ANTIMICROBIAL THERAPY OF INTRA-ABDOMINAL INFECTIONS

Classification of Peritonitis

TYPE

Primary
Secondary
Tertiary

CAUSE

Spontaneous

Enterogenous

Nosocomial opportunistic

OPERATION

None

Control of perforation

Repeated Laparotomy

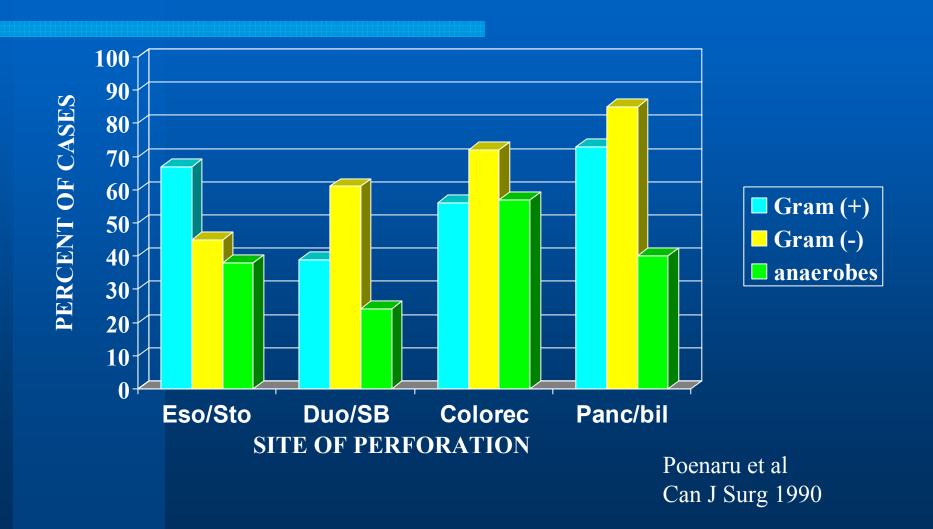
Experimental Model of Intra-abdominal Infection

Two-Stage Disease Process

PATHOLOGY

Acute Peritonitis

❖ Intra-abdominal Abscess


ORGANISM

E. coli

B. fragilis

- defined pathogenesis of IAI
- used to test efficacy of antibiotic regimens

Gorbach 1981 Bartlett 1995

ORGANISM Gram - negative	SOLOMKIN	MOSDELL	LAUDICO
E. coli	56.8	68.4	46.0
Enterobacter	13.5	6.1	19.0
Klebsiella	15.4	17.0	
Anaerobes			
B. fragilis	22.8	44.5	67.0
Gram – positive			
Nonenterococcal Strep	35.8	25.9	

Solomkin 1990, Mosdell 1991, Laudico 1993

ORGANISM Gram-negative	SOLOMKIN	MOSDELL	<u>LAUDICO</u>
E. coli	56.8	68.4	46.0
Enterobacter	13.5	6.1	19.0
Klebsiella	15.4	17.0	
P. aeruginosa	14.8	19.1	6.0
Proteus	6.2	2.7	4.0
S. marcescens	1.2	4.1	
Morganella morganii	1.2		
Citrobacter	3.1	3.4	
Others	3.7	7.5	

Solomkin 1990, Mosdell 1991, Laudico 1993

<u>ORGANISM</u>	SOLOMKIN	MOSDELL	<u>LAUDICO</u>
Anaerobes			
B. fragilis	22.8	44.5	67.0
Other Bacteroides	21.0		
Clostridium	17.9	5.8	
Peptococci/Streptococci	7.4	16.0	
Fusobacterium	6.2	5.1	
Lactobacillus	5.6		
Enterobacterium	4.3		
Others	12.4	3.7	

Solomkin 1990, Mosdell 1991, Laudico 1993

<u>ORGANISM</u>	<u>SOLOMKIN</u>	<u>MOSDELL</u>
Gram – positive		
Nonenterococcal Strep	35.8	25.9
Enterococci	23.5	10.5
S. aureus/S. epidermidis	10.5	10.5
Yeast		
Candida sp.	18.6	4.1

Solomkin, Ann Surg 1990 Mosdell, Ann Surg 1991

Diagnosis of Acute Peritonitis

- 1) Clinical Findings
 - peritoneal irritation on P.E.
- 2) Diagnostic Imaging for Atypical Presentation

Diagnostic Imaging in Acute Peritonitis

> ABDOMINAL ROENTGENOGRAPHIC SERIES

- Useful in GIT perforation & obstruction
- ❖ Sensitivity of upright x-ray : 38 %

RADIOGRAPHIC SIGN	<u>SENSITIVITY</u>
RUQ air	41%
Rigler's sign	32%
Falciform ligament sign	2%
Football sign	2%
Inverted V sign	0%
Overall for supine x-ray	59%

