VoxML 1.0
Language
Reference

Revision 1.0

Motorola, Inc.

Consumer Applications and Services Division
55 Shuman Blvd, Suite 600

Naperville, IL 60563

USA

Contents

1. An Introduction to VoxML 1.0

OVEIVIBI. ...ttt b bbb bbb b e b nnes
WhHat ISVOXML ...
Purpose of thiS DOCUMENTcceiiiiieiiiiiii e

Structure of 8 VOXML DOCUMENT........cceeriiriiriieiie e
DIALOGS aNd STEPS.......ooiiiiiiiieii e
TheBasiC ElemMENtS.......cccooiiiiieieeeeeee e

Other Reference DOCUMENEELIONoiveerveereiiiieiee s 4
VoxML 1.0 Application Development Guide...........cceveeeiieenieene 4

2. VoxML 1.0 Element Reference

ACK ELEMENT ...t

AUDIO EI8MENT.....coiiiiiiie it 7

BREAK EIEMENT ...ttt 8

CANCEL EI8MENT.....coiiiiiiiieiee ittt 9

CASE ElEMENt ...

CLASS ElOMENT ..ottt

DIALOG El@8MEN ...t

EMP EIEMENT....c.oiiiieieeeeeeeeeeee ettt

ERROR EIEMENtccoiiiiiiieiii et

HELP EIEMENT ...ttt

INPUT EIEMENT......iiiiiiiiiie ettt 20
INPUT Element : TYPE DATEovvieieeeeeeeeeeeeeeee e, 21
INPUT Element : TYpe DIGITS... ..ot 22
INPUT Element : Type GRAMMAR ...t 23
INPUT Element : TYPe HIDDEN........ccoiiiiiiiienieeie e 24
INPUT Element : TYPE MONEYcoooiiiiiiiieieeee e 25
INPUT Element : TYPE NONE.........o.oouiveeeeeseeseeeeseeeesee e, 26
INPUT Element : Type NUMBER..........ccccoiiiiiiiiiiinie e 27
INPUT Element : Type OPTIONLISTooooiiiiiiiiiieie e 28
INPUT Element : Type PHONE.........cccoiiiiiieiie e 29
INPUT Element : Type PROFILEcoooiiiiiiieieee e 30
INPUT Element : TYPe RECORDcooioiiiiiieiieiiee e 31
INPUT Element : TYPE TIME ..o eeeesee e, 33

October 1998

VoxML 1.0 Language Reference

INPUT Element : TYPE YORN.........crveeeereeereeeeeeeeseeseesseeseseneen 34

OPTION ElBMENE.......uiitiieiiiiesie ettt 35
OPTIONS EIEMENL.....etiieiiiiisiesieeeie ettt 37
OR EIBMENT. ...ttt 38
PROMPT ElGMENT.....ccuiiiiieiiiesiesieeeie et 39
PROS EIEMEN ...ttt 40
RENAME ElOMENT......uiiiiiiieiisieeeie e s 41
RESPONSE El@MENT.......ciiiiiiiiiieinie et seeneas 42
STEP EIEMENT ...ttt 44
SWITCH EIEMEN ..t 45
VALUE EIEMENL ...ttt s 46
Appendices

Appendix A - VoxML 1.0 Document Type Definition..........cccccceeeveens 47
Appendix B - Vcard Profile Names and SUBbtypes..........ooceeveeeieenieenns 49

October 1998

VoxML 1.0 Language Reference

An Introduction to VoxML 1.0
Overview

Overview

1. An Introduction to VoxML 1.0

Part of the reason that the World Wide Web has been so popular isthe relative
ease with which authors can create content using HTML. For all itsfaults,
HTML has served its purpose as a vehicle for the presentation of rich text as
well asimages, hypertext links, and ssmple GUI input controls.

VoxML offers the same ease of production to voice applications. In one sense,
VoxML offers the same building blocks asHTML: text (which is read via text-
to-speech), recorded sound samples (anal ogous to images), navigational
controls, and input controls.

However, writing a voice application is very different from writing a GUI
application, and thus the structure of VoxML is very different from HTML.
Here are some examples of the differences:

HTML specifies atwo-dimensional layout, whereas VoxML specifiesa
“layout” in the time dimension only.

HTML isdesigned and displayed in whole-page units, while VoxML is
designed and delivered in whole-dialog units, but presented in much smaller
units, called steps.

A single HTML page often presents the user with dozens of options, which
would overwhelm the user of a voice application. In general, voice
applications should limit the number of options available at a given step in
the dial og to ease the burden on the user’ s short-term memory and to
improve the performance of the speech recognition.

What is VoxML

VoxML isbased on XML. Assuch, VoxML follows all of the syntactic rules of
XML, with semantics that support the creation of interactive speech
applications. For more information on the exact structure of the language with
respect to XML, seethe VoxML 1.0 DTD (Document Type Definition) which is
availablein Appendix A.

Purpose of this Document

This document serves as the official language reference for VoxML 1.0. It
contains information on the syntax of the elements and their attributes, example
usage, the structure of VoxML documents (or DIALOGS), and pointersto other
reference documentation that may be hel pful when devel oping applications
using VoxML.

This document isintended for VoxML application developers.

October 1998

VoxML 1.0 Language Reference 1

An Introduction to VoxML 1.0
Structure of a VoxML Document

Structure of a VoxML Document

VoxML documents have a hierarchical structure, in which every element
(except the DIALOG dement) is contained by another element. In contrast to
HTML, thereisa strict containment rel ationship enforced by the language, so
there can be no ambiguity as to which eement contains which.

DIALOGs and STEPs

The two most fundamental dementsin VoxML arethe DIALOG dement and
the STEP element. These e ements provide the basic structure of aVoxML
application.

The DIALOG eement defines the scope of a VoxML document. All other
VoxML elements are contained by the DIALOG dement. In normal cases, one
can eguate a DIALOG to afile, in much the same way that thereis one HTML
element per file when devel oping HTM L -based applications.

The STEP dement defines a state within a DIALOG, or to say it ancther way,
the STEP e ement defines an application state.

Together the DIALOG eement and the associated STEP elements define a state
machine that represents an interactive dial ogue between the application and a
user. When the VoxML voice browser interprets the VoxML document, it will
navigate through the DIALOG to different STEPs as aresult of the user’s
responses.

Hereisasimple VoxML example, which has 1 DIALOG and 2 STEPs.

<?xm version="1.0"?>
<Dl ALOG>
<STEP NAME="init">
<PROWPT> Pl ease sel ect a soft drink. </PROWT>
<HELP> Your choi ces are coke, pepsi, 7 up,
or root beer. </ HELP>
<I NPUT TYPE="optionlist" NAME="dri nk">
<COPTI ON NEXT="#confirm' > coke </ COPTI O\>
<COPTI ON NEXT="#confirn> pepsi </ OPTI O\>
10 <OPTI ON NEXT="#confirm'> 7 up </ OPTI O\N>
11 <OPTI ON NEXT="#confirm'> root beer </ COPTI O\>
12 </ | NPUT>
13 </ STEP>
14 <STEP NAME="confirm' >
15 <PROVWPT> You ordered a <VALUE NAVME="dri nk"/>.
16 </ PROVPT>
17 </ STEP>
18 </ DI ALOG>

O©CoO~NOOOUITAWNPEF

When this VoxML document isinterpreted, the voice browser will begin by
executing the STEP called “init”. The user will hear the text contained by the
PROMPT eement. If the user were to ask for “help” before making a selection,
the user would hear the text contained with the HELP element. After the user
makes a selection, the voice browser will execute the STEP named “confirm”,
which will smply read back the user’ s selection and then exit the application.

October 1998

VoxML 1.0 Language Reference 2

An Introduction to VoxML 1.0
Structure of a VoxML Document

There are afew important points to be made after looking at thisfirst code
example. First, you will notice that line 1 of the source code contains the XML
declaration string, which isrequired to be thefirst line of all VoxML documents.

Also, STEPsin aVVoxML application are executed based on the user’ s responses
not on the order of the STEPs within the source file. Although the definition of
the “init” STEP appears on line 3 and the definition of the “confirm” STEP
appears on line 14, the order in which they are defined has no impact on the
order in which the voice browser navigates through them.

Lastly, the line numbers shown in the example listing are not part of the source
code. They are shown only to make referencing the code simpler.

The Basic Elements

VoxML containsalot of elements, which provides the application devel oper
with alot of flexibility and power in the language. Section 2 of this document
describes these el ementsin detail.

There are, however, a few elementsthat are used in almost every DIALOG that
you will write. These basic elements are found in the example on the previous
page. They are DIALOG, STEP, PROMPT, HELP, and INPUT. If you are new
to VoxML, you should familiarize yourself with these basic e ements before
progressing to the other, less frequently used elements.

