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ABSTRACT

We investigate a class of features related to voicing param-

eters that indicate whether the vocal chords are vibrating.

Features describing voicing characteristics of speech signals

are integrated with an existing 38-dimensional feature vec-

tor consisting of �rst and second order time derivatives of

the frame energy and of the cepstral coe�cients with their

�rst and second derivatives. HMM-based connected digit

recognition experiments comparing the traditional and ex-

tended feature sets show that voicing features and spectral

information are complementary and that improved speech

recognition performance is obtained by combining the two

sources of information.

1. INTRODUCTION

Pitch and voicing are widely used in speech coding [3, 7] but

not in speech recognition. Methods for making the voiced-

unvoiced decision usually work in conjunction with pitch

analysis. For speech recognition, voicing features are use-

ful in distinguishing vowels from consonants and in distin-

guishing consonants such as /d/ and /t/ from each another.

For example, one di�erence between plosives /b/ and /p/ is

that voicing begins earlier in /b/. This observation suggests

that prosodic information such as voicing may be useful in

speech discrimination.

Voicing can be determined with reasonable accuracy from

spectral coe�cients, since unvoiced speech tends to contain

stronger high frequency components than voiced speech.

However, our experiments have not shown voicing features

derived from spectral coe�cients to improve error rates over

using spectral coe�cients alone. The voicing features de-

scribed in this study contain information not present in the

spectrum, and are derived from the time signal. In this

study, we describe two voicing parameters called period-

icity and jitter. Periodicity is a measure of the periodic

structure of speech. Jitter is the small uctuations in glot-

tal cycle lengths and has been studied recently by means of

a statistical time series model [5].

Over the last several years, a major factor in reducing

the error rate in speech recognition systems has been the

addition of new feature components to the frame vectors.

In this work, periodicity and jitter metrics are combined

with a 38-dimensional feature vector consisting of �rst and

second order time derivatives of the frame energy and of the

cepstral coe�cients with their �rst and second derivatives.

Discriminative training is necessary because of the strong

correlation between voicing and the �rst spectral coe�cient.

We report several connected digit recognition results com-

paring the traditional maximum likelihood (ML) method

and the minimum string error (MSE) training method to

study the e�ects of including voicing features in the signal

representation. We have noted that the addition of voicing

features makes the system more robust because these fea-

tures are relatively insensitive to di�erences in transmission

conditions.

2. INCORPORATION OF VOICING

FEATURES

In this section, we describe two voicing parameters: peri-

odicity and jitter. Both are derived from pitch analysis.

There are variety of methods for pitch estimation of speech

signals described in the literature [3]. The pitch estimation

algorithm adopted in this study is based on the short-time

autocorrelation function. Let Xn correspond to the rectan-

gular windowed input speech sample. The short-time auto-

correlation function is given by

Ri(m) =
1

N �m

N�m�1X
i=0

Xn+iXn+i+m;

where i is the index of the starting sample of the frame and

N (corresponding to 30 msec) is the frame length. In gen-

eral, female speech has higher pitch (120 to 200Hz) than the

male speech (60 to 120 Hz). The range of delays considered

spans the pitch period values most likely to occur in speech

(20 to 120 samples, or 66Hz to 400Hz). The autocorrelation

function is normalized with the peak at m = 0 so that the

ratio lies between 0 and 1. The largest peak in the normal-

ized function is chosen as the estimate of the pitch period

and the value of the peak becomes the periodicity measure

Periodicity = max
m

�
Ri(m)

Ri(0)

�
; 20 �m � 120 (1)



This voicing function is a measure of how strongly pe-

riodic the speech frame is. It is often used to make a

voiced/unvoiced decision by applying a threshold. For

speech recognition, we treat it as an indicator of the prob-

ability that a given frame is voiced. Voicing is computed

every 10 msec to match the frame rate of the speech recog-

nizer.

Another voicing parameter useful in speech recognition is

the variation in estimated pitch between frames. Whereas

the pitch in voiced speech is relatively constant, the mea-

sured pitch of an unvoiced frame is essentially random, since

most unvoiced speech consists of noise and other aperiodic

signals. The change in pitch between frames, therefore, is

an indicator of voicing. As a measure of change of pitch,

we de�ne a variation function

Vn = jPn � Pn�1j ;

where n is the index of the current frame and P is the

measured pitch period for that frame.

One complication in measuring pitch variation is pitch

multiplication and division. If the peak at the nth sample

in the the autocorrelation function corresponds to the pitch

period, there are usually also peaks at k � n, where k is

an integer. Peaks at k � n are sometimes larger than the

peak at n, and can be chosen as the estimate of the pitch

period. While this does not signi�cantly a�ect the periodic-

ity measure, it must be taken into account when estimating

jitter. If the pitch period changes from n to 2�n, for exam-

ple, we should generally consider that the pitch variation is

zero. We rede�ne the variation function to allow for pitch

multiplication and division:

Vn = min
j;k

�����Pn�1j
�

Pn

k

����
�
;

where j and k are integers corresponding to the pitch mul-

tipliers for the previous and current frames, respectively.