Levine et al Am J Roent 1991

Diagnostic Imaging in Acute Peritonitis

ULTRASOUND

- Immediate ultrasound is neither essential nor justifiable in most acute admissions to the surgical ward (Walsh, Clin Radio 1990)
- best used in pediatric or female patient with RLQ or pelvic pain

COMPUTED TOMOGRAPHY

- thin collimation helical scanning is diagnostic modality of choice for imaging the surgical abdomen

MAGNETIC RESONANCE IMAGING

no significant diagnostic advantage over CT

Diagnostic Imaging in Acute Peritonitis

LAPAROSCOPY FOR INTRA-ABDOMINAL INFECTIONS

Prospective Study (n=154)

- only one abscess not identified
- 96 % successfully treated using laparoscopy
- 5 patients required laparotomy
- -Need RCT to determine selection criteria, cost-implications and outcomes

Geis & Kim Surg Endos 1995

Therapeutic Strategy for Intra-Abdominal Infections

- I. Correction of Functional Impairment
- II. Surgical Intervention
- III. Antimicrobial Therapy

Kirschner et al Arch Chir 1926

Physiologic Support

RESTORE AND MAINTAIN ADEQUATE PERFUSION

- volume expansion
- maintain arterial oxygen saturation

Surgical Intervention

THREE FUNDAMENTAL PRINCIPLES

- I. Occlusion of infectious leak (SOURCE CONTROL)
 - A. Primary repair, resection or exclusion
 - B. Emerging role of minimally invasive surgery
- II. Reduce degree of bacterial contamination (PURGE)
 - A. Aspiration of purulent exudates and adjuvants
 - B. Intra-operative peritoneal lavage

Surgical Intervention

THREE FUNDAMENTAL PRINCIPLES

- III. Prevent recurrent or persistent infection
 - use of drains
 - post-operative peritoneal lavage
 - Quality Control of repairs and purge
 - Open Abdomen (OPA)
 - Covered Abdominostomy (COLA)
 - Planned Relaparotomy (PR)
 - Staged Abdominal Repair (STAR)

Role of Peritoneal Cultures

Intra-operative cultures not cost-effective for:

- limited peritoneal contamination
- patients with minimal pre-morbid conditions who are treated promptly

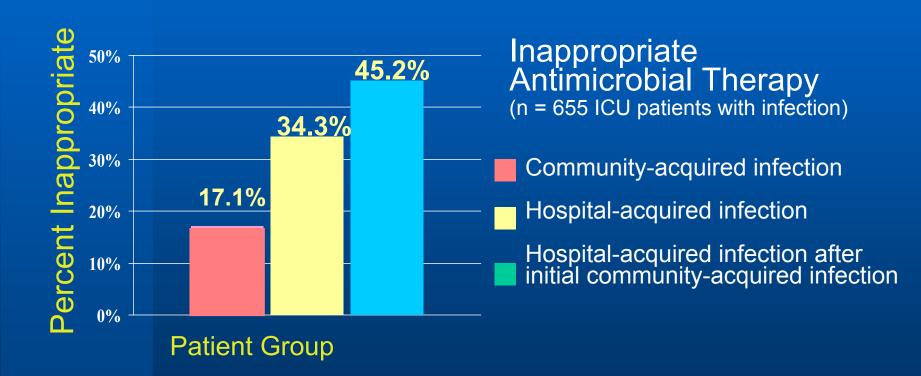
Useful for:

- patients with suppressed local host immune defenses
- high-risk for persistent peritonitis

Role of Peritoneal Cultures

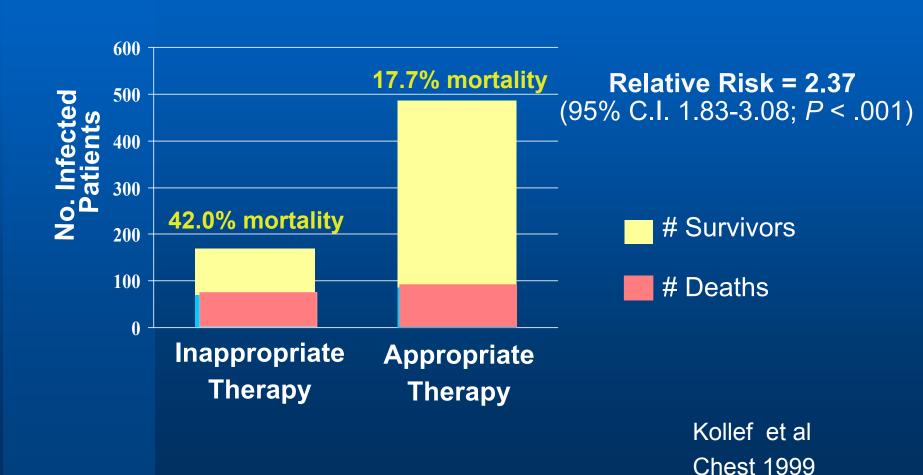
HIGH-RISK PATIENTS

- multiple pre-morbid medical problems
- significant delay in treatment
- acutely physiologically debilitated
- receiving immunosuppressive medications
- have altered gut flora because of recent hospitalization or antibiotic treatment