October 1998

VoxML 1.0 Language Reference 3

An Introduction to VoxML 1.0
Other Reference Documentation

Other Reference Documentation

The following resources provide more information that may be helpful when
devel oping interactive speech applications using VoxML.

VoxML 1.0 Application Development Guide

This document contains design guidelines and examples for VoxML application
developers. It presents a description of the VoxML development environment
including system requirements, installation procedures, development tools and a
methodology for the devel opment process. The main goal of the document isto
provide devel opers with explicit guidelines for devel oping successful VoxML
applications.

October 1998

VoxML 1.0 Language Reference 4

VoxML 1.0 Element Reference
ACK Element

2.VoxML 1.0 Element Reference

This section describes the VoxML dements, their attributes, and their syntax.
Examples are provided to help show common usage of each el ement.

ACK Element
The ACK dement is used to acknowledge the transition between STEPs, usually
asaresult of auser response. While an application developer could create
additional STEPs that were used to acknowledge the user’ s response, the ACK
element provides an easier way to specify the common sorts of
acknowledgements.
An ACK eement can be contained within a STEP or a CLASS e ement.
Syntax
<ACK [CONF RM="value'] [BACKGROUND="value"]
[REPROMPT="value"] > text </ACK>
Attributes
Attribute Name Allowed Values
CONFIRM YORN *
BACKGROUND Y
*
REPROMPT
N *
October 1998 VoxML 1.0 Language Reference 5

VoxML 1.0 Element Reference

ACK Element
Examples
1 <STEP NAME="card_type">
2 <PROMPT>
3 What type of credit card do you have?
4 </ PROVPT>
5 <| NPUT NAME="type" TYPE="optionlist">
6 <OPTI ON NEXT="#exp"> vi sa </ OPTI O\>
7 <OPTI ON NEXT="#exp"> mastercard </ CPTI O\>
8 <OPTI ON NEXT="#exp" > di scover </ CPTI ON>
9 </ I NPUT>
10 <ACK CONFI RVF" YORN' REPROWPT="Y">
11 | thought you said <VALUE NAME="type"/>
12 <BREAK/ > |s that correct?
13 </ ACK>
14 </ STEP>

In this rather complex example, the ACK eement is used to confirm the user's
choice of credit card. When this codeisinterpreted by the VoxML voice
browser, it will speak the text of the PROMPT element using text-to-speech
technology, wait until the user respondswith “visa’, “ mastercard”, or
“discover”, and then ask the user to confirm the type of card was recognized
correctly.

If the user answers “yes’ to the ACK, the browser will proceed to the STEP
named “exp”. If the user answers“no” to the ACK, the text of the PROMPT
will be read again, and the user will be allowed to make his or her choice again
— the browser re-entersthe STEP asiif for thefirst time.

October 1998

VoxML 1.0 Language Reference 6

VoxML 1.0 Element Reference
AUDIO Element

AUDIO Element

The AUDIO dement specifies an audio file that should be played. AUDIO
elements can be used as an alternative anywhere that you would read text to the
user.

An AUDIO dement can be contained within a PROMPT, EMP, PROS, HELP,
ERROR, CANCEL, or ACK eement.

Syntax

<AUDIO SRC="value' />

Attributes

Attribute Name Allowed Values

SRC audio file URL

Examples

1 <PROWPT>

2 At the tone, the tine will be 11:59 p m

3 <AUDI O SRC="http://1 ocal host/sounds/ beep. wav"/ >
4 </ PROWPT>

The above code is a smple example of an audio sample included in a PROMPT
element. When interpreted by the VoxML Voice Browser, this code will speak
the text from line 2 using text-to-speech technology, and then play the WAV file
“beep.wav” as specified by the AUDIO element on line 3.

For a description of the audio formats supported by the voice browser, see the
release notes for the VoxML SDK.

October 1998

VoxML 1.0 Language Reference 7

VoxML 1.0 Element Reference
BREAK Element

BREAK Element

The BREAK eement is used to insert a pause into content to be presented to the
user. BREAK dements can be used anywhere that you would read text to or
play audio samples for the user.

The BREAK éement can be contained within a PROMPT, EMP, PROS, HELP,
ERROR, CANCEL, or ACK eement.

Syntax

<BREAK [MSECS="value' | SIZE="value'] />

Attributes
Attribute Name Allowed Values
MSECS milliseconds (integer)
SIZE NONE

SMALL

MEDIUM *

LARGE
Examples
1 <PROVPT>
2 Wl cone to Earth. <BREAK MSECS="250"/>
3 How may | hel p you?
4 </ PROWPT>

The code shown above illustrates the use of the BREAK e ement with the
MSECS attribute, inside a PROMPT. When interpreted by the VoxML voice
browser, this code would speak the text “ Welcome to Myosphere.”, pause for
250 milliseconds, and then spesk the text “How may | help you?'.

1 <PROVPT>

2 Wl cone to Earth. <BREAK S| ZE="nedi uni'/ >
3 How may | hel p you?

4 </ PROVWPT>

As an alternative to specifying an exact number of milliseconds, an application
developer can use the SIZE attribute of the BREAK element to control the
duration of the pause.

The actual duration of “small”, “ medium”, and “large” are system defined, and
may change. Usethe MSECS attributeif a specific duration isrequired.

October 1998

VoxML 1.0 Language Reference 8

VoxML 1.0 Element Reference
CANCEL Element

CANCEL Element

The CANCEL dement enables the application developer to define the behavior
of the VoxML application in response to a user’ srequest to cancel the current
PROMPT. If the application developer does not define the behavior of
CANCEL for agiven STEP, the system default behavior will be used.

The default behavior for the CANCEL dement isto stop the PROMPT, and then
process any interactive INPUTSs.

The CANCEL eement, like the HEL P element, can be invoked through a
variety of phrases. The user may say only the word “cancel”, or the user may
say “1 would like to cancdl, please.” In ether case, the CANCEL dement will
be interpreted.

The CANCEL dement can be contained within a STEP or a CLASS e ement.

Syntax

<CANCEL NEXT="value' [NEXTMETHOD="value"] />
or
<CANCEL NEXT="value' [INEXTMETHOD="value"] > text </CANCEL>

Attributes

Attribute Name Allowed Values
NEXT next step URL
NEXTMETHOD GET *

POST

October 1998

VoxML 1.0 Language Reference 9

VoxML 1.0 Element Reference
CANCEL Element

Examples

1 <STEP NAME="report">

2 <CANCEL NEXT="#traffic_nmenu"/>

3 <PROWPT> Traffic conditions for Chicago,

4 II'linois, Monday, May 18. Heavy

5 congestion on ... </PROWT>

7 <I NPUT TYPE="optionlist">

8 <OPTI ON NEXT="#report"> repeat </ OPTI ON>

9 <OPTI ON NEXT="#choose" > new city </ OPTI O\>
10 </ 1 NPUT>
11 </ STEP>

The code on line 2 illustrates the use of the CANCEL e ement to specify that
when the user says “cancel”, the browser should proceed to the STEP named
“traffic_menu”, instead of the default behavior, which would be to simply stop
the PROMPT from playing and wait for a user response. Users can also interrupt
the PROMPT by speaking valid OPTION. In this example, the user could
interrupt the PROMPT and get the traffic conditions for a different city by
saying “new city”.

October 1998

VoxML 1.0 Language Reference 10

VoxML 1.0 Element Reference
CASE Element

CASE Element

The CASE eement is used to define the flow of control of the application, based
on the values of internal VoxML variables.

The CASE eement can be contained by a SWITCH eement, or by an INPUT
element, when using an INPUT type that collectsa single value (i.e. DATE,
DIGITS, MONEY, PHONE, TIME, YORN).

Syntax

<CASE VALUE="value' NEXT="value¢' [NEXTMETHOD="value'] />

Attributes
Attribute Name Allowed Values
VALUE literal value
NEXT next step URL
NEXTMETHOD GET *
POST
Examples
1 <SWTCH FI ELD="pi zza" >
2 <CASE VALUE="pepperoni" NEXT="#p_pizza"/>
3 <CASE VALUE="sausage" NEXT="#s_pizza"/>
4 <CASE VALUE="veggi e" NEXT="#v_pizza"/>
5 </ SWTCH>

The code on lines 2-4 shows the use of the CASE eement within the SWITCH
element. In thisexample, the CASE dements are used to direct the browser to
different URLs based on the value of the VoxML variable “pizza’.