The range of values allowed for j and k are selected to min-

imize the expected variation function for voiced speech and

maximize its expected value for unvoiced speech. A set of

values that e�ectively separate voiced from unvoiced speech

were determined experimentally to be

(j; k) 2 f(1; 1); (1; 2); (2; 1); (3; 1); (1; 3)g :

These values provide for pitch doubling and tripling. We

also allow the pitch multiplier to change from double to

triple and vice versa by permitting the following additional

values:

(j;k) 2

�
(3; 2) if (j?; k?) = (1,3)

(2; 3) if (j?; k?) = (1,2)

where j? and k? are the values of j and k from the previous

frame pair n � 1 and n� 2.
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Figure 1. Typical voicing measurement contours for

the utterance \341898291659603" spoken by a male

speaker

More combinations are possible, but we limit the num-

ber because if too many are permitted, unvoiced speech is

increasingly likely to yield a small value for the variation

function. Once the variation function is computed between

frame n and the two adjacent frames n� 1 and n + 1, we

compute the jitter as the average of the two variation func-

tions, normalized by the average pitch for the three frames

Jitter =
1
2
[Vn + Vn+1]

1
3 [Pn�1 + Pn + Pn+1]

: (2)

Figure 1 illustrates the measured of jitter and periodicity

for a typical digit string spoken by a female speaker. It is

observed that the periodicity is about 1.0 and jitter is about

zero for voiced speech. For unvoiced speech, periodicity is

between zero and 0.5 and jitter is a random variable between

about 0 and 1. (Silence is considered unvoiced.) Figure 1

suggests speech segments can be reliably classi�ed as voiced

or unvoiced based on periodicity and jitter measurements.

3. DISCRIMINATIVE MODEL PARAMETER

ESTIMATION

We have used two methods for obtaining estimates of the

HMM parameters namely the conventional maximum likeli-

hood (ML) algorithm, and a more e�ective minimum string

error (MSE) training procedure. For ML training, the seg-

mental k-means training procedure was used [4]. The MSE

training directly applies discriminative analysis techniques

to string level acoustic model matching, thereby allowing

minimum error rate training to be implemented at the

string level [1]. A brief formulation of the MSE algorithm

using generalized probabilistic descent (GPD) method is as

follows:



� A discriminant function in MSE training is de�ned as

g(O; Sk ;�) = log f(O;�Sk ; Sk j�);

where Sk is the k-th best string, � is the HMM set

used in the N-best decoding, �k is the optimal state

sequence of the k-th string given the model set �, and

log f(O;�Sk ; Sk j�) is the related log-likelihood score

on the optimal path of the k-th string.

� The misclassi�cation measure is determined by

d(O;�) = �g(O; Sc;�) + log

 
1

N � 1

X
Sk 6=Sc

e
g(O;Sk;�)

!

which provides an acoustic confusability measure be-

tween the correct and competing string models.

� The loss function is de�ned as

l(O;�) =
1

1 + e�d(O;�)
;

where  is a positive constant, which controls the slope

of the sigmoid function.

� The model parameters are updated sequentially ac-

cording to the GPD algorithm

�n+1 = �n � �rl(O;�); (3)

�n is the parameter set at the nth iteration, rl(O;�) is

the gradient of the loss function for the training sample

O which belongs to the correct class c, and � is a small

positive learning constant.

In this paper, we report only the results obtained by sequen-

tial training. During the model training phase, we call one

complete pass through the training data set as an epoch.

For the case of string-by-string training, model parameters

are updated several times over an epoch.

4. DATABASES

This section describes the database, SST CD, used in this

study. This database is a good challenge for speech rec-

ognizers because of its diversity. It is a compilation of

databases collected during several independent data col-

lection e�orts, �eld trials, and live service deployments.

These independent databases are denoted as DB1 through

DB6. The SST CD database contains the English digits

one through nine, zero and oh. It ranges in scope from

one where talkers read prepared lists of digit strings to one

where the customers actually use an recognition system to

access information about their credit card accounts. The

data were collected over network channels using a variety

of telephone handsets. Digit string lengths range from 1 to

16 digits. The SST CD database is divided into two sets:

training and testing. The training set, DB1 through DB3,

Databases Training Testing

Strings Speakers Strings Speakers

DB1 2568 500 2649 500

DB2 2075 2075 1036 518

DB3 2639 2639 713 713

DB4 { { 3063 200

DB5 { { 4318 50

DB6 { { 1335 1281

Total 7282 5214 13114 3262

Table 1. Regional distributions of spoken digit

strings and the speaker population among the train-

ing and testing sets of the SST CD database.

includes both read and spontaneous digit input from a vari-

ety of network channels, microphones and dialect regions.