Antimicrobial Therapy

- Empirical because physiologic evidence of infection usually precedes identification of offending organisms
- Best chance for eradicating a serious infection is early in its course
- stratify antimicrobial use into two levels of therapeutic intensity
- selection based primarily on patient factors and local resistance patterns

Antimicrobial Therapy


- Empirical because physiologic evidence of infection usually precedes identification of offending organisms
- Best chance for eradicating a serious infection is early in its course

Inappropriate Antimicrobial Therapy: Prevalence Among Intensive Care Patients

Kollef et al Chest 1999

Inappropriate Antimicrobial Therapy: Impact on Mortality

COMPARISON OF OUTCOMES ACCORDING TO APPROPRIATENESS OF EMPIRIC ANTIBIOTICS

Retrospective Study (n = 480)

REGIMEN	N	MORBIDITY	MORTALITY
Excessive	77	29.9%	6.5%
Adequate	180	18.9%	5.6%
Inadequate	49	51.0%	12.2%
Non-classifiable	170	14.1%	4.7%

Conclusion: Inadequate empiric antibiotic therapy was associated with poor outcome

COMPARISON OF OUTCOMES ACCORDING TO CHANGES IN REGIMEN

Retrospective Study (n = 480)

	INAPPROPRIATE/ NO CHANGE	APPROPRIATE CHANGE	SIGNIFICANCE
Number	36	13	NS
Length of stay	18.8	17.7	NS
Incisional SSI	31%	15%	NS
Abscess	33%	23%	NS
Re-operation	42%	23%	NS
Total complications	44%	31%	NS
Mortality	8%	23%	NS

Conclusion: Adjusting antibiotic choice based on culture data does not significantly improve outcome

Mosdell et al Ann Surg 1991

INAPPROPRIATE ANTIMICROBIAL THERAPY: IMPACT ON CLINICAL SUCCESS

Retrospective study (n = 175)

OUTCOME N		SENSITIVE	RESISTANT		
		ISOLATES	ISOLATES		
Resolved infection	131	66 %	44 %		
Post-op complication	44	18 %	82 %		

- resistant organisms may contribute to development of postoperative infection
- significant number cured despite presence of resistant organisms

Hopkins et al Ann Surg 1993 Prevalence of Antimicrobial-Resistant (R) Pathogens Causing Hospital-Acquired Intensive Care Unit Infections: 1999 versus 1994-1998

Organism	# Isolates 1	% Increase*
Fluoroquinolone-R Pseudomonas spp.	2,657	49%
3rd generation cephalosporin-R <i>E. coli</i>	1,551	48%
Methicillin-R Staphylococcus aureus	2,546	40%
Vancomycin-R enterococci	4,744	40%
Imipenem-R Pseudomonas spp.	1,839	20%

^{*} Percent increase in proportion of pathogens resistant to indicated antimicrobial Source: National Nosocomial Infections Surveillance (NNIS) System

Diagnose and Treat Infection Effectively Target the pathogen

Fact:

Appropriate antimicrobial therapy

(correct regimen, timing, dosage, route, and duration) saves lives.

Goals of Antimicrobial Therapy

- 1. Eliminate infecting microorganisms
- 2. Decrease the likelihood of recurrence
- 3. Shorten the time to resolution of signs and symptoms of infection
- 4. Prevent antimicrobial resistance

Antimicrobial Therapy

APPROPRIATE SELECTION

- 1) In-vitro data
- 2) Experience in animal models
- 3) Efficacy in RCTs
- 4) Pharmacokinetic properties
- 5) Safety profile
- 6) Cost

Regimens for treatment of IAI subjected to RCTs

SINGLE AGENTS

B-lactam/B-lactamase inhibitors

Ampicillin/sulbactam

Piperacillin/tazobactam

Ticarcillin/clavulanic acid

Carbapenems

Ertapenem

Imipenem/cilastatin

Meropenem

Cephalosporins

Cefoxitin

COMBINATION REGIMENS

Aminoglycoside-based

Gentamicin, Tobramycin, Netilmycin or Amikacin plus anti-anaerobe

Cephalosporin-based

Cefuroxime plus Metronidazole Ceftriaxone, Cefotaxime, or Cefepime plus Metronidazole