October 1998

VoxML 1.0 Language Reference 11

VoxML 1.0 Element Reference
CLASS Element

CLASS Element

The CLASS dement defines a set of d ementsthat are to be reused within the
context of a DIALOG. The definitions of a given CLASS may be inherited by
STEPsor other CLASSs. The CLASS element allows the application devel oper
to define a set of dements once, and then use them several times. The CLASS
dement is often used to define the default behavior of ERROR, HELP, and
CANCEL, within agiven DIALOG.

The CLASS dement can be contained by a DIALOG e ement only.

Syntax

<CLASSNAME="value' [PARENT="value"] [BARGEIN="value"]
[COST="value"] > VoxML </CLASS>

Attributes
Attribute Name Allowed Values
NAME identifier
PARENT identifier
BARGEIN Y *

N
COST integer”

" The COST attribute is a platform-dependent feature. A given browser implementation may or may not
support each platform-dependent feature.

October 1998

VoxML 1.0 Language Reference 12

VoxML 1.0 Element Reference
CLASS Element

Examples

1 <CLASS NAME="si npl e">

2 <HELP> Your choi ces are <OPTI ONS/ > </ HELP>
3 <ERROR> | did not understand what you said.
4 Val i d responses are <OPTI ONS/ > </ ERROR>
5 </ CLASS>

6

7 <STEP NAME="bever age" PARENT="sinple">

8 <PROVWPT> Pl ease choose a drink. </PROWT>

9 <| NPUT NAME="dri nk" TYPE="optionlist">

10 <OPTI ON NEXT="#f ood" > coke </ OPTI O\>

11 <COPTI ON NEXT="#f ood" > pepsi </ CPTI O\>
12 </ | NPUT>

13 </ STEP>

14

15 <STEP NAME="food" PARENT="si nple">

16 <PROVWPT> Pl ease choose a neal. </ PROWT>

17 <I NPUT NAVE="neal " TYPE="optionlist">

18 <OPTI ON NEXT="#del i ver"> pi zza </ OPTI ON>
19 <OPTI ON NEXT="#del i ver"> tacos </ OPTI ON>
20 </ | NPUT>

21 </ STEP>

The code shown on lines 1-5 illustrates the use of the CLASS e ement to define
aHELP dement and an ERROR e ement that will be used in several STEPs
within this DIALOG.

The code on lines 7 and 15 illustrates the use of the PARENT attribute on the
STEP dement to refer to the CLASS dement, and therefore inherit the
behaviors defined within it.

When interpreted by the VoxML voice browser, the STEPs defined on lines 7-
13 and lines 15-21 will behave as if the HELP and ERROR dements that are
defined in the CLASS were defined explicitly in the STEPs themsalves.

October 1998

VoxML 1.0 Language Reference 13

VoxML 1.0 Element Reference
DIALOG Element

DIALOG Element

The DIALOG dement isthe fundamental element of VoxML. If onewereto
imagine a VoxML document as atree, the DIALOG e ement would be the root
of thetree. The DIALOG eement defines the basic unit of context within a
VoxML application, and in the common case, there is one DIALOG eement per
URL.

Each VoxML DIALOG must contain exactly one STEP element named “init”.
The execution of the VoxML application begins with the STEP named “init”.

A DIALOG dement cannot be contained by any VoxML e ement.

Syntax

<DIALOG [BARGEIN="value"] > VoxML </DIALOG>

Attributes
Attribute Name Allowed Values
BARGEIN Y *
N
Examples
1 <Dl ALOG>
2 <STEP NAME="init">
3 <PROWPT> W&l cone to VoxM.. </ PROWPT>
4 </ STEP>
5 </ DI ALOG>

The above code shows a simple, yet complete VoxML DIALOG. The DIALOG
element is specified on lines 1 and 5 and contains a single STEP e ement named
“init”. The STEP has a single PROMPT that will be read via text-to-speech.
Sincethereis no INPUT defined in this STEP, the VoxML application will
terminate immediately after the PROMPT isread.

October 1998 VoxML 1.0 Language Reference 14

VoxML 1.0 Element Reference
EMP Element

EMP Element

The EMP dement is used to identify a context within text that will be read to the
user where emphasisisto be applied. The EMP element can be used anywhere
that text isread to the user.

The EMP dement can be contained within a PROMPT, EMP, PROS, HELP,
ERROR, CANCEL, or ACK eement.

Syntax

<EMP[LEVEL="value"] > text <EMP>

Attributes

Attribute Name Allowed Values

LEVEL NONE
REDUCED
MODERATE *
STRONG

Examples

1 <PROWPT>

2 This exanmple is

3 <EMP LEVEL="strong"> really </EMP>

4 si mpl e.

5 </ PROVPT>

The above codeillustrates the use of the EMP e ement to apply “strong”
emphasisto theword “really” in a simple prompt.

The actual effect on the speech output is determined by the text-to-speech (TTS)
software used by the voice browser. Since the desktop simulator uses different
TTS software than the voice browser in the highly-scalable network system, the
output may vary. To achieve a specific emphatic effect, use the PROS el ement
instead of the EMP element.

October 1998 VoxML 1.0 Language Reference 15

VoxML 1.0 Element Reference
ERROR Element

ERROR Element

The ERROR e ement enables the application devel oper to define the behavior of
the VoxML application in responseto an error. If the application devel oper
does not define the behavior of ERROR for a given STEP, the default behavior

will be used.

The default behavior for the ERROR element is to speak the phrase An error
has occurred.”, remain in the current STEP, replay the PROMPT, and wait for

the user to respond.

The ERROR dement can be contained within a STEP or a CLASS € ement.

Syntax

<ERROR [TYPE="value'] [ORDINAL="value'] [REPROMPT="value']
[NEXT="valug' [NEXTMETHOD="value"]] > text </ERROR>

Attributes
Attribute Name Allowed Values
TYPE ALL*
NOMATCH
NOSPEECH
TOOLITTLE
TOOMUCH
NOAUTH
BADNEXT
ORDINAL integer
REPROMPT Y
N *
NEXT next step URL
NEXTMETHOD GET *
POST

October 1998

VoxML 1.0 Language Reference 16

VoxML 1.0 Element Reference
ERROR Element

Examples

1 <STEP NAME="errors">

2 <ERRCR TYPE="nomat ch"> First error nessage.

3 | did not understand what you said. </ERROR>
4 <ERROR TYPE="nomat ch" ORDI NAL="2">

5 Second error nessage.

6 | did not understand what you said. </ERROR>
7 <PROVWPT> This step tests error nmessages.

8 Say 'oops' tw ce. Then say 'done' to

9 choose anot her test. </ PROWT>

10 <|I NPUT TYPE="CPTI ONLI ST" >

11 <COPTI ON NEXT="#end"> done </ OPTI O\>

12 </ I NPUT>

13 </ STEP>

The code shown above illustrates the use of the ERROR element to define the
application’'s behavior in response to an error. On line 2, we define the error
message to be used thefirst time an error of type “nomatch” occursin this
STEP. On line 4, we define the error message to be used the second and all
subsequent times an error of type "nomatch” occursin this STEP.

The ORDINAL attribute determines which message will be used in the case of
repeated errors within the same STEP. The VoxML voice browser will choose
an error message based on this smple algorithm: If the error has occurred 3
times, the browser will look for an ERROR eement with ORDINAL of “3”. If
no such ERROR element has been defined, the voice browser will look for an
ERROR with ORDINAL of “2”, and then “1”, and then an ERROR with no
ORDINAL defined.

So, if we had defined an ERROR element with ORDINAL of “6” in the STEP
shown above, and the same error occurred 6 timesin arow, the user would hear
thefirst error message one time, then the second error message 4 times, and
finally the error message with ORDINAL of “6”.

October 1998

VoxML 1.0 Language Reference 17

VoxML 1.0 Element Reference
HELP Element

HELP Element

The HELP enables the application devel oper to define the behavior of the
VoxML application when the user asks for help. If the application devel oper
does not define the behavior of HELP for a given STEP, the system default
behavior will be used.

The HELP dement, like CANCEL the element, can be invoked through a
variety of phrases. The user may say only the word “help”, or the user may say
“I would like help, please.” In ether case, the HELP element will be
interpreted.

The default behavior for the HELP element is to stop the PROMPT (if oneis
playing), speak the phrase“ No help isavailable.”, remain in the current STEP,
and process any interactive INPUTSs.

The HELP dement can be contained within a STEP or a CLASS dement.

