
VoxML 1.0
Language
Reference

Revision 1.0

Motorola, Inc.
Consumer Applications and Services Division
55 Shuman Blvd, Suite 600
Naperville, IL 60563
USA

October 1998 VoxML 1.0 Language Reference i

Contents

1. An Introduction to VoxML 1.0

Overview..1

What is VoxML...1

Purpose of this Document ..1

Structure of a VoxML Document..2

DIALOGs and STEPs..2

The Basic Elements ...3

Other Reference Documentation ...4

VoxML 1.0 Application Development Guide4

2. VoxML 1.0 Element Reference

ACK Element...5

AUDIO Element...7

BREAK Element ..8

CANCEL Element..9

CASE Element ...11

CLASS Element ...12

DIALOG Element ..14

EMP Element ...15

ERROR Element ..16

HELP Element ...18

INPUT Element..20

INPUT Element : Type DATE ...21

INPUT Element : Type DIGITS...22

INPUT Element : Type GRAMMAR ...23

INPUT Element : Type HIDDEN...24

INPUT Element : Type MONEY ...25

INPUT Element : Type NONE...26

INPUT Element : Type NUMBER ...27

INPUT Element : Type OPTIONLIST ...28

INPUT Element : Type PHONE...29

INPUT Element : Type PROFILE..30

INPUT Element : Type RECORD..31

INPUT Element : Type TIME..33

October 1998 VoxML 1.0 Language Reference ii

INPUT Element : Type YORN...34

OPTION Element...35

OPTIONS Element...37

OR Element..38

PROMPT Element..39

PROS Element ...40

RENAME Element...41

RESPONSE Element..42

STEP Element ..44

SWITCH Element ..45

VALUE Element ..46

3. Appendices

Appendix A - VoxML 1.0 Document Type Definition...........................47

Appendix B - Vcard Profile Names and Subtypes..................................49

An Introduction to VoxML 1.0
Overview

October 1998 VoxML 1.0 Language Reference 1

1. An Introduction to VoxML 1.0

Overview

Part of the reason that the World Wide Web has been so popular is the relative
ease with which authors can create content using HTML. For all its faults,
HTML has served its purpose as a vehicle for the presentation of rich text as
well as images, hypertext links, and simple GUI input controls.

VoxML offers the same ease of production to voice applications. In one sense,
VoxML offers the same building blocks as HTML: text (which is read via text-
to-speech), recorded sound samples (analogous to images), navigational
controls, and input controls.

However, writing a voice application is very different from writing a GUI
application, and thus the structure of VoxML is very different from HTML.
Here are some examples of the differences:

• HTML specifies a two-dimensional layout, whereas VoxML specifies a
“layout” in the time dimension only.

• HTML is designed and displayed in whole-page units, while VoxML is
designed and delivered in whole-dialog units, but presented in much smaller
units, called steps.

• A single HTML page often presents the user with dozens of options, which
would overwhelm the user of a voice application. In general, voice
applications should limit the number of options available at a given step in
the dialog to ease the burden on the user’s short-term memory and to
improve the performance of the speech recognition.

What is VoxML

VoxML is based on XML. As such, VoxML follows all of the syntactic rules of
XML, with semantics that support the creation of interactive speech
applications. For more information on the exact structure of the language with
respect to XML, see the VoxML 1.0 DTD (Document Type Definition) which is
available in Appendix A.

Purpose of this Document

This document serves as the official language reference for VoxML 1.0. It
contains information on the syntax of the elements and their attributes, example
usage, the structure of VoxML documents (or DIALOGs), and pointers to other
reference documentation that may be helpful when developing applications
using VoxML.

This document is intended for VoxML application developers.

An Introduction to VoxML 1.0
Structure of a VoxML Document

October 1998 VoxML 1.0 Language Reference 2

Structure of a VoxML Document

VoxML documents have a hierarchical structure, in which every element
(except the DIALOG element) is contained by another element. In contrast to
HTML, there is a strict containment relationship enforced by the language, so
there can be no ambiguity as to which element contains which.

DIALOGs and STEPs

The two most fundamental elements in VoxML are the DIALOG element and
the STEP element. These elements provide the basic structure of a VoxML
application.

The DIALOG element defines the scope of a VoxML document. All other
VoxML elements are contained by the DIALOG element. In normal cases, one
can equate a DIALOG to a file, in much the same way that there is one HTML
element per file when developing HTML-based applications.

The STEP element defines a state within a DIALOG, or to say it another way,
the STEP element defines an application state.

Together the DIALOG element and the associated STEP elements define a state
machine that represents an interactive dialogue between the application and a
user. When the VoxML voice browser interprets the VoxML document, it will
navigate through the DIALOG to different STEPs as a result of the user’s
responses.

Here is a simple VoxML example, which has 1 DIALOG and 2 STEPs.

1 <?xml version="1.0"?>
2 <DIALOG>
3 <STEP NAME="init">
4 <PROMPT> Please select a soft drink. </PROMPT>
5 <HELP> Your choices are coke, pepsi, 7 up,
6 or root beer. </HELP>
7 <INPUT TYPE="optionlist" NAME="drink">
8 <OPTION NEXT="#confirm"> coke </OPTION>
9 <OPTION NEXT="#confirm"> pepsi </OPTION>
10 <OPTION NEXT="#confirm"> 7 up </OPTION>
11 <OPTION NEXT="#confirm"> root beer </OPTION>
12 </INPUT>
13 </STEP>
14 <STEP NAME="confirm">
15 <PROMPT> You ordered a <VALUE NAME="drink"/>.
16 </PROMPT>
17 </STEP>
18 </DIALOG>

When this VoxML document is interpreted, the voice browser will begin by
executing the STEP called “init”. The user will hear the text contained by the
PROMPT element. If the user were to ask for “help” before making a selection,
the user would hear the text contained with the HELP element. After the user
makes a selection, the voice browser will execute the STEP named “confirm”,
which will simply read back the user’s selection and then exit the application.

An Introduction to VoxML 1.0
Structure of a VoxML Document

October 1998 VoxML 1.0 Language Reference 3

There are a few important points to be made after looking at this first code
example. First, you will notice that line 1 of the source code contains the XML
declaration string, which is required to be the first line of all VoxML documents.

Also, STEPs in a VoxML application are executed based on the user’s responses
not on the order of the STEPs within the source file. Although the definition of
the “init” STEP appears on line 3 and the definition of the “confirm” STEP
appears on line 14, the order in which they are defined has no impact on the
order in which the voice browser navigates through them.

Lastly, the line numbers shown in the example listing are not part of the source
code. They are shown only to make referencing the code simpler.

The Basic Elements

VoxML contains a lot of elements, which provides the application developer
with a lot of flexibility and power in the language. Section 2 of this document
describes these elements in detail.

There are, however, a few elements that are used in almost every DIALOG that
you will write. These basic elements are found in the example on the previous
page. They are DIALOG, STEP, PROMPT, HELP, and INPUT. If you are new
to VoxML, you should familiarize yourself with these basic elements before
progressing to the other, less frequently used elements.

An Introduction to VoxML 1.0
Other Reference Documentation

October 1998 VoxML 1.0 Language Reference 4

Other Reference Documentation

The following resources provide more information that may be helpful when
developing interactive speech applications using VoxML.

VoxML 1.0 Application Development Guide

This document contains design guidelines and examples for VoxML application
developers. It presents a description of the VoxML development environment
including system requirements, installation procedures, development tools and a
methodology for the development process. The main goal of the document is to
provide developers with explicit guidelines for developing successful VoxML
applications.

VoxML 1.0 Element Reference
ACK Element

October 1998 VoxML 1.0 Language Reference 5

2. VoxML 1.0 Element Reference
This section describes the VoxML elements, their attributes, and their syntax.
Examples are provided to help show common usage of each element.

ACK Element

The ACK element is used to acknowledge the transition between STEPs, usually
as a result of a user response. While an application developer could create
additional STEPs that were used to acknowledge the user’s response, the ACK
element provides an easier way to specify the common sorts of
acknowledgements.

An ACK element can be contained within a STEP or a CLASS element.