Fluoroquinolone-based

Ciprofloxacin plus Metronidazole

Solomkin et al CID 2003

Randomized Prospective Trials in Community - Acquired IAI

Clinical Trial	N	No. evaluable	% Clinical Cure	% Bacteriologic Cure
AMPI-SULBACTAM	194	96	87%	85%
VS CEFOXITIN	191	101	78%	83%
(Walker 1993)				
AMPI-SULBACTAM	67	(NS)	88%	(NS)
VS.GENTA/CLINDA	90	(NS)	98%	(NS)
(Yellin 1985)				

CLINICAL SUCCESS RATES REVIEW OF 79 RCTs ON IAI

CINI	CHO	CECC
CLIN	SUC	CESS

Ampicillin-sulbactam	2	163	87 %	
Cefoxitin	6	389	88 %	
Moxalactam	5	316	83 %	
Cefotetan	5	395	92 %	
Piperacillin-tazobactam	5	430	90 %	
Imipenem-cilastatin	23	1,637	85 %	
Meropenem	10	657	89 %	
Cefotaxime + Metronidazole	4	236	87 %	
Aztreonam + Clindamycin	5	241	89 %	
Gentamicin + Clindamycin	21	1,517	80 %	
Tobramycin + Clindamycin	12	561	83 %	Но

Holzheimer et al Eur J Med Research 2001

Antimicrobial Therapy of Intra-Abdominal Infections

Systematic Review of 79 RCTs

Clinical success rates for best-studied antibiotics is similar

Antibiotic use depends on the expected pathogens and resistance rate in clinical setting

Holzheimer et al Eur J Med Research 2001

Antimicrobial Therapy

- stratify antimicrobial use into two levels of therapeutic intensity
- selection based primarily on patient factors and local resistance patterns

Agents Recommended for Mild-Moderate Infections

SINGLE AGENTS

B-lactam/B-lactamase inhibitor

Carbapenems

COMBINATION REGIMENS

Cephalosporin-based

Fluoroquinolone-based

Ampicillin-sulbactam

Ticarcillin-clavulanic acid

Ertapenem

Cefazolin or Cefuroxime plus Metronidazole

Ciprofloxacin, Levofloxacin, Moxifloxacin or Gatifloxacin, plus Metronidazole

Solomkin et al CID 2003

Antimicrobial Sensitivities

	FACULTATIVE AEROBES						
		Gm(+) cocci		OBLIGATE ANAEROBES			
	Gm(-)B	Entero-	Other				
		cocci	Strep	Gm(-)B	Gm(+)B	Gm(+)C	
Cefoxitin	++	0	++	++	+++	+++	
Ampi-Sulb	++	+++	+++	+++	+++	+++	
Ticar-Clav	++	++	+++	+++	+++	+++	
Ertapenem	+++	+	+++	+++	+++	+++	

Incl Cefotetan and Cefmetazole

Bohnen et al Arch Surg 1992

Agents Recommended for High-severity Infections

SINGLE AGENTS

B-lactam/B-lactamase inhibitor Carbapenems

Piperacillin/Tazobactam Imipenem/cilastatin Meropenem

COMBINATION REGIMENS

Cephalosporin-based

Fluoroquinolone-based Monobactam-based

3rd/4th gen Cephalosporin plus MetronidazoleCiprofloxacin plus MetronidazoleAztreonam plus Metronidazole

Solomkin et al CID 2003

Antimicrobial Sensitivities

FACULTATIVE AEROBES

		Gram(+) cocci		OBLIGATE ANAEROBES		
	Gm(-)B	Entero	Other	Gm(-)B	Gm(+)B	Gm(+)C
		cocci	Strep			
Aminoglycosides	+++	0	0	0	0	0
Aztreonam	+++	0	0	0	0	0
3 rd /4 th Gen Ceph	+++	0	++	+	++	+++
Ciprofloxacin	+++	+	++	0	0	0
Metronidazole	0	0	0	+++	+++	+++
Clindamycin	0	0	++	+++	+++	+++

Incl Gentamicin, Tobramycin, Netilmycin, Amikacin Incl. CefotaximeCeftriaxone, Ceftazidime, Cefoperazone, Ceftizoxime

Antimicrobial Sensitivities

	FACULT	ATIVE A	EROBES			
		Gram	(+) cocci	OBLIGATE ANAEROBES		
	Gm(-)B	Entero Other		Gm(-)B	Gm(+)B	Gm(+)C
		cocci	Strep			
Imipenem	+++	++	+++	+++	+++	+++
Meropenem	+++	++	+++	+++	+++	+++
Pip-Tazo	+++	+++	+++	+++	+++	+++

Bohnen et al Arch Surg 1992

EBCPG on Treatment of Acute Appendicitis

PROPHYLAXIS FOR UNCOMPLICATED APPENDICITIS

- Ampicillin sulbactam
- Amoxicillin clavulanate
- Cefoxitin
- Gentamicin plus Clindamycin