Syntax

<HELP[ORDINAL="value'] [REPROMPT="value']
[NEXT="value' [NEXTMETHOD="value"]] > text </HELP>

Attributes
Attribute Name Allowed Values
ORDINAL integer
REPROMPT Y

N *
NEXT next step URL
NEXTMETHOD GET *

POST

October 1998 VoxML 1.0 Language Reference 18

VoxML 1.0 Element Reference
HELP Element

Examples

1 <STEP NAME="hel ps">
<HELP REPROMPT="Y"> First hel p message.
You shoul d hear the prompt again. </HELP>
<HELP ORDI NAL="2"> Second hel p nessage.
You shoul d not hear the pronpt now. </HELP>
<PROWPT> This step tests hel p pronpts.
Say 'help' twi ce. Then say 'done' to
choose anot her test. </ PROWT>
<I NPUT TYPE="OPTI O\LI ST" >
10 <OPTI ON NEXT="#end" > done </ OPTI ON\>
11 </ | NPUT>
12 </ STEP>

Co~NOOThhWN

The code shown above illustrates the use of the HELP element to define the
application's behavior in response to the user input “help”. On line 2, we define
the help message to be used the first time the user says “help”. Online4, we
define the help message to be used the second and all subsequent times the user
says “help”. It should aso be noted that through the use of the REPROMPT
attribute, the prompt will be repeated after the first help message, but it will not
be repeated after the second help message.

The ORDINAL attribute determines which message will be used in the case of
repeated utterances of “help” within the same STEP eement. TheVoxML
voice browser will choose a help message based on this simple algorithm: If the
user hassaid “help” 3 times, the browser will ook for a HELP element with
ORDINAL of “3". If no such HELP eement has been defined, the voice
browser will ook for a HELP with ORDINAL of “2”, and then “1", and then a
HELP with no ORDINAL defined.

So, if we had defined a HELP dement with ORDINAL of “6” in the STEP
shown above, and the user said “help” 6 timesin arow, the user would hear the
first help message one time, then the second help message 4 times, and finally
the help message with ORDINAL of “6”.

October 1998

VoxML 1.0 Language Reference 19

VoxML 1.0 Element Reference
INPUT Element

INPUT Element

The INPUT dement is used to define the valid user input within each STEP.
The application developer can define the type of input as well as specific values
that are to be recognized.

The INPUT eement can exist only within a STEP e ement.

Syntax

Because the syntax of the different types of INPUTs vary widely, each of the
types of INPUT dementswill be described in its own section.

Attributes

Attribute Name Allowed Values

TYPE DATE
DIGITS
GRAMMAR
HIDDEN
MONEY
NONE
NUMBER
OPTIONLIST
PHONE
PROFILE
RECORD
TIME
YORN

Examples

For examples, please reference the section that describes the type of INPUT that
you would like to use.

October 1998

VoxML 1.0 Language Reference 20

VoxML 1.0 Element Reference
INPUT Element : Type DATE

INPUT Element : Type DATE

The DATE input is used to collect a calendar date from the user.

Syntax

<INPUT TYPE="DATE" NAME="valueg" NEXT="value"
[NEXTMETHOD="value"] [TIMEOUT="value"] />

Attributes
Attribute Name Allowed Values
NAME identifier
NEXT next step URL
NEXTMETHOD GET *

POST
TIMEOUT milliseconds (integer)
Examples

1 <STEP NAME="init">

2 <PROWPT> What is your date of birth? </ PROWT>
3 <I NPUT TYPE="date" NAME="dob" NEXT="#soc"/>

4 </ STEP>

The code on line 3 illustrates the use of the DATE INPUT to gather the user's

birthday, storeit in the VoxML variable “dob”, and then go to the STEP named
“ wc” i

Data Format

The DATE input makes use of an input grammar to interpret the user’ s response
and store that responsein a standard format. The DATE input grammar can
interpret dates expressed in several different formats.

A fully defined date like “next Friday, July 10", 1998 is stored as

“07101998| Jul y| 10] 1998| Fri day| next ”. If the date cannot be determined
by the user’ s response, the ambiguous parts of the response will be omitted from
the data.

The response “July 4™, is stored as “?????2???| Jul y| 4] | | ", “Tomorrow”
becomes “???2?22?2?| | | | | t onor row’, “ The 15™ is stored as
“2?2?22?2?2?|1 15| | | 7, and “ Monday” becomes*“????????| | | | Monday| .

October 1998

VoxML 1.0 Language Reference 21

VoxML 1.0 Element Reference
INPUT Element : Type DIGITS

INPUT Element : Type DIGITS

The DIGITS input is used to collect a series of digits from the user.

Syntax

<INPUT TYPE="DIGITS' NAME="valug" NEXT="value"
[NEXTMETHOD="value'] [TIMEOUT="value'] [MIN="value'] [MAX="value"] />

Attributes
Attribute Name Allowed Values
NAME identifier
NEXT next step URL
NEXTMETHOD GET *
POST
TIMEOUT milliseconds (integer)
MIN minimum number of digits (integer)
MAX maximum number of digits (integer)
Examples
1 <STEP NAME="init">
2 <PROVPT> Pl ease say your pin now. </PROWT>
3 <I NPUT TYPE="di gits" NAME="pin" NEXT="#doit"/>
4 </ STEP>

The code on line 3 illustrates the use of the DIGITS INPUT to collect digits
from the user, store the number in the VoxML variable named “pin”, and then
go to the STEP named “doit”.

If the user wereto say, “four five six”, in response to the PROMPT shown on
line 2, the value “456” would be stored in the VoxML variable“pin”. The
DIGITS input type will collect the digits O (i.e. zero) through 9 (i.e. nine), but
not other numberslike 20 (i.e. twenty). To collect numberslike 20 (i.e. twenty)
or 400 (i.e. four hundred), use the NUMBER input type.

October 1998

VoxML 1.0 Language Reference 22

VoxML 1.0 Element Reference
INPUT Element : Type GRAMMAR

INPUT Element : Type GRAMMAR

The GRAMMAR input is used to specify an input grammar that is to be used
when interpreting the user's responses.

Syntax

<INPUT TYPE="GRAMMAR" SRC="value" NEXT="value"
[NEXTMETHOD="value"] [TIMEOUT="value"] />
or

<INPUT TYPE="GRAMMAR" SRC="value' NEXT="value"
[NEXTMETHOD="value"] [TIMEOUT="value'] > RENAME dements</INPUT>

or

<INPUT TYPE="GRAMMAR" SRC="value" [TIMEOUT="value']
[NEXT="valug' [NEXTMETHOD="value"]] > RESPONSE dlements</INPUT>

Attributes
Attribute Name Allowed Values
SRC grammar URL
NEXT next step URL
NEXTMETHOD GET *

POST
TIMEOUT milliseconds (integer)
Examples

1 <STEP NAME="init">

2 <PROVWPT> Say the nonth and year in which the
3 credit card expires. </PROWT>

4 <I NPUT TYPE=" GRAMVAR'

5 SRC="gram //. SomeG anmar/ nont h/ year"

6 NEXT="#st epNi net een"/>

7 </ STEP>

The code on lines 4, 5, and 6 illustrates the use of the GRAMMAR INPUT to
collect amonth and year from the user, store the interpreted valuesin variables
named “ month” and “year”, and then go to the step named “stepNineteen”.

October 1998

VoxML 1.0 Language Reference 23

VoxML 1.0 Element Reference
INPUT Element : Type HIDDEN

INPUT Element : Type HIDDEN

The HIDDEN input isused to storeavaluein a VoxML variable.

Syntax

<INPUT TYPE="HIDDEN" NAME="value" VALUE="value'/>

Attributes

Attribute Name Allowed Values
NAME identifier
VALUE literal value
Examples

1 <STEP NAME="init">

2 <PROWPT> Logi n sequence conpl ete.

3 Are you ready to place your order?
4 </ PROWPT>

5 <I NPUT TYPE="hi dden" NAME="fir st nanme"

6 VALUE="Bi | | "/ >

7 <I NPUT TYPE="hi dden" NAME="I ast nane"

8 VALUE="C i nton"/>

9 <I NPUT TYPE="hi dden" NAME="favorite"

10 VALUE="fries"/>

11 <I NPUT TYPE="optionlist">

12 <OPTI ON NEXT="#order"> yes </ OPTI O\>
13 <COPTI ON NEXT="#wai t"> not yet </ COPTION\N>
14 </ I NPUT>

15 </ STEP>

In the example code shown above, the HIDDEN INPUT typeis used to create
VoxML variables and assign values to those variables. In this particular
example, the user has completed the login sequence and the application designer
chose to save certain information in VoxML variables as soon asthe user's
identity has been established. Thisinformation could then be used later in the
application without requiring another access into the database.

Notice that when using the HIDDEN INPUT that it is permissable to have more
than one INPUT eement in the same STEP. Thisis because the HIDDEN
INPUT isnot an interactive INPUT. Each STEP can contain only one INPUT
that accepts a response from the user.

October 1998

VoxML 1.0 Language Reference 24

VoxML 1.0 Element Reference
INPUT Element : Type MONEY

INPUT Element : Type MONEY

The MONEY input is used to collect monetary amounts from the user.