Syntax

<ACK [CONFIRM="value"] [BACKGROUND="value"]
[REPROMPT="value"] > text </ACK>

Attributes

Attribute Name Allowed Values

CONFIRM YORN *

BACKGROUND Y

N *

REPROMPT Y

N *

VoxML 1.0 Element Reference
ACK Element

October 1998 VoxML 1.0 Language Reference 6

Examples
1 <STEP NAME="card_type">
2 <PROMPT>
3 What type of credit card do you have?
4 </PROMPT>
5 <INPUT NAME="type" TYPE="optionlist">
6 <OPTION NEXT="#exp"> visa </OPTION>
7 <OPTION NEXT="#exp"> mastercard </OPTION>
8 <OPTION NEXT="#exp"> discover </OPTION>
9 </INPUT>
10 <ACK CONFIRM="YORN" REPROMPT="Y">
11 I thought you said <VALUE NAME="type"/>
12 <BREAK/> Is that correct?
13 </ACK>
14 </STEP>

In this rather complex example, the ACK element is used to confirm the user's
choice of credit card. When this code is interpreted by the VoxML voice
browser, it will speak the text of the PROMPT element using text-to-speech
technology, wait until the user responds with “visa”, “mastercard”, or
“discover”, and then ask the user to confirm the type of card was recognized
correctly.

If the user answers “yes” to the ACK, the browser will proceed to the STEP
named “exp”. If the user answers “no” to the ACK, the text of the PROMPT
will be read again, and the user will be allowed to make his or her choice again
— the browser re-enters the STEP as if for the first time.

VoxML 1.0 Element Reference
AUDIO Element

October 1998 VoxML 1.0 Language Reference 7

AUDIO Element

The AUDIO element specifies an audio file that should be played. AUDIO
elements can be used as an alternative anywhere that you would read text to the
user.

An AUDIO element can be contained within a PROMPT, EMP, PROS, HELP,
ERROR, CANCEL, or ACK element.

Syntax

<AUDIO SRC="value" />

Attributes

Attribute Name Allowed Values

SRC audio file URL

Examples
1 <PROMPT>
2 At the tone, the time will be 11:59 p m
3 <AUDIO SRC="http://localhost/sounds/beep.wav"/>
4 </PROMPT>

The above code is a simple example of an audio sample included in a PROMPT
element. When interpreted by the VoxML Voice Browser, this code will speak
the text from line 2 using text-to-speech technology, and then play the WAV file
“beep.wav” as specified by the AUDIO element on line 3.

For a description of the audio formats supported by the voice browser, see the
release notes for the VoxML SDK.

VoxML 1.0 Element Reference
BREAK Element

October 1998 VoxML 1.0 Language Reference 8

BREAK Element

The BREAK element is used to insert a pause into content to be presented to the
user. BREAK elements can be used anywhere that you would read text to or
play audio samples for the user.

The BREAK element can be contained within a PROMPT, EMP, PROS, HELP,
ERROR, CANCEL, or ACK element.

Syntax

<BREAK [MSECS="value" | SIZE="value"] />

Attributes

Attribute Name Allowed Values

MSECS milliseconds (integer)

SIZE NONE

SMALL

MEDIUM *

LARGE

Examples
1 <PROMPT>
2 Welcome to Earth. <BREAK MSECS="250"/>
3 How may I help you?
4 </PROMPT>

The code shown above illustrates the use of the BREAK element with the
MSECS attribute, inside a PROMPT. When interpreted by the VoxML voice
browser, this code would speak the text “Welcome to Myosphere.”, pause for
250 milliseconds, and then speak the text “How may I help you?”.

1 <PROMPT>
2 Welcome to Earth. <BREAK SIZE="medium"/>
3 How may I help you?
4 </PROMPT>

As an alternative to specifying an exact number of milliseconds, an application
developer can use the SIZE attribute of the BREAK element to control the
duration of the pause.

The actual duration of “small”, “medium”, and “large” are system defined, and
may change. Use the MSECS attribute if a specific duration is required.

VoxML 1.0 Element Reference
CANCEL Element

October 1998 VoxML 1.0 Language Reference 9

CANCEL Element

The CANCEL element enables the application developer to define the behavior
of the VoxML application in response to a user’s request to cancel the current
PROMPT. If the application developer does not define the behavior of
CANCEL for a given STEP, the system default behavior will be used.

The default behavior for the CANCEL element is to stop the PROMPT, and then
process any interactive INPUTs.

The CANCEL element, like the HELP element, can be invoked through a
variety of phrases. The user may say only the word “cancel”, or the user may
say “I would like to cancel, please.” In either case, the CANCEL element will
be interpreted.

The CANCEL element can be contained within a STEP or a CLASS element.

Syntax

<CANCEL NEXT="value" [NEXTMETHOD="value"] />
or

<CANCEL NEXT="value" [NEXTMETHOD="value"] > text </CANCEL>

Attributes

Attribute Name Allowed Values

NEXT next step URL

NEXTMETHOD GET *

POST

VoxML 1.0 Element Reference
CANCEL Element

October 1998 VoxML 1.0 Language Reference 10

Examples
1 <STEP NAME="report">
2 <CANCEL NEXT="#traffic_menu"/>
3 <PROMPT> Traffic conditions for Chicago,
4 Illinois, Monday, May 18. Heavy
5 congestion on ... </PROMPT>
7 <INPUT TYPE="optionlist">
8 <OPTION NEXT="#report"> repeat </OPTION>
9 <OPTION NEXT="#choose"> new city </OPTION>
10 </INPUT>
11 </STEP>

The code on line 2 illustrates the use of the CANCEL element to specify that
when the user says “cancel”, the browser should proceed to the STEP named
“traffic_menu”, instead of the default behavior, which would be to simply stop
the PROMPT from playing and wait for a user response. Users can also interrupt
the PROMPT by speaking valid OPTION. In this example, the user could
interrupt the PROMPT and get the traffic conditions for a different city by
saying “new city”.

VoxML 1.0 Element Reference
CASE Element

October 1998 VoxML 1.0 Language Reference 11

CASE Element

The CASE element is used to define the flow of control of the application, based
on the values of internal VoxML variables.

The CASE element can be contained by a SWITCH element, or by an INPUT
element, when using an INPUT type that collects a single value (i.e. DATE,
DIGITS, MONEY, PHONE, TIME, YORN).

Syntax

<CASE VALUE="value" NEXT="value" [NEXTMETHOD="value"] />

Attributes

Attribute Name Allowed Values

VALUE literal value

NEXT next step URL

NEXTMETHOD GET *

POST

Examples
1 <SWITCH FIELD="pizza">
2 <CASE VALUE="pepperoni" NEXT="#p_pizza"/>
3 <CASE VALUE="sausage" NEXT="#s_pizza"/>
4 <CASE VALUE="veggie" NEXT="#v_pizza"/>
5 </SWITCH>

The code on lines 2-4 shows the use of the CASE element within the SWITCH
element. In this example, the CASE elements are used to direct the browser to
different URLs based on the value of the VoxML variable “pizza”.

VoxML 1.0 Element Reference
CLASS Element

October 1998 VoxML 1.0 Language Reference 12

CLASS Element

The CLASS element defines a set of elements that are to be reused within the
context of a DIALOG. The definitions of a given CLASS may be inherited by
STEPs or other CLASSs. The CLASS element allows the application developer
to define a set of elements once, and then use them several times. The CLASS
element is often used to define the default behavior of ERROR, HELP, and
CANCEL, within a given DIALOG.

The CLASS element can be contained by a DIALOG element only.

Syntax

<CLASS NAME="value" [PARENT="value"] [BARGEIN="value"]
[COST="value"] > VoxML </CLASS>

Attributes

Attribute Name Allowed Values

NAME identifier

PARENT identifier

BARGEIN Y *

N

COST integer*

* The COST attribute is a platform-dependent feature. A given browser implementation may or may not
support each platform-dependent feature.