LEVEL I EVIDENCE CATEGORY A RECOMMENDATION

> Phil. College of Surgeons Comm. on Surg Infxns 2003

EBCPG on Treatment of Acute Appendicitis

TREATMENT OF COMPLICATED APPENDICITIS

A. Adults

Ertapenem

Piperacillin - Tazobactam

Ciprofloxacin plus Metronidazole

B. Pediatric Patients

Ticarcillin - Clavulanate

Imipenem - Cilastatin

Gentamicin plus Clindamycin

LEVEL I EVIDENCE
CATEGORY A RECOMMENDATION

Phil. College of Surgeons Comm. on Surg Infxns 2003

EBCPG on Treatment of Cholecystitis

A. UNCOMPLICATED ACUTE CHOLECYSTITIS

- Cefazolin
- Cefuroxime
- Cefoxitin
- Fluoroquinolone +/- Metronidazole

B. COMPLICATED ACUTE CHOLECYSTITIS

- ❖ Beta-lactam/ Beta-lactamase inhibitors Ampicillin/Sulbactam
- Cefoxitin
- Ertapenem
- Fluoroquinolone plus Metronidazole

LEVEL I EVIDENCE
CATEGORY A RECOMMENDATION

Phil. College of Surgeons Comm on Surg Infxns 2003

- Establish duration of therapy at outset based on intra-operative findings and immuno-competence of the patient
- prophylactic or preemptive vs. treatment

A. RESECTABLE SOURCE OF INFECTION SURROUNDED BY LOW-GRADE PERITONEAL INFECTION

acute appendicitis (A-1)

acute cholecystitis (B-2)

gastroduodenal perforation < 24 hrs duration (B-2)

traumatic enteric perforation < 12 hrs duration (A-1)

intestinal infarction without perforation (A-1)

Management:

Short-course of antibiotics < 24 hours

Solomkin et. al. CID 2003

B. ESTABLISHED INTRA-PERITONEAL INFECTION

-pre-determined duration based on intra-operative findings and patient's immunocompetenceManagement: 5 day course

C. SOURCE OF PERITONEAL INFECTION CANNOT BE COMPLETELY RESECTED NOR DEBRIDED PROLONGED PERITONEAL TOILET NECESSARY WITH RE-EXPLORATION

Management: prolonged course of antibiotics

Retrospective Study (n = 157)

- Gentamicin/Fosfomycin plus Metronidazole for 5 days

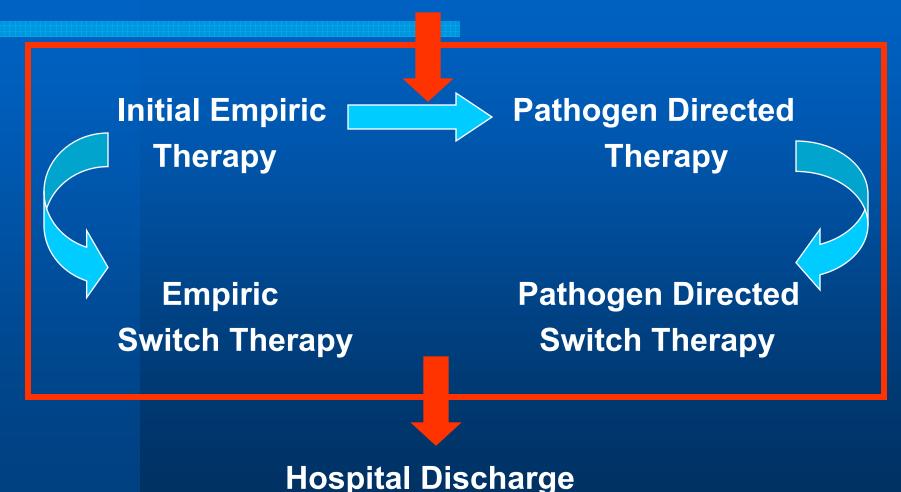
	N	CLINICAL SUCCESS
Perforated Appendicitis	53	94 %
Gastroduodenal Perforation	17	88 %
Small Bowel Necrosis	3	100 %
Peritonitis (any source)	84	93 %