Syntax

<INPUT TYPE="MONEY" NAME="value" NEXT="value"
[NEXTMETHOD="value"] [TIMEOUT="value"] />

Attributes
Attribute Name Allowed Values
NAME identifier
NEXT next step URL
NEXTMETHOD GET *
POST
TIMEOUT milliseconds (integer)
Examples
1 <STEP NAME="init">
2 <PROVWPT> How much woul d you like to deposit?
3 </ PROWPT>
4 <I NPUT TYPE="noney" NAVE="dep" NEXT="#deposit"/>
5 </ STEP>

The above example code illustrates the use of the MONEY input type to collect
the amount of money that the user would like to deposit in his account, store that
amount in a VoxML variable named “dep”, and then go to the STEP named
“deposit”.

Data Format

The MONEY input makes use of an input grammar to interpret the user’s
response and store that responsein a standard format. Theinput grammar is
ableto interpret several ways to express monetary amounts.

Thedatais stored in integer format, in terms of cents.

“five cents’ isstored as“5”, “five dollars’ is stored as “500”, and “a thousand”
isstored as “100000". Note that no punctuation is added to the digits. Also note
that in the case where the units are ambiguous, the grammar assumes dollars, as
in the example above in which “athousand” was stored asif the user had said “a
thousand dollars’.

October 1998

VoxML 1.0 Language Reference 25

VoxML 1.0 Element Reference
INPUT Element : Type NONE

INPUT Element : Type NONE

Input type NONE is used to specify the next location for the voice browser to go
to continue execution when no responseis collected from the user.

Syntax

<INPUT TYPE="NONE" NEXT="value' [NEXTMETHOD="value"] />

Attributes
Attribute Name Allowed Values
NEXT next step URL
NEXTMETHOD GET *
POST
Examples
1 <STEP NAME="init">
2 <PROVWPT> Wl cone to the system </PROWT>
3 <|I NPUT TYPE="none" NEXT="#mai nmenu"/>
4 </ STEP>

The code shown above illustrates the use of the NONE input type to jump to
another STEP in this dialog without waiting for any user response. In this
example, the user would here the phrase “ Welcome to the system” followed
immediately by the prompt of the main menu.

October 1998

VoxML 1.0 Language Reference 26

VoxML 1.0 Element Reference
INPUT Element : Type NUMBER

INPUT Element : Type NUMBER

The NUMBER input is used to collect numbers from the user.

Syntax

<INPUT TYPE="NUMBER" NAME="value' NEXT="value"
[NEXTMETHOD="value"] [TIMEOUT="value"] />

Attributes
Attribute Name Allowed Values
NAME identifier
NEXT next step URL
NEXTMETHOD GET *
POST
TIMEOUT milliseconds (integer)
Examples
1 <STEP NAVE="init">
2 <PROVPT> Pl ease say your age now. </PROWPT>
3 <I NPUT TYPE="nunber" NAME="age" NEXT="#doit"/>
4 </ STEP>

The code on line 3 illustrates the use of the NUMBER INPUT to collect
numbers from the user, store the number in the VoxML variable named “age’,
and then go to the STEP named “doit”.

If the user were to say, “eighteen”, in response to the PROMPT shown on line 2,
the value “18” would be stored in the VoxML variable “age’”. The NUMBER
input type will collect numberslike 20 (i.e. twenty), only one number per input.
To collect aseries of digitslike “four fivesix” (i.e. “456"), usethe DIGITS
input type.

October 1998 VoxML 1.0 Language Reference 27

VoxML 1.0 Element Reference
INPUT Element : Type OPTIONLIST

INPUT Element : Type OPTIONLIST

The OPTIONLIST input isused to specify alist of options from which the user
can select. Thisinput typeisused in conjunction with the OPTION e ement,
which defines the specific user responses and the behavior associated with each.

Syntax

<INPUT TYPE="OPTIONLIST" [NAME="value'] [TIMEOUT="value']
[NEXT="value' [NEXTMETHOD="value"]] > OPTION e ements</INPUT>

Attributes
Attribute Name Allowed Values
NAME identifier
NEXT next step URL
NEXTMETHOD GET *

POST
TIMEOUT milliseconds (integer)
Examples

1 <STEP NAME="init">
2 <PROWPT> What woul d you like to drink? </ PROWT>

3 <I NPUT TYPE="optionlist">

4 <OPTI ON NEXT="#coke" > coke </ OPTI O\>

5 <OPTI ON NEXT="#coke" > coca-col a </ OPTI O\>
6 <COPTI ON NEXT="#pepsi "> pepsi </ OPTI O\>

7 <OPTI ON NEXT="#rc">r c </ OPTION

8 </ | NPUT>

9 </ STEP>

In this smple example, the VoxML voice browser will go to a different STEP
depending on which colathe user sdlects. Asdefined on lines4 and 5, if the
user said “coke’ or “coca-cola’, the voice browser would go to the STEP named
“coke’.

October 1998 VoxML 1.0 Language Reference 28

VoxML 1.0 Element Reference
INPUT Element : Type PHONE

INPUT Element : Type PHONE

The PHONE input is used to collect telephone numbers from the user.

Syntax

<INPUT TYPE="PHONE" NAME="value' NEXT="value"
[NEXTMETHOD="value"] [TIMEOUT="value"] />

Attributes
Attribute Name Allowed Values
NAME identifier
NEXT next step URL
NEXTMETHOD GET *
POST
TIMEOUT milliseconds (integer)
Examples
1 <STEP NAME="phone" >
2 <PROWPT> What is your phone nunber? </ PROWT>
3 <I NPUT TYPE="phone" NAME="ph" NEXT="#fax"/>
4 </ STEP>

In this ssimple example, the code on line 3 illustrates the use of the PHONE input
typeto collect a telephone number from the user, store the number in the
VoxML variable named “ph” , and go to the STEP named “fax”.

Data Format

The PHONE input makes use of an input grammar to interpret the user’s
response and store that response in a standard format. The phone number is
interpreted as a string of digits, and stored in the VoxML variable as such.

If auser said “ One, eight zero zero, seven five ning, eight eight eight eight”, the
response would be stored as “18007598888”. Note that there is no punctuation
added to the digits.

October 1998

VoxML 1.0 Language Reference 29

VoxML 1.0 Element Reference
INPUT Element : Type PROFILE}

INPUT Element : Type PROFILE?

The PROFILE input is used to collect the user's profile information (e.g. home
address) from the voice browser directly. ThisINPUT typeis different from the
othersin that the input does not come from the interactive user, but instead is
provided by the voice browser itself, using information from the system’s
subscriber database. (The user’sinformation is provided by each subscriber
when the account is activated.)

Syntax

<INPUT TYPE="PROFILE" NAME="value" PROFNAME="valu€"
[SUBTY PE="value'] />

Attributes

Attribute Name Allowed Values

NAME identifier

PROFNAME profile element name (string)
SUBTYPE profile element subtype (string)

* For information on valid profile names and subtypes, see Appendix B.

Examples

1 <STEP NAME="geti nfo0">
2 <INPUT TYPE="profile" NAME="firstnane"

3 PROFNAME="N"' SUBTYPE="first"/>

4 <PROVWPT> Hel | o, <VALUE NAME="fi r st name"/>.

5 Pl ease say your pin. </PROWT>

6 <INPUT TYPE="digits" NAME="pin" NEXT="#verify"/>
7 </ STEP>

In the code on lines 2 and 3, the PROFILE input is used to retrieve the user's
first name and store the string in the VoxML variable named “firstname’. The
string containing the name is then inserted into the PROMPT on line 4 using the
VALUE dement.

Notice that when using the PROFILE INPUT that it is permissable to have more
than one INPUT eement in the same STEP. Thisis because the PROFILE
INPUT isnot an interactive INPUT. Each STEP can contain only one INPUT
that accepts a response from the user.

* The PROFILE input typeis a platform-dependent feature.

October 1998 VoxML 1.0 Language Reference 30

VoxML 1.0 Element Reference
INPUT Element : Type RECORD

INPUT Element : Type RECORD

The RECORD input typeis used to record an audio sample and to store that
samplein alocation specified by the application devel oper.