VoxML 1.0 Element Reference
CLASS Element

October 1998 VoxML 1.0 Language Reference 13

Examples
1 <CLASS NAME="simple">
2 <HELP> Your choices are <OPTIONS/> </HELP>
3 <ERROR> I did not understand what you said.
4 Valid responses are <OPTIONS/> </ERROR>
5 </CLASS>
6
7 <STEP NAME="beverage" PARENT="simple">
8 <PROMPT> Please choose a drink. </PROMPT>
9 <INPUT NAME="drink" TYPE="optionlist">
10 <OPTION NEXT="#food"> coke </OPTION>
11 <OPTION NEXT="#food"> pepsi </OPTION>
12 </INPUT>
13 </STEP>
14
15 <STEP NAME="food" PARENT="simple">
16 <PROMPT> Please choose a meal. </PROMPT>
17 <INPUT NAME="meal" TYPE="optionlist">
18 <OPTION NEXT="#deliver"> pizza </OPTION>
19 <OPTION NEXT="#deliver"> tacos </OPTION>
20 </INPUT>
21 </STEP>

The code shown on lines 1-5 illustrates the use of the CLASS element to define
a HELP element and an ERROR element that will be used in several STEPs
within this DIALOG.

The code on lines 7 and 15 illustrates the use of the PARENT attribute on the
STEP element to refer to the CLASS element, and therefore inherit the
behaviors defined within it.

When interpreted by the VoxML voice browser, the STEPs defined on lines 7-
13 and lines 15-21 will behave as if the HELP and ERROR elements that are
defined in the CLASS were defined explicitly in the STEPs themselves.

VoxML 1.0 Element Reference
DIALOG Element

October 1998 VoxML 1.0 Language Reference 14

DIALOG Element

The DIALOG element is the fundamental element of VoxML. If one were to
imagine a VoxML document as a tree, the DIALOG element would be the root
of the tree. The DIALOG element defines the basic unit of context within a
VoxML application, and in the common case, there is one DIALOG element per
URL.

Each VoxML DIALOG must contain exactly one STEP element named “init”.
The execution of the VoxML application begins with the STEP named “init”.

A DIALOG element cannot be contained by any VoxML element.

Syntax

<DIALOG [BARGEIN="value"] > VoxML </DIALOG>

Attributes

Attribute Name Allowed Values

BARGEIN Y *

N

Examples
1 <DIALOG>
2 <STEP NAME="init">
3 <PROMPT> Welcome to VoxML. </PROMPT>
4 </STEP>
5 </DIALOG>

The above code shows a simple, yet complete VoxML DIALOG. The DIALOG
element is specified on lines 1 and 5 and contains a single STEP element named
“init”. The STEP has a single PROMPT that will be read via text-to-speech.
Since there is no INPUT defined in this STEP, the VoxML application will
terminate immediately after the PROMPT is read.

VoxML 1.0 Element Reference
EMP Element

October 1998 VoxML 1.0 Language Reference 15

EMP Element

The EMP element is used to identify a context within text that will be read to the
user where emphasis is to be applied. The EMP element can be used anywhere
that text is read to the user.

The EMP element can be contained within a PROMPT, EMP, PROS, HELP,
ERROR, CANCEL, or ACK element.

Syntax

<EMP [LEVEL="value"] > text </EMP>

Attributes

Attribute Name Allowed Values

LEVEL NONE

REDUCED

MODERATE *

STRONG

Examples
1 <PROMPT>
2 This example is
3 <EMP LEVEL="strong"> really </EMP>
4 simple.
5 </PROMPT>

The above code illustrates the use of the EMP element to apply “strong”
emphasis to the word “really” in a simple prompt.

The actual effect on the speech output is determined by the text-to-speech (TTS)
software used by the voice browser. Since the desktop simulator uses different
TTS software than the voice browser in the highly-scalable network system, the
output may vary. To achieve a specific emphatic effect, use the PROS element
instead of the EMP element.

VoxML 1.0 Element Reference
ERROR Element

October 1998 VoxML 1.0 Language Reference 16

ERROR Element

The ERROR element enables the application developer to define the behavior of
the VoxML application in response to an error. If the application developer
does not define the behavior of ERROR for a given STEP, the default behavior
will be used.

The default behavior for the ERROR element is to speak the phrase “An error
has occurred.”, remain in the current STEP, replay the PROMPT, and wait for
the user to respond.

The ERROR element can be contained within a STEP or a CLASS element.

Syntax

<ERROR [TYPE="value"] [ORDINAL="value"] [REPROMPT="value"]
[NEXT="value" [NEXTMETHOD="value"]] > text </ERROR>

Attributes

Attribute Name Allowed Values

TYPE ALL *

NOMATCH

NOSPEECH

TOOLITTLE

TOOMUCH

NOAUTH

BADNEXT

ORDINAL integer

REPROMPT Y

N *

NEXT next step URL

NEXTMETHOD GET *

POST

VoxML 1.0 Element Reference
ERROR Element

October 1998 VoxML 1.0 Language Reference 17

Examples
1 <STEP NAME="errors">
2 <ERROR TYPE="nomatch"> First error message.
3 I did not understand what you said. </ERROR>
4 <ERROR TYPE="nomatch" ORDINAL="2">
5 Second error message.
6 I did not understand what you said. </ERROR>
7 <PROMPT> This step tests error messages.
8 Say 'oops' twice. Then say 'done' to
9 choose another test. </PROMPT>
10 <INPUT TYPE="OPTIONLIST">
11 <OPTION NEXT="#end"> done </OPTION>
12 </INPUT>
13 </STEP>

The code shown above illustrates the use of the ERROR element to define the
application's behavior in response to an error. On line 2, we define the error
message to be used the first time an error of type “nomatch” occurs in this
STEP. On line 4, we define the error message to be used the second and all
subsequent times an error of type "nomatch" occurs in this STEP.

The ORDINAL attribute determines which message will be used in the case of
repeated errors within the same STEP. The VoxML voice browser will choose
an error message based on this simple algorithm: If the error has occurred 3
times, the browser will look for an ERROR element with ORDINAL of “3”. If
no such ERROR element has been defined, the voice browser will look for an
ERROR with ORDINAL of “2”, and then “1”, and then an ERROR with no
ORDINAL defined.

So, if we had defined an ERROR element with ORDINAL of “6” in the STEP
shown above, and the same error occurred 6 times in a row, the user would hear
the first error message one time, then the second error message 4 times, and
finally the error message with ORDINAL of “6”.

VoxML 1.0 Element Reference
HELP Element

October 1998 VoxML 1.0 Language Reference 18

HELP Element

The HELP enables the application developer to define the behavior of the
VoxML application when the user asks for help. If the application developer
does not define the behavior of HELP for a given STEP, the system default
behavior will be used.

The HELP element, like CANCEL the element, can be invoked through a
variety of phrases. The user may say only the word “help”, or the user may say
“I would like help, please.” In either case, the HELP element will be
interpreted.

The default behavior for the HELP element is to stop the PROMPT (if one is
playing), speak the phrase “No help is available.”, remain in the current STEP,
and process any interactive INPUTs.

The HELP element can be contained within a STEP or a CLASS element.

Syntax

<HELP [ORDINAL="value"] [REPROMPT="value"]
[NEXT="value" [NEXTMETHOD="value"]] > text </HELP>

Attributes

Attribute Name Allowed Values

ORDINAL integer

REPROMPT Y

N *

NEXT next step URL

NEXTMETHOD GET *

POST

VoxML 1.0 Element Reference
HELP Element

October 1998 VoxML 1.0 Language Reference 19

Examples
1 <STEP NAME="helps">
2 <HELP REPROMPT="Y"> First help message.
3 You should hear the prompt again. </HELP>
4 <HELP ORDINAL="2"> Second help message.
5 You should not hear the prompt now. </HELP>
6 <PROMPT> This step tests help prompts.
7 Say 'help' twice. Then say 'done' to
8 choose another test. </PROMPT>
9 <INPUT TYPE="OPTIONLIST">
10 <OPTION NEXT="#end"> done </OPTION>
11 </INPUT>
12 </STEP>

The code shown above illustrates the use of the HELP element to define the
application's behavior in response to the user input “help”. On line 2, we define
the help message to be used the first time the user says “help”. On line 4, we
define the help message to be used the second and all subsequent times the user
says “help”. It should also be noted that through the use of the REPROMPT
attribute, the prompt will be repeated after the first help message, but it will not
be repeated after the second help message.