The testing set is designed to have data strings from both

matched and mismatched environmental conditions and in-

cludes all six databases. All recordings in the training and

testing set are valid digit strings, totaling 7282 and 13114

strings for training and testing, respectively. The data dis-

tribution of the training and testing set is shown in Table 1.

5. FEATURE EXTRACTION

Input speech is segmented into overlapping frames 30 msec

long with centers 10 msec apart. Each frame is processed

to give 12 LPC-derived liftered cepstral coe�cients along

with energy and voicing features. Since the signal has been

recorded under various telephone conditions and with dif-

ferent transducer equipment, each cepstral feature vector

is further processed using the hierarchical signal bias re-

moval (HSBR) method [2] to reduce the e�ect of channel

distortion. The combined feature vector is augmented with

its �rst and second order time derivatives resulting in two

di�erent feature dimensions as explained below.

To use a well-known frame vector as a baseline system,

we perform our analysis on the 38-dimensional frame vec-

tor DDCEP+ consisting of the cepstrum, delta cepstrum,

delta-delta cepstrum, delta energy and delta-delta energy

[8]. The DDCEP ? feature set has 44 components which

includes DDCEP+ combined with the voicing set and the

delta and delta-delta derivatives of the voicing set. The

voicing set includes periodicity and jitter, computed as show

in (1) and (2).

6. REVIEW OF HMM CONNECTED DIGIT

RECOGNIZER

Following feature analysis, each feature vector is passed to

the recognizer which models each word in the vocabulary

by a set of left-to-right continuous mixture density HMM

using context-dependent head-body-tail models [8]. Each

word in the vocabulary is divided into a head, a body, and

a tail segment. To model inter-word coarticulation, each



Feature Vector ML training MSE Training

Size and Type Wd Er St Er Wd Er St Er

38 DDCEP+ 3.31% 16.61% 2.14% 10.18%

44 DDCEP ? 3.07% 15.78% 1.28% 6.42%

Table 2. Word error rate (Wd Er) and string error

rate (St Er) for an unknown-length grammar-based

connected digit recognition task using the conven-

tional ML and MSE training methods as a function

of frame vector size and type. The 44-feature vector

with voicing is substantially more accurate.

word consists of one body with multiple heads and multiple

tails depending on the preceding and following contexts. In

this paper, we model all possible inter-word coarticulation,

resulting in a total of 276 context-dependent sub-word mod-

els. Both the head and tail models are represented with 3

states, while the body models are represented with 4 states,

each having 8 mixture components. Silence is modeled with

a single state model having 32 mixture components. This

con�guration results in a total of 276 models, 837 states

and 6720 mixture components.

Training included updating all the parameters of the

model, namely, means, variances and mixture gains using

ML estimation followed by six epochs of MSE to further

re�ne the estimate of the parameters. The number of com-

peting string models was set to four and the step length

was set to one during the model training phase. The HSBR

codebook of size four is extracted from the mean vectors of

HMMs, and each training utterance is signal conditioned by

applying HSBR prior to being used in MSE training. The

length of the input digit strings are assumed to be unknown

during both training and testing.

7. EXPERIMENTAL RESULTS

Several sets of experiments were run to evaluate the

connected digit recognizers using two types of HMMs

(DDCEP+ and DDCEP ?) and two types of training (ML

and MSE). The overall performance of the recognizers, or-

ganized as the word and string error rate as a function of

the feature vector size is summarized in Table 2.

Table 2 illustrates four important results. First, under all

conditions, the MSE training is superior to the ML training;

the MSE-based recognizer achieves an average of 50% string

and word error rate reduction, uniformly across all types

of speech models (both the baseline and extended feature

set HMMs), over the ML-based recognizer. Second, for the

ML-based recognizer, the DDCEP ? based HMM is slightly

superior to the baseline HMM. Thirdly, for the MSE-based

recognizer, superiority of the DDCEP ? based HMM over

the DDCEP+ based HMM becomes signi�cantly greater

than the ML case. Finally, the reduction in both string and

word error rate in going from the ML to the MSE train-

ing with use of the DDCEP ? based HMM (about 60%)

is higher than with the baseline HMM (about 40%). This

di�erence tends to validate our conjecture that MSE train-

ing should be used with the extended feature set because of

the strong correlation between voicing and the �rst spectral

coe�cient.

8. CONCLUSIONS

In this work, features representing the periodicity and jit-

ter of speech signals are added to a standard 38-dimensional

feature vector. Connected digit recognition results compar-

ing the traditional maximum likelihood (ML) method and

the minimum string error (MSE) training methods to study

the e�ects of including voicing features are reported. We

conclude that the di�erence in performance with and with-

out voicing becomes more signi�cant when MSE training

is used than when ML training is used. The best result

is achieved by including voicing features and by using the

MSE training algorithm, yielding a string error rate reduc-

tion of 40%, compared to the MSE-trained baseline system.

This suggests that prosodic information such as periodicity

and jitter is useful in speech recognition.
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