Syntax

<INPUT TYPE="RECORD" TIMEOUT="value" STORAGE="value"
[FORMAT="value'] [INAME="value'] NEXT="value' [NEXTMETHOD="value'] />

Attributes
Attribute Name Allowed Values
TIMEOUT record for milliseconds (integer)
FORMAT recorded audio format (audio/wav *)
NAME identifier
STORAGE FILE
REQUEST
NEXT next step URL
NEXTMETHOD GET *
POST
PUT
Examples
1 <STEP NAME="init">
2 <PROVWPT> Pl ease say your first and | ast name.
3 </ PROWPT>
4 <I NPUT TYPE="record" TI MEQUT="7000"
5 NAME="t heName" STORAGE="REQUEST"
6 NEXT="htt p: / / wavhost / accept wav. asp"
7 NEXTMETHCOD=" POST" / >
8 </ STEP>

In this example, the RECORD input typeis used to record a 7 second audio
sample, and then “POST” that sample to the remote machine named “wavhost”.
Theresponseto the “POST” must be a VoxML DIALOG which continuesthe
execution of the application.

Note that nothing is stored in the VoxML variable named “theName”; the
recorded audio is sent to the remote machine instead.

October 1998

VoxML 1.0 Language Reference 31

VoxML 1.0 Element Reference
INPUT Element : Type RECORD

1 <STEP NAVE="init">

2 <PROVWPT> Pl ease say your first and | ast narme.
3 </ PROWPT>

4 <I NPUT TYPE="record" TI MEQUT="7000"

5 NAMVE="t heName" STORAGE="FI LE"

6 NEXT="#r ecconpl et e* NEXTMETHOD="CGET"/ >

7 </ STEP>

In this example, the RECORD input typeis used to record a another 7 second
audio sample, but thistime the sampleis stored in afile, instead of sent in the
HTTPrequest asit wasin the earlier example. The name of thefileis chosen by
the voice browser automatically and is stored in the VoxML variable named
“theName’. After storing the audio samplein the file, the voice browser will
continue execution at the URL specified by the NEXT attribute.

Note that in contrast to the earlier example, the value of the VoxML variable
“theName” will be the name of the audio file. In the earlier example (where the
audio sample was transmitted via the HT TP request), the value of the VoxML
variable “theName” would be null.

October 1998

VoxML 1.0 Language Reference 32

VoxML 1.0 Element Reference
INPUT Element : Type TIME

INPUT Element : Type TIME

The TIME input typeis used to collect atime of day from the user.

Syntax

<INPUT TYPE="TIME" NAME="value' NEXT="value"
[NEXTMETHOD="value"] [TIMEOUT="value"] />

Attributes
Attribute Name Allowed Values
NAME identifier
NEXT next step URL
NEXTMETHOD GET *
POST
TIMEOUT milliseconds (integer)
Examples
1 <STEP NAME="init">
2 <PROWPT> What tinme would you |ike your wakeup
3 cal | ? </ PROWT>
4 <INPUT TYPE="time" NAME="wakeup" NEXT="#record"/>
6 </ STEP>

This example makes use of the TIME input type to collect a time of day from
the user, store that data in the VoxML variable named “wakeup”, and then go to
the STEP named “record”.

Data Format

The TIME input makes use of an input grammar to interpret the user’ sresponse
and store that response in a standard format. This grammar will interpret
responses of various forms, including both 12-hour and 24-hour conventions.

“Four o'clock” isstored as “400". Sincethe user was not specific asto the
morning or evening, no indication is stored in the VoxML variable.

“Four oh three PM” becomes “403P’. Notethe“P’ appended to the time.
Likewise, “Ten fifteen in the morning” becomes “1015A”. Notethe“A”.
“Noon” isstored as“1200P’, and “ Midnight” isstored as“1200A”. Military
time, such as, “ Thirteen hundred hours’ becomes “100P".

October 1998

VoxML 1.0 Language Reference 33

VoxML 1.0 Element Reference
INPUT Element : Type YORN

INPUT Element : Type YORN

The YORN input is used to collect “yes or no” responses from the user. This
input maps a variety of affirmative and negative responsesto the values“ Y” and
“N”, amplifying the work of the application developer in interpreting this type
of user response.

Syntax

<INPUT TYPE="YORN" NAME="value" [TIMEOUT="value"]
NEXT="value¢' [NEXTMETHOD="value'] />

or

<INPUT TYPE="YORN" [NAME="value"] [TIMEOUT="value']
[NEXT="valug' [NEXTMETHOD="value']] > CASE dements</INPUT>

Attributes
Attribute Name Allowed Values
NAME identifier
NEXT next step URL
NEXTMETHOD GET *
POST
TIMEOUT milliseconds (integer)
Examples
1 <STEP NAME="ask">
2 <PROVWPT> Fire the m ssl es now? </ PROWT>
3 <I NPUT TYPE="YORN' NAME="fire" NEXT="#confirni/>
4 </ STEP>

In this example, we use the YORN input type to collect a“yes or no” response
from the user, store that responseinto the VoxML variable named “fire’, and
then go to the STEP named “confirm”.

The YORN input type stores the value“ Y” for affirmative responses and the
value“ N” for negative responses. Affirmative and negative responses are
determined using an input grammar that maps various user responses to the
appropriate result.

October 1998

VoxML 1.0 Language Reference 34

VoxML 1.0 Element Reference
OPTION Element

OPTION Element

The OPTION eement is used to define the application behavior associated with
a specific user response.

The OPTION eement can exist only within the INPUT dement, and then only
when using the OPTIONLIST input type.

Syntax
<OPTION [NEXT="value' [NEXTMETHOD="value']] [VALUE="value"] >
text </OPTION>
Attributes
Attribute Name Allowed Values
VALUE literal value
NEXT next step URL
NEXTMETHOD GET *
POST
Examples
1 <I NPUT NAME="choi ce" TYPE="optionlist">
2 <OPTI ON NEXT="#doit" VALUE="1"> one </ OPTI ON>
3 <OPTI ON NEXT="#doit" VALUE="2"> two </ OPTI ON>
4 </| NPUT>

The code on lines 2 and 3 illustrate the use of the OPTION dement within the
INPUT dement. In this example, the OPTION on line 2 would be executed
when the user responded with *“on€’, and the OPTION on line 3 would be
executed when the user responded with “two”. If the user said “on€’ theresult
would bethat the value of the variable named “choice” would be“1”, because
of the use of the VALUE attribute. Because the NEXT attributes for both of the
OPTIONSs in this OPTIONLIST are the same, the VoxML voice browser would
proceed to the STEP named “doit” when either “on€” or “two” was recognized.

October 1998 VoxML 1.0 Language Reference 35

VoxML 1.0 Element Reference
OPTION Element

1 <INPUT TYPE="optionlist">

2 <COPTI ON NEXT="http://| ocal host/vm / weat her. asp" >
3 weat her </ OPTI O\>

4 <COPTI ON NEXT="http://l ocal host/vm / news. asp" >

5 news </ OPTI ON\>

6 <COPTI ON NEXT="http://local host/vm /traffic.asp">
7 traffic </ CPTI ON>

8 </ 1 NPUT>

The code shown above illustrates the use of the OPTION e ement to select one
of three VoxML applications. Note that the URLsused in the NEXT attributes
arefull HTTP URLS, and that unlike the previous example, each OPTION has a
unique NEXT attribute.

October 1998 VoxML 1.0 Language Reference 36

VoxML 1.0 Element Reference
OPTIONS Element

OPTIONS Element

The OPTIONS dement describes the type of input expected within a given
STEP edement. The OPTIONS eement istypically used in HELP e ementsto
present the user with a complete list of valid responses. The OPTIONS el ement
can be used anywhere that text isread to the user.

The OPTIONS e ement can be contained by a PROMPT, EMP, PROS, HELP,
ERROR, or ACK element.

Syntax

<OPTIONS/>

Attributes

The OPTIONS element has no attributes.

Examples

1 <CLASS NAME="hel pful ">

2 <HELP> Your choi ces are: <OPTIONS/ > </ HELP>
3 </ CLASS>

This exampleillustrates how the OPTIONS e ement can be used to construct a
“helpful” CLASS. Any STEPsthat directly or indirectly name “helpful” asa

PARENT respond to “help” by speaking the message, in which the OPTIONS
element expands to a description of what can be said at this point in the dial og.

October 1998

VoxML 1.0 Language Reference 37

VoxML 1.0 Element Reference
OR Element

OR Element

The OR eement is used to define alternate recognition resultsin an OPTION
element. The OR dement isinterpreted asalogical or, and is used to associate
multiple recognition results with asingle NEXT attribute.

The OR éement can exist only within the OPTION e ement.

Syntax

<OR/>

Attributes

The OR element has no attributes.

Examples

1 <INPUT TYPE="optionlist">

2 <OPTI ON NEXT="#coke_chosen">
3 coke <OR/ > coca-col a

4 </ OPTI ON\>

5 <OPTI ON NEXT="#pepsi _chosen"> pepsi </ OPTI O\>
6 </ NPUT>

The code shown above illustrates the use of the OR element within an OPTION
element. Asyou can seeon line 3, the user may respond with either “coke” or
“coca-colad’, and the effect is the same — the voice browser will proceed to the
STEP named “coke chosen”.