The ORDINAL attribute determines which message will be used in the case of
repeated utterances of “help” within the same STEP element. The VoxML
voice browser will choose a help message based on this simple algorithm: If the
user has said “help” 3 times, the browser will look for a HELP element with
ORDINAL of “3”. If no such HELP element has been defined, the voice
browser will look for a HELP with ORDINAL of “2”, and then “1”, and then a
HELP with no ORDINAL defined.

So, if we had defined a HELP element with ORDINAL of “6” in the STEP
shown above, and the user said “help” 6 times in a row, the user would hear the
first help message one time, then the second help message 4 times, and finally
the help message with ORDINAL of “6”.

VoxML 1.0 Element Reference
INPUT Element

October 1998 VoxML 1.0 Language Reference 20

INPUT Element

The INPUT element is used to define the valid user input within each STEP.
The application developer can define the type of input as well as specific values
that are to be recognized.

The INPUT element can exist only within a STEP element.

Syntax

Because the syntax of the different types of INPUTs vary widely, each of the
types of INPUT elements will be described in its own section.

Attributes

Attribute Name Allowed Values

TYPE DATE

DIGITS

GRAMMAR

HIDDEN

MONEY

NONE

NUMBER

OPTIONLIST

PHONE

PROFILE

RECORD

TIME

YORN

Examples

For examples, please reference the section that describes the type of INPUT that
you would like to use.

VoxML 1.0 Element Reference
INPUT Element : Type DATE

October 1998 VoxML 1.0 Language Reference 21

INPUT Element : Type DATE

The DATE input is used to collect a calendar date from the user.

Syntax

<INPUT TYPE="DATE" NAME="value" NEXT="value"
[NEXTMETHOD="value"] [TIMEOUT="value"] />

Attributes

Attribute Name Allowed Values

NAME identifier

NEXT next step URL

NEXTMETHOD GET *

POST

TIMEOUT milliseconds (integer)

Examples
1 <STEP NAME="init">
2 <PROMPT> What is your date of birth? </PROMPT>
3 <INPUT TYPE="date" NAME="dob" NEXT="#soc"/>
4 </STEP>

The code on line 3 illustrates the use of the DATE INPUT to gather the user's
birthday, store it in the VoxML variable “dob”, and then go to the STEP named
“soc”.

Data Format

The DATE input makes use of an input grammar to interpret the user’s response
and store that response in a standard format. The DATE input grammar can
interpret dates expressed in several different formats.

A fully defined date like “next Friday, July 10th, 1998” is stored as
“07101998|July|10|1998|Friday|next”. If the date cannot be determined
by the user’s response, the ambiguous parts of the response will be omitted from
the data.

The response “July 4th”, is stored as “????????|July|4|||”, “Tomorrow”
becomes “????????|||||tomorrow”, “The 15th” is stored as
“????????||15|||”, and “Monday” becomes “????????||||Monday|”.

VoxML 1.0 Element Reference
INPUT Element : Type DIGITS

October 1998 VoxML 1.0 Language Reference 22

INPUT Element : Type DIGITS

The DIGITS input is used to collect a series of digits from the user.

Syntax

<INPUT TYPE="DIGITS" NAME="value" NEXT="value"
[NEXTMETHOD="value"] [TIMEOUT="value"] [MIN="value"] [MAX="value"] />

Attributes

Attribute Name Allowed Values

NAME identifier

NEXT next step URL

NEXTMETHOD GET *

POST

TIMEOUT milliseconds (integer)

MIN minimum number of digits (integer)

MAX maximum number of digits (integer)

Examples
1 <STEP NAME="init">
2 <PROMPT> Please say your pin now. </PROMPT>
3 <INPUT TYPE="digits" NAME="pin" NEXT="#doit"/>
4 </STEP>

The code on line 3 illustrates the use of the DIGITS INPUT to collect digits
from the user, store the number in the VoxML variable named “pin”, and then
go to the STEP named “doit”.

If the user were to say, “four five six”, in response to the PROMPT shown on
line 2, the value “456” would be stored in the VoxML variable “pin”. The
DIGITS input type will collect the digits 0 (i.e. zero) through 9 (i.e. nine), but
not other numbers like 20 (i.e. twenty). To collect numbers like 20 (i.e. twenty)
or 400 (i.e. four hundred), use the NUMBER input type.

VoxML 1.0 Element Reference
INPUT Element : Type GRAMMAR

October 1998 VoxML 1.0 Language Reference 23

INPUT Element : Type GRAMMAR

The GRAMMAR input is used to specify an input grammar that is to be used
when interpreting the user's responses.

Syntax

<INPUT TYPE="GRAMMAR" SRC="value" NEXT="value"
[NEXTMETHOD="value"] [TIMEOUT="value"] />

or
<INPUT TYPE="GRAMMAR" SRC="value" NEXT="value"
[NEXTMETHOD="value"] [TIMEOUT="value"] > RENAME elements </INPUT>

or
<INPUT TYPE="GRAMMAR" SRC="value" [TIMEOUT="value"]
[NEXT="value" [NEXTMETHOD="value"]] > RESPONSE elements </INPUT>

Attributes

Attribute Name Allowed Values

SRC grammar URL

NEXT next step URL

NEXTMETHOD GET *

POST

TIMEOUT milliseconds (integer)

Examples
1 <STEP NAME="init">
2 <PROMPT> Say the month and year in which the
3 credit card expires. </PROMPT>
4 <INPUT TYPE="GRAMMAR"
5 SRC="gram://.SomeGrammar/month/year"
6 NEXT="#stepNineteen"/>
7 </STEP>

The code on lines 4, 5, and 6 illustrates the use of the GRAMMAR INPUT to
collect a month and year from the user, store the interpreted values in variables
named “month” and “year”, and then go to the step named “stepNineteen”.

VoxML 1.0 Element Reference
INPUT Element : Type HIDDEN

October 1998 VoxML 1.0 Language Reference 24

INPUT Element : Type HIDDEN

The HIDDEN input is used to store a value in a VoxML variable.

Syntax

<INPUT TYPE="HIDDEN" NAME="value" VALUE="value"/>

Attributes

Attribute Name Allowed Values

NAME identifier

VALUE literal value

Examples
1 <STEP NAME="init">
2 <PROMPT> Login sequence complete.
3 Are you ready to place your order?
4 </PROMPT>
5 <INPUT TYPE="hidden" NAME="firstname"
6 VALUE="Bill"/>
7 <INPUT TYPE="hidden" NAME="lastname"
8 VALUE="Clinton"/>
9 <INPUT TYPE="hidden" NAME="favorite"
10 VALUE="fries"/>
11 <INPUT TYPE="optionlist">
12 <OPTION NEXT="#order"> yes </OPTION>
13 <OPTION NEXT="#wait"> not yet </OPTION>
14 </INPUT>
15 </STEP>

In the example code shown above, the HIDDEN INPUT type is used to create
VoxML variables and assign values to those variables. In this particular
example, the user has completed the login sequence and the application designer
chose to save certain information in VoxML variables as soon as the user's
identity has been established. This information could then be used later in the
application without requiring another access into the database.

Notice that when using the HIDDEN INPUT that it is permissable to have more
than one INPUT element in the same STEP. This is because the HIDDEN
INPUT is not an interactive INPUT. Each STEP can contain only one INPUT
that accepts a response from the user.

VoxML 1.0 Element Reference
INPUT Element : Type MONEY

October 1998 VoxML 1.0 Language Reference 25

INPUT Element : Type MONEY

The MONEY input is used to collect monetary amounts from the user.

Syntax

<INPUT TYPE="MONEY" NAME="value" NEXT="value"
[NEXTMETHOD="value"] [TIMEOUT="value"] />

Attributes

Attribute Name Allowed Values

NAME identifier

NEXT next step URL

NEXTMETHOD GET *

POST

TIMEOUT milliseconds (integer)

Examples
1 <STEP NAME="init">
2 <PROMPT> How much would you like to deposit?
3 </PROMPT>
4 <INPUT TYPE="money" NAME="dep" NEXT="#deposit"/>
5 </STEP>

The above example code illustrates the use of the MONEY input type to collect
the amount of money that the user would like to deposit in his account, store that
amount in a VoxML variable named “dep”, and then go to the STEP named
“deposit”.