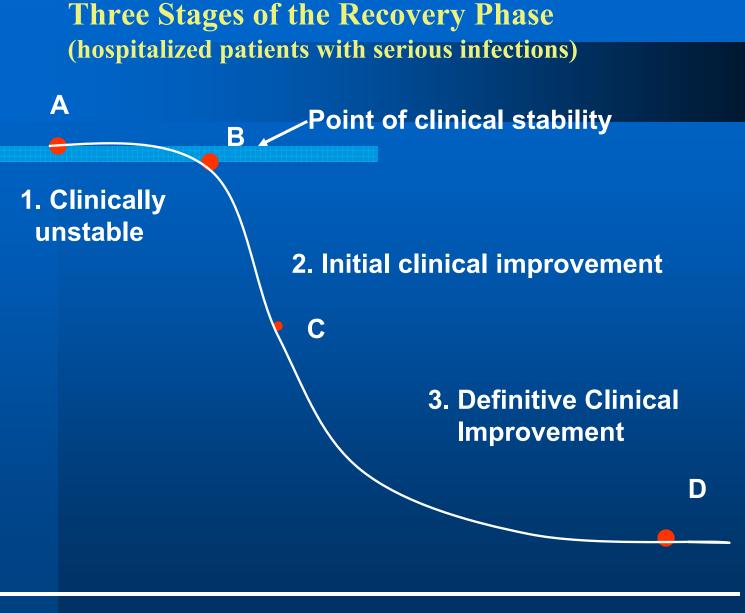
Andaker 1987

(n = 71)