October 1998

VoxML 1.0 Language Reference 38

VoxML 1.0 Element Reference
PROMPT Element

PROMPT Element

The PROMPT eement is used to define content (text or an audio file) that isto
be presented to the user. Typically, the PROMPT element will contain text and
several markup dements, like the BREAK or EMP eement, that areread to the
user viatext-to-speech technology.

The PROMPT dement can be contained within a STEP or a CLASS dement.

Syntax

<PROMPT> text </PROMPT>

Attributes

The PROMPT €element has no attributes.

Examples

1 <STEP NAME="init">

2 <PROWPT> How ol d are you? </PROWT>

3 <I NPUT TYPE="nunber" NAME="age" NEXT="#weight"/>
4 </ STEP>

In this smple example, the text “How old are you?’ will be spoken via text-to-
speech technol ogy, and then the application will wait for the user to say his age.
The PROMPT eement on line 2 defines what will be presented to the user.

October 1998

VoxML 1.0 Language Reference 39

VoxML 1.0 Element Reference
PROS Element

PROS Element

The PROS e ement is used to control the prosody of the content presented to the
user via PROMPT, HELP, ERROR, CANCEL, and ACK eements. Prosody
affects certain qualities of the text-to-speech presentation, including rate of
speech, pitch, range, and volume.

The PROS dement can be contained within a PROMPT, EMP, PROS, HELP,
ERROR, CANCEL, or ACK eement.

Syntax

<PROS[RATE="value'] [VOL="value"] [P TCH="value"'] [RANGE="value'] >
text </PROS>

Attributes

Attribute Name Allowed Values

RATE words per minute (integer)

VOL volume of speech (integer)

PITCH pitch in Hz (integer)

RANGE range in Hz (integer)

Examples

1 <PROWPT> Let ne tell you a secret:

2 <PRCS VOL="0.5"> 1| ate the apple. </ PRCS>
3 </ PROWPT>

In this example, the phrase | atethe apple.” is spoken with one half of the
normal volume.

October 1998 VoxML 1.0 Language Reference 40

VoxML 1.0 Element Reference
RENAME Element

RENAME Element

The RENAME eement is used to rename recognition dotsin VoxML
grammars, such that the resulting VoxML variable name can be different from
the name of the recognition dot defined in the grammar.

The RENAME éement can exist only within the INPUT element, and then only
when using the GRAMMAR input type.

Syntax

<RENAME RECNAME="value' VARNAME="value"' />

Attributes

Attribute Name Allowed Values
VARNAME identifier
RECNAME identifier
Examples

1 <I NPUT TYPE="GRAMVAR'

2 SRC="htt p://ww. f 0o. com mygram gr nf

3 NEXT="htt p: / / ww. f ancyquot es. conf v st ocks. asp" >
4 <RENAME VARNAME="sym' RECNAME="synbol ">

5 <RENAME VARNAME="det ai | " RECNAME="quot et ype" >

6 </ 1 NPUT>

In this example, the RENAME eement is used to account for differencesin the
variable names collected from a grammar and those expected by another script.
In particular, the case imagined here is one where a grammar from foo.com is
used to provide input to a VoxML application hosted by fancyquotes.com.
Because the grammar and script are imagined to have been devel oped
independently, the RENAME dement is used to help connect the grammar and
the stock-quoting application.

October 1998 VoxML 1.0 Language Reference 41

VoxML 1.0 Element Reference
RESPONSE Element

RESPONSE Element

The RESPONSE e ement is used to define the behavior of the VoxML
application in response to different combinations of recognition ots. The
RESPONSE el ement enables the application devel oper to define a different
NEXT attribute depending on which of the grammar's dlots were filled.

The RESPONSE e ement can exist only within an INPUT eement, and then
only when using an input type of GRAMMAR.

Syntax

<RESPONSE FIELDS="value" [NEXT="value' [NEXTMETHOD="value"]] />
or

<RESPONSE FIELDS="value" [NEXT="value" [NEXTMETHOD="value"]] >
SMTCH elements </RESPONSE>

Attributes

Attribute Name Allowed Values

FIELDS comma separated list of identifiers
NEXT next step URL

NEXTMETHOD GET *

POST

October 1998

VoxML 1.0 Language Reference 42

VoxML 1.0 Element Reference
RESPONSE Element

Examples

1 <I NPUT TYPE="GRAMVAR'

SRC="gram // . Banki ng/ acti on/ant/fronmacct/toacct"

NEXT="#not enoughf i el ds" >

<RESPONSE FlI ELDS="acti on, amt, fronacct, t oacct"”
NEXT="#doit"/ >

<RESPONSE Fl ELDS="acti on, ant, f ronacct"”
NEXT="#askt oacct"/ >

<RESPONSE FlI ELDS="acti on, ant, t oacct"
NEXT="#askf r omacct "/ >

10 <RESPONSE Fl ELDS="acti on, amt" NEXT="#askaccts"/>

11 <RESPONSE Fl ELDS="acti on" NEXT="#askant accts"/>

12 </ 1 NPUT>

Co~NOOThhWN

This example illustrates how the RESPONSE element can be used to deal with
situations where the user specifies lessthan all the possible variables availablein
the grammar. Using the RESPONSE element, the application can arrange to
collect only the information not already filled in by prior steps.

In particular this example transfersto the “askaccts’ STEP if neither the source
nor destination account is specified (for example, the user said “transfer 500
dollars™), but it transfers to the “askfromacct” STEP if the user said what
account to transfer to, but did not specify a source account (for example, if the
user had said “transfer 100 dollarsto savings’).

The NEXT URL on the INPUT dement is used when the user’ s response does
not match any of the defined RESPONSES.

October 1998

VoxML 1.0 Language Reference 43

VoxML 1.0 Element Reference
STEP Element

STEP Element

The STEP dement defines a statein a VoxML application. A STEP eement
typically has an associated PROMPT eement and INPUT eement that
minimally define the application state.

Each VoxML DIALOG must contain exactly one STEP element named “init”.
The execution of the VoxML application begins with the STEP named “init”.

The STEP e ement can be contained by a DIALOG eement only.

Syntax

<STEPNAME="value' [PARENT="value'] [BARGEIN="value']
[COST="value"] > VoxML </STEP>

Attributes
Attribute Name Allowed Values
NAME identifier
PARENT identifier
BARGEIN Y *

N
COST integer"
Examples

1 <STEP NAME="askpyt hon" PARENT="tvrating">

2 <PROWPT> Pl ease rate Monty Python's Flying G rcus
3 on a scale of 1 to 10. </ PROWT>

4 <I NPUT NAME=" pyt hon" TYPE="nunber" NEXT="#drwho" />
5 </ STEP>

This exampleillustrates a smple STEP that collects the user’ s opinion on one of
several public television shows. The step uses the PARENT attribute to share a
common set of help and error e ements with other TV-show-rating STEPs. For
example, the parent class might contain a help e ement explaining what arating
of 1, 5, and 10 would mean; a common error message might remind the user that
anumeric rating is expected.

" The COST attribute is a platform-dependent feature,

October 1998

VoxML 1.0 Language Reference 44

VoxML 1.0 Element Reference
SWITCH Element

SWITCH Element

The SWITCH eement is used to define the application behavior dependant on
the value of a specified recognition dot. The SWITCH element isused only in
conjunction with the CASE dement.

The SWITCH eement can exist only within the INPUT eement, and then only
when using the GRAMMAR input type.

Syntax

<SWITCH HELD="value"> VoxML </SWITCH>

Attributes

Attribute Name Allowed Values

FIELD identifier

Examples

<I NPUT TYPE="GRAMVAR'

SRC="gram / /. Banki ng/ acti on/ anount / f r onacct / t oacct " >

<SW TCH FI ELD="act i on">

<CASE VALUE="transfer" NEXT="#transfer" />

<CASE VALUE="bal ance" NEXT="#bal ance" />

<CASE VALUE="activity">

<SW TCH FI ELD="f r onacct ">

<CASE VALUE="checki ng" NEXT="#chxact" />
<CASE VALUE="savi ngs" NEXT="#savact" />

10 </ SW TCH>

11 </ CASE>

12 </ SWTCH>

13 </ I NPUT>

O©CoO~NOOUITAWNE

This example shows how a SWITCH eement might be used to determine the
next step to execute in response to a banking request. In this example, the
grammar may fill in some or all of the variables “action”, “amount”, “fromacct”,
and “toacct”. If the user asksfor atransfer or balance action, the next step to
execute isthe transfer or balance step. If the user asks for areport of account
activity, a second SWITCH element determines the next step based on the
account type for which areport is being requested (assumed to be availablein
the “fromacct” variable).