Data Format

The MONEY input makes use of an input grammar to interpret the user’s
response and store that response in a standard format. The input grammar is
able to interpret several ways to express monetary amounts.

The data is stored in integer format, in terms of cents.

“five cents” is stored as “5”, “five dollars” is stored as “500”, and “a thousand”
is stored as “100000”. Note that no punctuation is added to the digits. Also note
that in the case where the units are ambiguous, the grammar assumes dollars, as
in the example above in which “a thousand” was stored as if the user had said “a
thousand dollars”.

VoxML 1.0 Element Reference
INPUT Element : Type NONE

October 1998 VoxML 1.0 Language Reference 26

INPUT Element : Type NONE

Input type NONE is used to specify the next location for the voice browser to go
to continue execution when no response is collected from the user.

Syntax

<INPUT TYPE="NONE" NEXT="value" [NEXTMETHOD="value"] />

Attributes

Attribute Name Allowed Values

NEXT next step URL

NEXTMETHOD GET *

POST

Examples
1 <STEP NAME="init">
2 <PROMPT> Welcome to the system. </PROMPT>
3 <INPUT TYPE="none" NEXT="#mainmenu"/>
4 </STEP>

The code shown above illustrates the use of the NONE input type to jump to
another STEP in this dialog without waiting for any user response. In this
example, the user would here the phrase “Welcome to the system” followed
immediately by the prompt of the main menu.

VoxML 1.0 Element Reference
INPUT Element : Type NUMBER

October 1998 VoxML 1.0 Language Reference 27

INPUT Element : Type NUMBER

The NUMBER input is used to collect numbers from the user.

Syntax

<INPUT TYPE="NUMBER" NAME="value" NEXT="value"
[NEXTMETHOD="value"] [TIMEOUT="value"] />

Attributes

Attribute Name Allowed Values

NAME identifier

NEXT next step URL

NEXTMETHOD GET *

POST

TIMEOUT milliseconds (integer)

Examples
1 <STEP NAME="init">
2 <PROMPT> Please say your age now. </PROMPT>
3 <INPUT TYPE="number" NAME="age" NEXT="#doit"/>
4 </STEP>

The code on line 3 illustrates the use of the NUMBER INPUT to collect
numbers from the user, store the number in the VoxML variable named “age”,
and then go to the STEP named “doit”.

If the user were to say, “eighteen”, in response to the PROMPT shown on line 2,
the value “18” would be stored in the VoxML variable “age”. The NUMBER
input type will collect numbers like 20 (i.e. twenty), only one number per input.
To collect a series of digits like “four five six” (i.e. “456”), use the DIGITS
input type.

VoxML 1.0 Element Reference
INPUT Element : Type OPTIONLIST

October 1998 VoxML 1.0 Language Reference 28

INPUT Element : Type OPTIONLIST

The OPTIONLIST input is used to specify a list of options from which the user
can select. This input type is used in conjunction with the OPTION element,
which defines the specific user responses and the behavior associated with each.

Syntax

<INPUT TYPE="OPTIONLIST" [NAME="value"] [TIMEOUT="value"]
[NEXT="value" [NEXTMETHOD="value"]] > OPTION elements </INPUT>

Attributes

Attribute Name Allowed Values

NAME identifier

NEXT next step URL

NEXTMETHOD GET *

POST

TIMEOUT milliseconds (integer)

Examples
1 <STEP NAME="init">
2 <PROMPT> What would you like to drink? </PROMPT>
3 <INPUT TYPE="optionlist">
4 <OPTION NEXT="#coke"> coke </OPTION>
5 <OPTION NEXT="#coke"> coca-cola </OPTION>
6 <OPTION NEXT="#pepsi"> pepsi </OPTION>
7 <OPTION NEXT="#rc"> r c </OPTION
8 </INPUT>
9 </STEP>

In this simple example, the VoxML voice browser will go to a different STEP
depending on which cola the user selects. As defined on lines 4 and 5, if the
user said “coke” or “coca-cola”, the voice browser would go to the STEP named
“coke”.

VoxML 1.0 Element Reference
INPUT Element : Type PHONE

October 1998 VoxML 1.0 Language Reference 29

INPUT Element : Type PHONE

The PHONE input is used to collect telephone numbers from the user.

Syntax

<INPUT TYPE="PHONE" NAME="value" NEXT="value"
[NEXTMETHOD="value"] [TIMEOUT="value"] />

Attributes

Attribute Name Allowed Values

NAME identifier

NEXT next step URL

NEXTMETHOD GET *

POST

TIMEOUT milliseconds (integer)

Examples
1 <STEP NAME="phone">
2 <PROMPT> What is your phone number? </PROMPT>
3 <INPUT TYPE="phone" NAME="ph" NEXT="#fax"/>
4 </STEP>

In this simple example, the code on line 3 illustrates the use of the PHONE input
type to collect a telephone number from the user, store the number in the
VoxML variable named “ph”, and go to the STEP named “fax”.

Data Format

The PHONE input makes use of an input grammar to interpret the user’s
response and store that response in a standard format. The phone number is
interpreted as a string of digits, and stored in the VoxML variable as such.

If a user said “One, eight zero zero, seven five nine, eight eight eight eight”, the
response would be stored as “18007598888”. Note that there is no punctuation
added to the digits.

VoxML 1.0 Element Reference
INPUT Element : Type PROFILE‡

October 1998 VoxML 1.0 Language Reference 30

INPUT Element : Type PROFILE‡

The PROFILE input is used to collect the user's profile information (e.g. home
address) from the voice browser directly. This INPUT type is different from the
others in that the input does not come from the interactive user, but instead is
provided by the voice browser itself, using information from the system’s
subscriber database. (The user’s information is provided by each subscriber
when the account is activated.)

Syntax

<INPUT TYPE="PROFILE" NAME="value" PROFNAME="value"
[SUBTYPE="value"] />

Attributes

Attribute Name Allowed Values

NAME identifier

PROFNAME profile element name (string)

SUBTYPE profile element subtype (string)

* For information on valid profile names and subtypes, see Appendix B.

Examples
1 <STEP NAME="getinfo">
2 <INPUT TYPE="profile" NAME="firstname"
3 PROFNAME="N" SUBTYPE="first"/>
4 <PROMPT> Hello, <VALUE NAME="firstname"/>.
5 Please say your pin. </PROMPT>
6 <INPUT TYPE="digits" NAME="pin" NEXT="#verify"/>
7 </STEP>

In the code on lines 2 and 3, the PROFILE input is used to retrieve the user's
first name and store the string in the VoxML variable named “firstname”. The
string containing the name is then inserted into the PROMPT on line 4 using the
VALUE element.

Notice that when using the PROFILE INPUT that it is permissable to have more
than one INPUT element in the same STEP. This is because the PROFILE
INPUT is not an interactive INPUT. Each STEP can contain only one INPUT
that accepts a response from the user.

‡ The PROFILE input type is a platform-dependent feature.

VoxML 1.0 Element Reference
INPUT Element : Type RECORD

October 1998 VoxML 1.0 Language Reference 31

INPUT Element : Type RECORD

The RECORD input type is used to record an audio sample and to store that
sample in a location specified by the application developer.

Syntax

<INPUT TYPE="RECORD" TIMEOUT="value" STORAGE="value"
[FORMAT="value"] [NAME="value"] NEXT="value" [NEXTMETHOD="value"] />

Attributes

Attribute Name Allowed Values

TIMEOUT record for milliseconds (integer)

FORMAT recorded audio format (audio/wav *)

NAME identifier

STORAGE FILE

REQUEST

NEXT next step URL

NEXTMETHOD GET *

POST

PUT

Examples

1 <STEP NAME="init">
2 <PROMPT> Please say your first and last name.
3 </PROMPT>
4 <INPUT TYPE="record" TIMEOUT="7000"
5 NAME="theName" STORAGE="REQUEST"
6 NEXT="http://wavhost/acceptwav.asp"
7 NEXTMETHOD="POST"/>
8 </STEP>

In this example, the RECORD input type is used to record a 7 second audio
sample, and then “POST” that sample to the remote machine named “wavhost”.
The response to the “POST” must be a VoxML DIALOG which continues the
execution of the application.