- Ampicillin + Gentamicin + Metronidazole
- Ceftriaxone + Metronidazole

Duration of Treatment Clinical Success Rates Mortality Rates

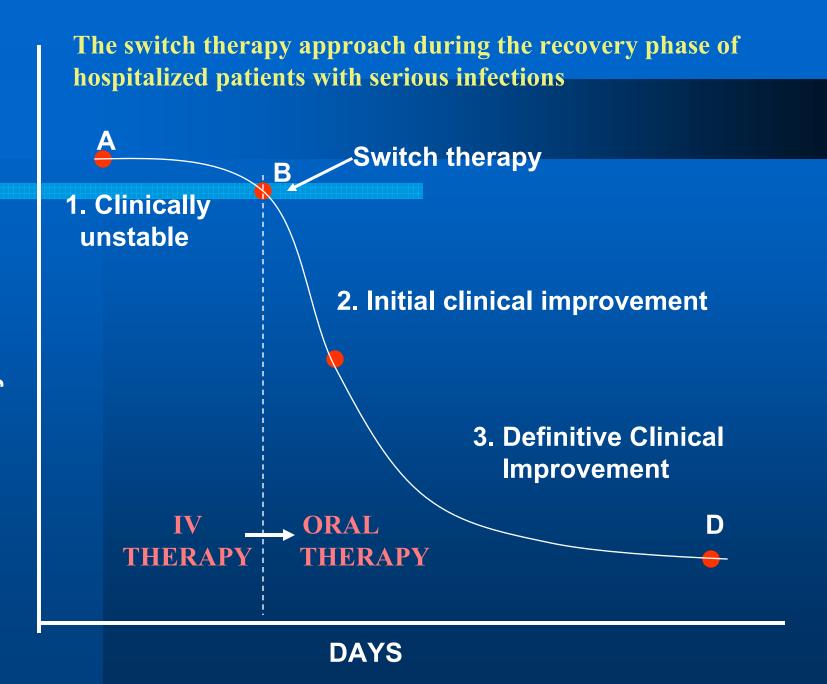

LOCALIZED	GEN
PERITONITIS	PEF
2 days	3
88 %	
2 %	


GENERALIZED
PERITONITIS
3 - 5 days
83 %
4 %

Schein 1994

Selection of oral antibiotics for Switch Therapy

Hospital Admission

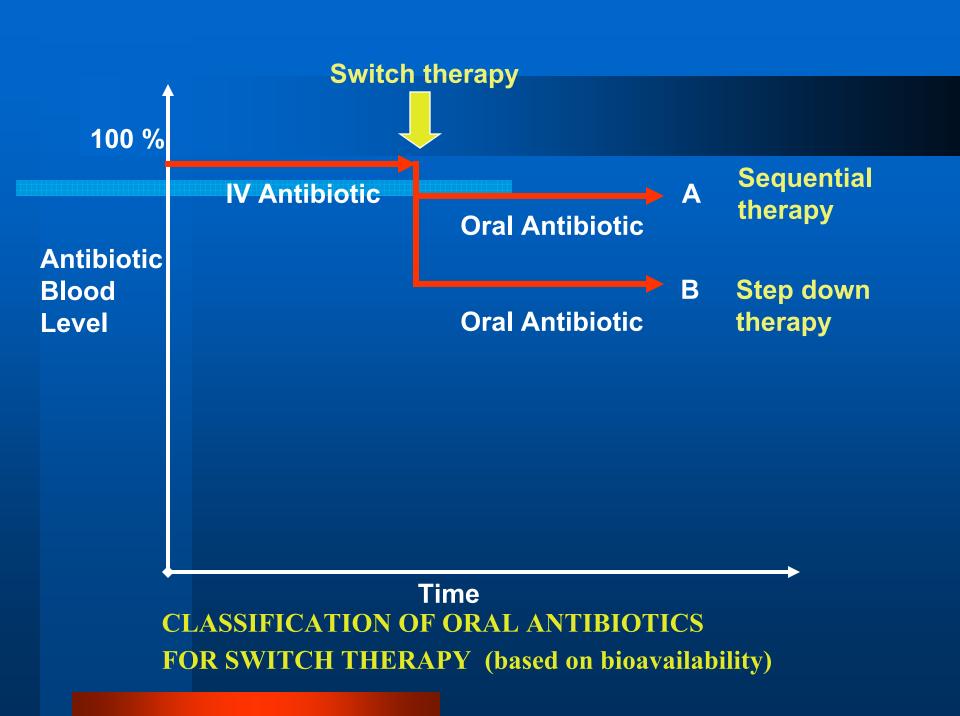


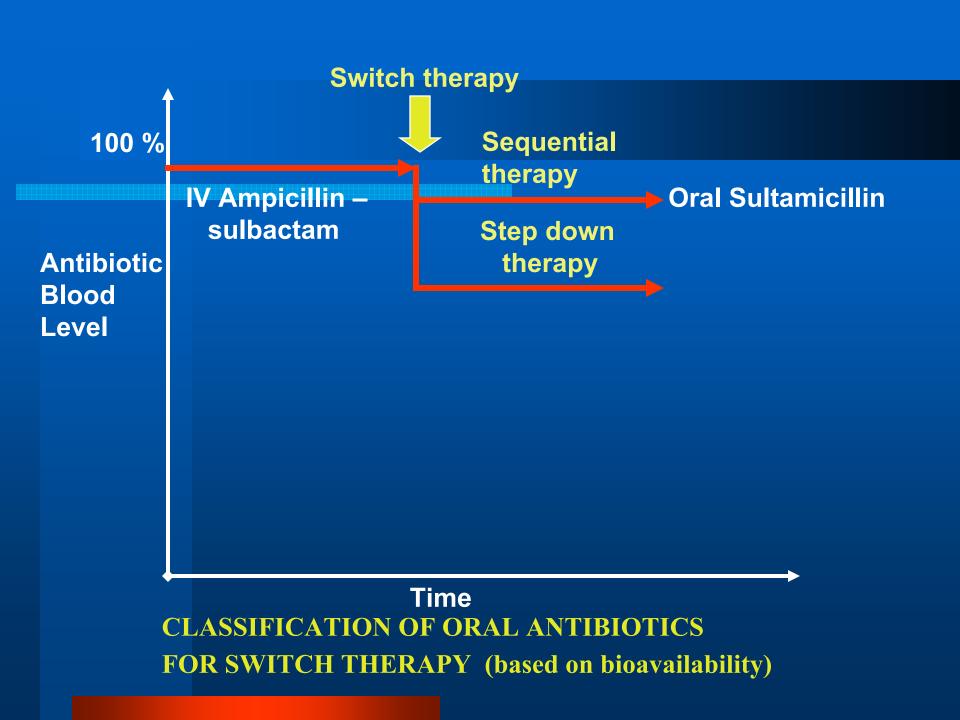
Switch Therapy from Intravenous to Oral Route

CRITERIA FOR CLINICAL STABILITY

- Subjective and objective evidence of improvement from the local inflammatory response produced by the infection
- Afebrile for at least 8 hours
- WBC should trend towards normal value
- Adequate oral intake and gastrointestinal absorption

UNASYN IM/IV (Ampicillin-sulbactam)


(750 mg, 1.5 g, 3.0 g)


- Twice daily, thrice daily, or four times daily dosing (IV/IM)

Combination of Ampicillin and Sulbactam

Ampicillin – broad antimicrobial spectrum

Sulbactam - broad spectrum B-lactamase inhibition

UNASYN IM/IV (Ampicillin-sulbactam)

(750 mg, 1.5 g, 3.0 g)

- Twice daily, thrice daily, or four times daily dosing (IV/IM)

UNASYN Oral (Sultamicillin)

(750 mg and 375 mg tablet 250 mg/ 5 ml pediatric oral suspension)

Twice daily dosing (oral)

EARLY AND LATE OUTCOMES OF SERIOUS INFECTIONS

DAYS

Switch Therapy from Intravenous to Oral Route

RCT (n=459)

	CLINICAL RESOLUTION					
	N	OVER-ALL	SEQUENTIAL TX	SSI		
PIP-TAZO	57	63%	70%	19%		
CIPRO/METRO	64	74%	85%	11%		

Consider sequential oral therapy when GI function has returned

Cohn et. al. Ann Surg 2000

Switch Therapy from Intravenous to Oral Route

	N	CIP/MTZ IV	CIP/MTZ IV/PO	IMI IV
INTENT-TO-TREAT	671	82%	84%	82%
BACT CURE	330	84%	86%	81%

Consider sequential oral therapy when GI function has returned

Solomkin et. al. Ann Surg 1996

Prospective study (n = 65)

