. $E\left[L^{k}\right]=\int_{-\infty}^{\infty} y^{k} f_{L}(y) d y=\int_{0}^{\infty} y^{k} \frac{y f(y)}{m_{1}} d y=\frac{m_{k+1}}{m_{1}}$

- $E\left[\gamma^{k}\right]=\frac{m_{k+1}}{(k+1) m_{1}}$. More specifically, $E[\gamma]=\frac{1}{2} \frac{E\left[t^{2}\right]}{E[t]}$.

Proof. $E\left[\gamma^{k}\right]=\int_{-\infty}^{\infty} x^{k} f_{\gamma}(x) d x=\int_{0}^{\infty} x^{k} \int_{x}^{\infty} \frac{f(y)}{m_{1}} d y d x=\int_{0}^{\infty} \frac{f(y)}{m_{1}} \int_{0}^{y} x^{k} d x d y$

$$
=\frac{1}{m_{1}} \int_{0}^{\infty} f(y) \frac{y^{k+1}}{k+1} d y=\frac{m_{k+1}}{(k+1) m_{1}}
$$

- We shall assume the $F(0)=0$, meaning that there is zero probability that no gap occurs between renewals; this is consistent with our having ruled out multiple simultaneous renewals in discrete time.
- Laplace-Stieltjes Transform: If $F_{B}(t)$ is the cdf of a nonnegative random variable, then its L-S transform $L_{g}(s)$ is defined by $L_{B}(s)=\int_{0}^{\infty} e^{-s t} d F_{B}(t)$.

In the event that B has a density $f_{B}(t)=\frac{d}{d t} F_{B}(t)$, then $L_{B}(s)=\int_{0}^{\infty} e^{-s t} f_{B}(t) d t$.
Note that $\frac{d}{d s} L_{B}(s)=\frac{d}{d s} \int_{0}^{\infty} e^{-s t} d F_{B}(t)=\int_{0}^{\infty} \frac{d}{d s} e^{-s t} d F_{B}(t)=-\int_{0}^{\infty} t e^{-s t} d F_{B}(t)$.

- $L_{\gamma}(s)=\frac{1-L_{F}(s)}{s m_{1}}$

$$
\text { Proof. } \begin{aligned}
L_{\gamma}(s) & =\int_{0}^{\infty} e^{-s t} \frac{1-F(t)}{m_{1}} d t=-\left.\frac{1}{s m_{1}} e^{-s t}\right|_{0} ^{\infty}-\frac{1}{m_{1}}\left(-\left.\frac{1}{s} F(t) e^{-s t}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{1}{s} f(t) e^{-s t} d t\right) \\
& =\frac{1}{s m_{1}}-\frac{1}{m_{1}} \frac{1}{s} L_{F}(s)
\end{aligned}
$$

- $L_{L}(s)=-\frac{1}{m_{1}} \frac{d}{d s} L_{B}(s)$

Proof. $L_{L}(s)=\int_{0}^{\infty} e^{-s t} d F_{L}(t)=\frac{1}{m_{1}} \int_{0}^{\infty} e^{-s t} t f(t) d t=-\frac{1}{m_{1}} \frac{d}{d s} L_{B}(s)$.