Note that nothing is stored in the VoxML variable named “theName”; the
recorded audio is sent to the remote machine instead.

VoxML 1.0 Element Reference
INPUT Element : Type RECORD

October 1998 VoxML 1.0 Language Reference 32

1 <STEP NAME="init">
2 <PROMPT> Please say your first and last name.
3 </PROMPT>
4 <INPUT TYPE="record" TIMEOUT="7000"
5 NAME="theName" STORAGE="FILE"
6 NEXT="#reccomplete" NEXTMETHOD="GET"/>
7 </STEP>

In this example, the RECORD input type is used to record a another 7 second
audio sample, but this time the sample is stored in a file, instead of sent in the
HTTP request as it was in the earlier example. The name of the file is chosen by
the voice browser automatically and is stored in the VoxML variable named
“theName”. After storing the audio sample in the file, the voice browser will
continue execution at the URL specified by the NEXT attribute.

Note that in contrast to the earlier example, the value of the VoxML variable
“theName” will be the name of the audio file. In the earlier example (where the
audio sample was transmitted via the HTTP request), the value of the VoxML
variable “theName” would be null.

VoxML 1.0 Element Reference
INPUT Element : Type TIME

October 1998 VoxML 1.0 Language Reference 33

INPUT Element : Type TIME

The TIME input type is used to collect a time of day from the user.

Syntax

<INPUT TYPE="TIME" NAME="value" NEXT="value"
[NEXTMETHOD="value"] [TIMEOUT="value"] />

Attributes

Attribute Name Allowed Values

NAME identifier

NEXT next step URL

NEXTMETHOD GET *

POST

TIMEOUT milliseconds (integer)

Examples
1 <STEP NAME="init">
2 <PROMPT> What time would you like your wakeup
3 call? </PROMPT>
4 <INPUT TYPE="time" NAME="wakeup" NEXT="#record"/>
6 </STEP>

This example makes use of the TIME input type to collect a time of day from
the user, store that data in the VoxML variable named “wakeup”, and then go to
the STEP named “record”.

Data Format

The TIME input makes use of an input grammar to interpret the user’s response
and store that response in a standard format. This grammar will interpret
responses of various forms, including both 12-hour and 24-hour conventions.

“Four o’clock” is stored as “400”. Since the user was not specific as to the
morning or evening, no indication is stored in the VoxML variable.

“Four oh three PM” becomes “403P”. Note the “P” appended to the time.
Likewise, “Ten fifteen in the morning” becomes “1015A”. Note the “A”.
“Noon” is stored as “1200P”, and “Midnight” is stored as “1200A”. Military
time, such as, “Thirteen hundred hours” becomes “100P”.

VoxML 1.0 Element Reference
INPUT Element : Type YORN

October 1998 VoxML 1.0 Language Reference 34

INPUT Element : Type YORN

The YORN input is used to collect “yes or no” responses from the user. This
input maps a variety of affirmative and negative responses to the values “Y” and
“N”, simplifying the work of the application developer in interpreting this type
of user response.

Syntax

<INPUT TYPE="YORN" NAME="value" [TIMEOUT="value"]
NEXT="value" [NEXTMETHOD="value"] />

or
<INPUT TYPE="YORN" [NAME="value"] [TIMEOUT="value"]
[NEXT="value" [NEXTMETHOD="value"]] > CASE elements </INPUT>

Attributes

Attribute Name Allowed Values

NAME identifier

NEXT next step URL

NEXTMETHOD GET *

POST

TIMEOUT milliseconds (integer)

Examples

1 <STEP NAME="ask">
2 <PROMPT> Fire the missles now? </PROMPT>
3 <INPUT TYPE="YORN" NAME="fire" NEXT="#confirm"/>
4 </STEP>

In this example, we use the YORN input type to collect a “yes or no” response
from the user, store that response into the VoxML variable named “fire”, and
then go to the STEP named “confirm”.

The YORN input type stores the value “Y” for affirmative responses and the
value “N” for negative responses. Affirmative and negative responses are
determined using an input grammar that maps various user responses to the
appropriate result.

VoxML 1.0 Element Reference
OPTION Element

October 1998 VoxML 1.0 Language Reference 35

OPTION Element

The OPTION element is used to define the application behavior associated with
a specific user response.

The OPTION element can exist only within the INPUT element, and then only
when using the OPTIONLIST input type.

Syntax

<OPTION [NEXT="value" [NEXTMETHOD="value"]] [VALUE="value"] >
text </OPTION>

Attributes

Attribute Name Allowed Values

VALUE literal value

NEXT next step URL

NEXTMETHOD GET *

POST

Examples
1 <INPUT NAME="choice" TYPE="optionlist">
2 <OPTION NEXT="#doit" VALUE="1"> one </OPTION>
3 <OPTION NEXT="#doit" VALUE="2"> two </OPTION>
4 </INPUT>

The code on lines 2 and 3 illustrate the use of the OPTION element within the
INPUT element. In this example, the OPTION on line 2 would be executed
when the user responded with “one”, and the OPTION on line 3 would be
executed when the user responded with “two”. If the user said “one” the result
would be that the value of the variable named “choice” would be “1”, because
of the use of the VALUE attribute. Because the NEXT attributes for both of the
OPTIONs in this OPTIONLIST are the same, the VoxML voice browser would
proceed to the STEP named “doit” when either “one” or “two” was recognized.

VoxML 1.0 Element Reference
OPTION Element

October 1998 VoxML 1.0 Language Reference 36

1 <INPUT TYPE="optionlist">
2 <OPTION NEXT="http://localhost/vml/weather.asp">
3 weather </OPTION>
4 <OPTION NEXT="http://localhost/vml/news.asp">
5 news </OPTION>
6 <OPTION NEXT="http://localhost/vml/traffic.asp">
7 traffic </OPTION>
8 </INPUT>

The code shown above illustrates the use of the OPTION element to select one
of three VoxML applications. Note that the URLs used in the NEXT attributes
are full HTTP URLs, and that unlike the previous example, each OPTION has a
unique NEXT attribute.

VoxML 1.0 Element Reference
OPTIONS Element

October 1998 VoxML 1.0 Language Reference 37

OPTIONS Element

The OPTIONS element describes the type of input expected within a given
STEP element. The OPTIONS element is typically used in HELP elements to
present the user with a complete list of valid responses. The OPTIONS element
can be used anywhere that text is read to the user.

The OPTIONS element can be contained by a PROMPT, EMP, PROS, HELP,
ERROR, or ACK element.

Syntax

<OPTIONS/>

Attributes

The OPTIONS element has no attributes.

Examples
1 <CLASS NAME="helpful">
2 <HELP> Your choices are: <OPTIONS/> </HELP>
3 </CLASS>

This example illustrates how the OPTIONS element can be used to construct a
“helpful” CLASS. Any STEPs that directly or indirectly name “helpful” as a
PARENT respond to “help” by speaking the message, in which the OPTIONS
element expands to a description of what can be said at this point in the dialog.

VoxML 1.0 Element Reference
OR Element

October 1998 VoxML 1.0 Language Reference 38

OR Element

The OR element is used to define alternate recognition results in an OPTION
element. The OR element is interpreted as a logical or, and is used to associate
multiple recognition results with a single NEXT attribute.

The OR element can exist only within the OPTION element.

Syntax

<OR/>

Attributes

The OR element has no attributes.

Examples
1 <INPUT TYPE="optionlist">
2 <OPTION NEXT="#coke_chosen">
3 coke <OR/> coca-cola
4 </OPTION>
5 <OPTION NEXT="#pepsi_chosen"> pepsi </OPTION>
6 </INPUT>

The code shown above illustrates the use of the OR element within an OPTION
element. As you can see on line 3, the user may respond with either “coke” or
“coca-cola”, and the effect is the same — the voice browser will proceed to the
STEP named “coke_chosen”.

VoxML 1.0 Element Reference
PROMPT Element

October 1998 VoxML 1.0 Language Reference 39

PROMPT Element

The PROMPT element is used to define content (text or an audio file) that is to
be presented to the user. Typically, the PROMPT element will contain text and
several markup elements, like the BREAK or EMP element, that are read to the
user via text-to-speech technology.