- afebrile & clinically well at conclusion of therapy

WBC COUNT	N	INTRA-AB INFXN	NOSOCOMIAL INFXN
<u>≤</u> 10,000	30	0 (0%)	4 (13%)
> 10,000	21	7 (33%)	2 (10%)

Lennard et al Ann Surg 1983

CLINICAL CRITERIA TO DETERMINE LENGTH OF THERAPY

Review of 11 prospective trials (n=2,567)

TEMPERATURE	+	+	+
$(37.5 \pm 0.5^{\circ}C)$			
LEUKOCYTE COUNT	NC	+	+
(8,500 <u>+</u> 2,500/mm ³)			
BANDS ≤ 3%	NC	NC	+
RISK OF RECURRENCE	19%	3%	0%

Stone et al Arch Surg 1985

RCT (n=33)

PARAMETERS FOR DISCONTINUING ANTIBIOTICS

afebrile for 24 hours ability to tolerate oral intake normal WBC count with < 3% band forms

Predictive Value of Criteria: 97%

Predictive Value of Criterion Mismatch: 100%

Hoelzer et al Arch Surg 1999

ROLE OF ENTEROCOCCUS

- recovered in 10-20% of cases
 Enterococcus faecalis 90 %
 Enterococcus faecium -10%
- animal studies failed to define any role in
- animal studies failed to define any role in intra-abdominal sepsis

ROLE OF ENTEROCOCCUS

- 6 RCTs using antibiotics not active against Enterococci
- > isolation rate in primary cultures: 14-33%
- no treatment failure due to Enterococci

Gorbach et al CID 1993

- specific therapy for enterococcus is currently not recommended for most immune competent patients with community-acquired IAI
- RCT needed to determine whether outcomes can be improved by treatment of high-risk patients or of all patients with IAI

Teppler et al Surg Infxn 2002

Pseudomonas aeruginosa

- isolation rate : 9-25%
- studies showed that neither an aminoglycoside nor a drug with activity against Pseudomonas is necessary in community-acquired IAI
- prudent to add coverage if with positive culture especially if patient's course is complicated

Prototypical Outcomes of Acute Peritonitis

- 1. Resolution of peritonitis
- 2. Fulminant course leading to septic response
- 3. Development of intra-abdominal abscess

12 Steps to Prevent Antimicrobial Resistance

- Targeted intervention programs for clinicians caring for high-risk patients
 - hospitalized adults emergency patients dialysis patients

- hospitalized children
- obstetrical patients
- surgical patients

- geriatric patients critical care patients
- Goal: Improve clinician practices and prevent antimicrobial resistance
- Partnership with professional societies; evidence base published in peer-reviewed specialty journals
- **Educational tools Web-based/didactic learning modules,** pocket cards, slide presentations, etc

12 Steps to Prevent Antimicrobial Resistance in Hospitalized Adults

PREVENT INFECTION

- 1. Vaccinate
- 2. Get the catheters out

DIAGNOSE AND TREAT INFECTION EFFECTIVELY

- 3. Target the pathogen
- 4. Access the experts

prevent intection infection

use antimicrobials

diagnose and treat

prevent transmission

USE ANTIMICROBIALS WISELY

- 5. Practice antimicrobial control
- 6. Use local data
- 7. Treat infection, not contamination
- 8. Treat infection, not colonization
- 9. Know when to say "no" to vanco
- 10. Stop treatment when infection is cured or unlikely

PREVENT TRANSMISSION

- 11. Isolate the pathogen
- 12. Break the chain of contagion

CDC. Drug Resistance/Healthcare Web site.

Ideally, a properly managed intra-abdominal infection will result in

- 1. Reduced mortality
- 2. Decreased need for re-operation and second line therapy
- 3. Reduced duration of intravenous antibiotic therapy
- 4. Shorter hospital stay
- 5. Lower cost of treatment

DIAGNOSE AND TREAT INFECTION EFFECTIVELY

Target the pathogen

- Use local data
- Treat infection, not contamination
- Stop treatment when infection is cured or unlikely

Surgeons hold the solution!

"Bacteriology has revolutionized surgical pathology. All wound complications and most inflammatory lesions which come under the treatment of the surgeon are caused by microorganisms; hence the necessity of proper recognition of the importance of bacteriology as an integral part of the science and practice of modern surgery."

Nicholas Senn (Surgical Bacteriology, 1889)
-first American textbook solely on bacteriology

Thank You