October 1998 VoxML 1.0 Language Reference 45

VoxML 1.0 Element Reference
VALUE Element

VALUE Element

The VALUE dement is used to present the value of a VoxML variable to the
user viatext-to-speech. The VALUE eement can be used anywhere that text is
read to the user.

The VALUE éement can be contained by a PROMPT, EMP, PROS, HELP,
ERROR, CANCEL, or ACK element.

Syntax

<VALUE NAME="value' />

Attributes

Attribute Name Allowed Values
NAME identifier
Examples

1 <STEP NAME="t hanks" >
2 <PROWPT> Thanks for your responses. |'ll record

3 that <VALUE NAME="first"/> is your favorite
4 and that <VALUE NAME="second"/> is your

5 second choi ce.

6 </ PROWPT>

7 <I NPUT TYPE="NONE" NEXT="/recordresults.asp" />
8 </ STEP>

The VoxML code shown above illustrates the use of the VALUE dement to
read the user’ s sdlections back to the user. On line 3, the value of the VoxML
variable named “first” would be inserted into the PROMPT, and on line 4 the
value of the VoxML variable named “second” would be inserted into the
PROMPT.

October 1998 VoxML 1.0 Language Reference 46

Appendices

Appendix A - VoxML 1.0 Document Type Definition

3. Appendices

Appendix A - VoxML 1.0 Document Type Definition

<! ELEMENT
< ATTLI ST

<! ELEMENT
< ATTLI ST

<! ELEMENT
< ATTLI ST

<! ELEMENT

<! ELEMENT
< ATTLI ST

<! ELEMENT
< ATTLI ST

<! ELEMENT
<! ATTLI ST

<! ELEMENT
<! ATTLI ST

<! ELEMENT
<! ATTLI ST

This appendix describes the VoxML 1.0 Document Type Definition. A DTD is
used to define the syntax and grammar of alanguage in away that can beread
and understood by humans as well as machines (i.e. parsers).

DI ALOG (STEP| CLASS) * >
DI ALOG BARGEIN (Y| N) "Y'>

STEP (PROVPT| | NPUT| HELP| ERROR| CANCEL | ACK) * >

STEP NAME | D #REQUI RED
PARENT | DREF #I MPLI ED
BARGEIN (Y| N) "Y"
COST CDATA #| MPLI ED>

CLASS (PROVPT| HELP| ERROR| CANCEL | ACK) * >

CLASS NAME | D #REQUI RED
PARENT | DREF #| MPLI ED
BARGEIN (Y| N) "Y"
COST CDATA #l MPLI ED>

PROVPT (#PCDATA| OPTI ONS| VALUE| EMP| BREAK| PROS| AUDI O) * >

EMP (#PCDATA| OPTI ONS| VALUE| EMP| BREAK| PROS| AUDI O) * >
EMP LEVEL (STRONG MODERATE| NONE| REDUCED) " MODERATE" >

PROS (#PCDATA| OPTI ONS| VALUE| EMP| BREAK| PRCS| AUDI O) * >

PROS RATE CDATA #| MPLI ED
VOL CDATA #l MPLI ED
Pl TCH CDATA #l MPLI ED
RANGE CDATA #| MPLI ED>

HELP (#PCDATA| OPTI ONS| VALUE| EMP| BREAK| PRCS| AUDI O) * >

HELP ORDI NAL CDATA #| MPLI ED
REPROWPT (Y| N) "N
NEXT CDATA #l MPLI ED
NEXTMETHOD (GET| POST) "

GET" >

ERROR (#PCDATA| OPTI ONS| VALUE| EMP| BREAK| PROS| AUDI O) * >

ERROR TYPE NMICKENS "ALL"

CRDI NAL CDATA #l MPLI ED

REPROWPT (Y| N) "N
NEXT CDATA #| MPLI ED
NEXTMETHOD (GET| POST)

"CGET" >

CANCEL (#PCDATA| VALUE| EMP| BREAK| PROS| AUDI O) * >

CANCEL NEXT CDATA #REQUI RED
NEXTMETHOD (GET| POST)

"CGET" >

October 1998

VoxML 1.0 Language Reference 47

Appendix A - VoxML 1.0 Document Type Definition

<! ELEMENT
<! ATTLI ST

<! ELEMENT
< ATTLI ST

<! ELEMENT
< ATTLI ST

<! ELEMENT
<! ATTLI ST

<! ELEMENT
<! ATTLI ST

<! ELEMENT
<! ATTLI ST

<! ELEMENT
<! ATTLI ST

<! ELEMENT
<! ATTLI ST

<! ELEMENT

< ATTLI ST

<! ELEMENT

<! ELEMENT

<! ELEMENT
< ATTLI ST

AUDI O EMPTY>
AUDI O SRC CDATA #REQUI RED>

ACK (#PCDATA| OPTI ONS| VALUE| EMP| BREAK| PROS| AUDI O) * >

ACK CONFI RM NMTOKEN " YORN'
BACKGROUND (Y| N) "N
REPROWPT (Y| N) "N'>

| NPUT (OPTI ON| RESPONSE| RENAME| SW TCH| CASE) * >

| NPUT TYPE (NONE| OPTI ONLI ST| RECORD| GRAMVAR| PROFI LE| HI DDEN|
YORN| DI G TS| NUVBER| TI ME| DATE| MONEY| PHONE) #REQUI RED

NAMVE | D #I MPLI ED
NEXT CDATA #| MPLI ED
NEXTMETHOD (GET| POST) " GET"
TI MEQUT CDATA #| MPLI ED

M N CDATA #| MPLI ED

MAX CDATA #| MPLI ED
PROFNAVE NMTOKEN #| MPLI ED
SUBTYPE NMICKEN #| MPLI ED
SRC CDATA #| MPLI ED

VALUE CDATA #| MPLI ED

MBECS CDATA #| MPLI ED

STORAGE (FI LE| REQUEST) #REQUI RED

FORVAT CDATA #l| MPLI ED>

SW TCH (CASE| SW TCH) *>
SW TCH FI ELD NMIOKEN #REQUI RED>

RESPONSE (SW TCH) *>

RESPONSE NEXT CDATA #| MPLI ED
NEXTMETHOD (GET| POST) " GET"
FI ELDS NMIOKENS #REQUI RED>

RENAME EMPTY>
RENAME VARNAME NMIOKEN #REQUI RED
RECNAME NMIOKEN #REQUI RED>

CASE EMPTY>

CASE VALUE CDATA #REQUI RED
NEXT CDATA #REQUI RED
NEXTMETHOD (GET| POST) " GET" >

VALUE EMPTY>

VALUE NAMVE NMTOKEN #REQUI RED>

BREAK EMPTY>
BREAK MSECS CDATA #| MPLI ED>
S| ZE (NONE| SMALL| MEDI UM LARGE)

CPTI ONS EMPTY>
CR EMPTY>

OPTI ON (#PCDATA| VALUE| OR) * >
OPTI ON VALUE CDATA #I MPLI ED
NEXT CDATA #| MPLI ED

NEXTMETHOD (GET| POST) " GET" >

"MEDI UM' >

October 1998

VoxML 1.0 Language Reference 48

Appendices
Appendix B - Vcard Profile Names and Subtypes

Appendix B - Vcard Profile Names and Subtypes

This appendix describes the valid combinations of Vcard profile names and their
associated subtypes. For more information regarding the Vcard specification,
see “http://www.imc.org/rfc2426” .

All information described below is provided based on the profile information of
the VoxML voice browser's current interactive user. Although not all browser
implementations will store the user's profile information, this schema represents
a convenient way to access the data when it is available.

Vcard Profile Names and Subtypes

Profile Name Subtype Description
ADR HOME home address
WORK work address
BDAY none birthday
EMAIL none primary email address

NOTIFICATION notification email address

FN none formatted name
GEO none geographic location (longitude;lattitude)
KEY none public encryption key
LABEL HOME home mailing label
WORK work mailing label
MAILER none email program used

October 1998 VoxML 1.0 Language Reference 49

Appendices

Appendix B - Vcard Profile Names and Subtypes

N FIRST first name
LAST last name
MIDDLE middle name
PREFIX prefix (e.g. Mr., Mrs,, Dr.)
SUFFIX suffix (e.g. J., D.D.S, M.D.)

ORG none organization

ROLE none jobrole or position

TEL HOME home telephone number
WORK work tel ephone number
FAX fax call telephone number
CELL cdlular telephone number
PREF preferred tel ephone number

TITLE none jobtitle

TZ none time zone

uiD none globally uniqueid

URL none URL of home page

October 1998

VoxML 1.0 Language Reference 50