The PROMPT element can be contained within a STEP or a CLASS element.

Syntax

<PROMPT> text </PROMPT>

Attributes

The PROMPT element has no attributes.

Examples
1 <STEP NAME="init">
2 <PROMPT> How old are you? </PROMPT>
3 <INPUT TYPE="number" NAME="age" NEXT="#weight"/>
4 </STEP>

In this simple example, the text “How old are you?” will be spoken via text-to-
speech technology, and then the application will wait for the user to say his age.
The PROMPT element on line 2 defines what will be presented to the user.

VoxML 1.0 Element Reference
PROS Element

October 1998 VoxML 1.0 Language Reference 40

PROS Element

The PROS element is used to control the prosody of the content presented to the
user via PROMPT, HELP, ERROR, CANCEL, and ACK elements. Prosody
affects certain qualities of the text-to-speech presentation, including rate of
speech, pitch, range, and volume.

The PROS element can be contained within a PROMPT, EMP, PROS, HELP,
ERROR, CANCEL, or ACK element.

Syntax

<PROS [RATE="value"] [VOL="value"] [PITCH="value"] [RANGE="value"] >
text </PROS>

Attributes

Attribute Name Allowed Values

RATE words per minute (integer)

VOL volume of speech (integer)

PITCH pitch in Hz (integer)

RANGE range in Hz (integer)

Examples
1 <PROMPT> Let me tell you a secret:
2 <PROS VOL="0.5"> I ate the apple. </PROS>
3 </PROMPT>

In this example, the phrase “I ate the apple.” is spoken with one half of the
normal volume.

VoxML 1.0 Element Reference
RENAME Element

October 1998 VoxML 1.0 Language Reference 41

RENAME Element

The RENAME element is used to rename recognition slots in VoxML
grammars, such that the resulting VoxML variable name can be different from
the name of the recognition slot defined in the grammar.

The RENAME element can exist only within the INPUT element, and then only
when using the GRAMMAR input type.

Syntax

<RENAME RECNAME="value" VARNAME="value" />

Attributes

Attribute Name Allowed Values

VARNAME identifier

RECNAME identifier

Examples
1 <INPUT TYPE="GRAMMAR"
2 SRC="http://www.foo.com/mygram.grm"
3 NEXT="http://www.fancyquotes.com/vmlstocks.asp">
4 <RENAME VARNAME="sym" RECNAME="symbol">
5 <RENAME VARNAME="detail" RECNAME="quotetype">
6 </INPUT>

In this example, the RENAME element is used to account for differences in the
variable names collected from a grammar and those expected by another script.
In particular, the case imagined here is one where a grammar from foo.com is
used to provide input to a VoxML application hosted by fancyquotes.com.
Because the grammar and script are imagined to have been developed
independently, the RENAME element is used to help connect the grammar and
the stock-quoting application.

VoxML 1.0 Element Reference
RESPONSE Element

October 1998 VoxML 1.0 Language Reference 42

RESPONSE Element

The RESPONSE element is used to define the behavior of the VoxML
application in response to different combinations of recognition slots. The
RESPONSE element enables the application developer to define a different
NEXT attribute depending on which of the grammar's slots were filled.

The RESPONSE element can exist only within an INPUT element, and then
only when using an input type of GRAMMAR.

Syntax

<RESPONSE FIELDS="value" [NEXT="value" [NEXTMETHOD="value"]] />
or

<RESPONSE FIELDS="value" [NEXT="value" [NEXTMETHOD="value"]] >
SWITCH elements </RESPONSE>

Attributes

Attribute Name Allowed Values

FIELDS comma separated list of identifiers

NEXT next step URL

NEXTMETHOD GET *

POST

VoxML 1.0 Element Reference
RESPONSE Element

October 1998 VoxML 1.0 Language Reference 43

Examples
1 <INPUT TYPE="GRAMMAR"
2 SRC="gram://.Banking/action/amt/fromacct/toacct"
3 NEXT="#notenoughfields">
4 <RESPONSE FIELDS="action,amt,fromacct,toacct"
5 NEXT="#doit"/>
6 <RESPONSE FIELDS="action,amt,fromacct"
7 NEXT="#asktoacct"/>
8 <RESPONSE FIELDS="action,amt,toacct"
9 NEXT="#askfromacct"/>
10 <RESPONSE FIELDS="action,amt" NEXT="#askaccts"/>
11 <RESPONSE FIELDS="action" NEXT="#askamtaccts"/>
12 </INPUT>

This example illustrates how the RESPONSE element can be used to deal with
situations where the user specifies less than all the possible variables available in
the grammar. Using the RESPONSE element, the application can arrange to
collect only the information not already filled in by prior steps.

In particular this example transfers to the “askaccts” STEP if neither the source
nor destination account is specified (for example, the user said “transfer 500
dollars”), but it transfers to the “askfromacct” STEP if the user said what
account to transfer to, but did not specify a source account (for example, if the
user had said “transfer 100 dollars to savings”).

The NEXT URL on the INPUT element is used when the user’s response does
not match any of the defined RESPONSEs.

VoxML 1.0 Element Reference
STEP Element

October 1998 VoxML 1.0 Language Reference 44

STEP Element

The STEP element defines a state in a VoxML application. A STEP element
typically has an associated PROMPT element and INPUT element that
minimally define the application state.

Each VoxML DIALOG must contain exactly one STEP element named “init”.
The execution of the VoxML application begins with the STEP named “init”.

The STEP element can be contained by a DIALOG element only.

Syntax

<STEP NAME="value" [PARENT="value"] [BARGEIN="value"]
[COST="value"] > VoxML </STEP>

Attributes

Attribute Name Allowed Values

NAME identifier

PARENT identifier

BARGEIN Y *

N

COST integer†

Examples
1 <STEP NAME="askpython" PARENT="tvrating">
2 <PROMPT> Please rate Monty Python's Flying Circus
3 on a scale of 1 to 10. </PROMPT>
4 <INPUT NAME="python" TYPE="number" NEXT="#drwho" />
5 </STEP>

This example illustrates a simple STEP that collects the user’s opinion on one of
several public television shows. The step uses the PARENT attribute to share a
common set of help and error elements with other TV-show-rating STEPs. For
example, the parent class might contain a help element explaining what a rating
of 1, 5, and 10 would mean; a common error message might remind the user that
a numeric rating is expected.

† The COST attribute is a platform-dependent feature.

VoxML 1.0 Element Reference
SWITCH Element

October 1998 VoxML 1.0 Language Reference 45

SWITCH Element

The SWITCH element is used to define the application behavior dependant on
the value of a specified recognition slot. The SWITCH element is used only in
conjunction with the CASE element.

The SWITCH element can exist only within the INPUT element, and then only
when using the GRAMMAR input type.

Syntax

<SWITCH FIELD="value"> VoxML </SWITCH>

Attributes

Attribute Name Allowed Values

FIELD identifier

Examples
1 <INPUT TYPE="GRAMMAR"
2 SRC="gram://.Banking/action/amount/fromacct/toacct">
3 <SWITCH FIELD="action">
4 <CASE VALUE="transfer" NEXT="#transfer" />
5 <CASE VALUE="balance" NEXT="#balance" />
6 <CASE VALUE="activity">
7 <SWITCH FIELD="fromacct">
8 <CASE VALUE="checking" NEXT="#chxact" />
9 <CASE VALUE="savings" NEXT="#savact" />
10 </SWITCH>
11 </CASE>
12 </SWITCH>
13 </INPUT>

This example shows how a SWITCH element might be used to determine the
next step to execute in response to a banking request. In this example, the
grammar may fill in some or all of the variables “action”, “amount”, “fromacct”,
and “toacct”. If the user asks for a transfer or balance action, the next step to
execute is the transfer or balance step. If the user asks for a report of account
activity, a second SWITCH element determines the next step based on the
account type for which a report is being requested (assumed to be available in
the “fromacct” variable).

VoxML 1.0 Element Reference
VALUE Element

October 1998 VoxML 1.0 Language Reference 46

VALUE Element

The VALUE element is used to present the value of a VoxML variable to the
user via text-to-speech. The VALUE element can be used anywhere that text is
read to the user.

The VALUE element can be contained by a PROMPT, EMP, PROS, HELP,
ERROR, CANCEL, or ACK element.

Syntax

<VALUE NAME="value" />

Attributes

Attribute Name Allowed Values

NAME identifier

Examples
1 <STEP NAME="thanks">
2 <PROMPT> Thanks for your responses. I'll record
3 that <VALUE NAME="first"/> is your favorite
4 and that <VALUE NAME="second"/> is your
5 second choice.
6 </PROMPT>
7 <INPUT TYPE="NONE" NEXT="/recordresults.asp" />
8 </STEP>

The VoxML code shown above illustrates the use of the VALUE element to
read the user’s selections back to the user. On line 3, the value of the VoxML
variable named “first” would be inserted into the PROMPT, and on line 4 the
value of the VoxML variable named “second” would be inserted into the
PROMPT.

Appendices
Appendix A - VoxML 1.0 Document Type Definition

October 1998 VoxML 1.0 Language Reference 47

3. Appendices

Appendix A - VoxML 1.0 Document Type Definition

This appendix describes the VoxML 1.0 Document Type Definition. A DTD is
used to define the syntax and grammar of a language in a way that can be read
and understood by humans as well as machines (i.e. parsers).

<!ELEMENT DIALOG (STEP|CLASS)*>
<!ATTLIST DIALOG BARGEIN (Y|N) "Y">

<!ELEMENT STEP (PROMPT|INPUT|HELP|ERROR|CANCEL|ACK)*>
<!ATTLIST STEP NAME ID #REQUIRED
 PARENT IDREF #IMPLIED
 BARGEIN (Y|N) "Y"
 COST CDATA #IMPLIED>

<!ELEMENT CLASS (PROMPT|HELP|ERROR|CANCEL|ACK)*>
<!ATTLIST CLASS NAME ID #REQUIRED
 PARENT IDREF #IMPLIED
 BARGEIN (Y|N) "Y"
 COST CDATA #IMPLIED>

<!ELEMENT PROMPT (#PCDATA|OPTIONS|VALUE|EMP|BREAK|PROS|AUDIO)*>

<!ELEMENT EMP (#PCDATA|OPTIONS|VALUE|EMP|BREAK|PROS|AUDIO)*>
<!ATTLIST EMP LEVEL (STRONG|MODERATE|NONE|REDUCED) "MODERATE">

<!ELEMENT PROS (#PCDATA|OPTIONS|VALUE|EMP|BREAK|PROS|AUDIO)*>
<!ATTLIST PROS RATE CDATA #IMPLIED
 VOL CDATA #IMPLIED
 PITCH CDATA #IMPLIED
 RANGE CDATA #IMPLIED>

<!ELEMENT HELP (#PCDATA|OPTIONS|VALUE|EMP|BREAK|PROS|AUDIO)*>
<!ATTLIST HELP ORDINAL CDATA #IMPLIED
 REPROMPT (Y|N) "N"
 NEXT CDATA #IMPLIED
 NEXTMETHOD (GET|POST) "GET">

<!ELEMENT ERROR (#PCDATA|OPTIONS|VALUE|EMP|BREAK|PROS|AUDIO)*>
<!ATTLIST ERROR TYPE NMTOKENS "ALL"
 ORDINAL CDATA #IMPLIED
 REPROMPT (Y|N) "N"
 NEXT CDATA #IMPLIED
 NEXTMETHOD (GET|POST) "GET">

<!ELEMENT CANCEL (#PCDATA|VALUE|EMP|BREAK|PROS|AUDIO)*>
<!ATTLIST CANCEL NEXT CDATA #REQUIRED
 NEXTMETHOD (GET|POST) "GET">

Appendices
Appendix A - VoxML 1.0 Document Type Definition

October 1998 VoxML 1.0 Language Reference 48

<!ELEMENT AUDIO EMPTY>
<!ATTLIST AUDIO SRC CDATA #REQUIRED>

<!ELEMENT ACK (#PCDATA|OPTIONS|VALUE|EMP|BREAK|PROS|AUDIO)*>
<!ATTLIST ACK CONFIRM NMTOKEN "YORN"
 BACKGROUND (Y|N) "N"
 REPROMPT (Y|N) "N">

<!ELEMENT INPUT (OPTION|RESPONSE|RENAME|SWITCH|CASE)*>
<!ATTLIST INPUT TYPE (NONE|OPTIONLIST|RECORD|GRAMMAR|PROFILE|HIDDEN|
 YORN|DIGITS|NUMBER|TIME|DATE|MONEY|PHONE) #REQUIRED
 NAME ID #IMPLIED
 NEXT CDATA #IMPLIED
 NEXTMETHOD (GET|POST) "GET"
 TIMEOUT CDATA #IMPLIED
 MIN CDATA #IMPLIED
 MAX CDATA #IMPLIED
 PROFNAME NMTOKEN #IMPLIED
 SUBTYPE NMTOKEN #IMPLIED
 SRC CDATA #IMPLIED
 VALUE CDATA #IMPLIED
 MSECS CDATA #IMPLIED
 STORAGE (FILE|REQUEST) #REQUIRED
 FORMAT CDATA #IMPLIED>

<!ELEMENT SWITCH (CASE|SWITCH)*>
<!ATTLIST SWITCH FIELD NMTOKEN #REQUIRED>

<!ELEMENT RESPONSE (SWITCH)*>
<!ATTLIST RESPONSE NEXT CDATA #IMPLIED
 NEXTMETHOD (GET|POST) "GET"
 FIELDS NMTOKENS #REQUIRED>

<!ELEMENT RENAME EMPTY>
<!ATTLIST RENAME VARNAME NMTOKEN #REQUIRED
 RECNAME NMTOKEN #REQUIRED>

<!ELEMENT CASE EMPTY>
<!ATTLIST CASE VALUE CDATA #REQUIRED
 NEXT CDATA #REQUIRED
 NEXTMETHOD (GET|POST) "GET" >

<!ELEMENT VALUE EMPTY>
<!ATTLIST VALUE NAME NMTOKEN #REQUIRED>

<!ELEMENT BREAK EMPTY>
<!ATTLIST BREAK MSECS CDATA #IMPLIED>
 SIZE (NONE|SMALL|MEDIUM|LARGE) "MEDIUM">

<!ELEMENT OPTIONS EMPTY>

<!ELEMENT OR EMPTY>

<!ELEMENT OPTION (#PCDATA|VALUE|OR)*>
<!ATTLIST OPTION VALUE CDATA #IMPLIED
 NEXT CDATA #IMPLIED
 NEXTMETHOD (GET|POST) "GET" >

Appendices
Appendix B - Vcard Profile Names and Subtypes

October 1998 VoxML 1.0 Language Reference 49

Appendix B - Vcard Profile Names and Subtypes

This appendix describes the valid combinations of Vcard profile names and their
associated subtypes. For more information regarding the Vcard specification,
see “http://www.imc.org/rfc2426”.

All information described below is provided based on the profile information of
the VoxML voice browser's current interactive user. Although not all browser
implementations will store the user's profile information, this schema represents
a convenient way to access the data when it is available.

Vcard Profile Names and Subtypes

Profile Name Subtype Description

ADR HOME home address

WORK work address

BDAY none birthday

EMAIL none primary email address

NOTIFICATION notification email address

FN none formatted name

GEO none geographic location (longitude;lattitude)

KEY none public encryption key

LABEL HOME home mailing label

WORK work mailing label

MAILER none email program used

Appendices
Appendix B - Vcard Profile Names and Subtypes

October 1998 VoxML 1.0 Language Reference 50

N FIRST first name

LAST last name

MIDDLE middle name

PREFIX prefix (e.g. Mr., Mrs., Dr.)

SUFFIX suffix (e.g. Jr., D.D.S, M.D.)

ORG none organization

ROLE none job role or position

TEL HOME home telephone number

WORK work telephone number

FAX fax call telephone number

CELL cellular telephone number

PREF preferred telephone number

TITLE none job title

TZ none time zone

UID none globally unique id

URL none URL of home page

