
Software Manufacturing:
The Industrial Revolution of Software Development

A cover story in the September 1994 issue of Scientific American is
entitled The Crisis in Software. As might be expected, the lead horror
story involves the software debacle in the baggage-handling system at the
new Denver airport. Antediluvian software engineering practices are to
blame, we are to believe. “Unfortunately, the industry does not uniformly
apply that which is well-known best practice,” quotes Scientific American
of Larry E. Druffel, director of Carnegie Mellon University’s Software
Engineering Institute. In other words, if we could cure our engineering
ignorance we would eliminate our software misadventures.

In the article, Brad J. Cox suggests that “It’s like musket making was
before Eli Whitney. Before the industrial revolution, there was a non-
specialized approach to manufacturing goods that involved very little
interchangeability and a maximum of craftsmanship. If we are ever going
to lick this software crisis, we’re going to have to stop this hand-to-
mouth, every-programmer-builds-everything-from-the-ground-up,
preindustrial approach.”

Exactly. But it will take more than better engineering practices. Much
more.

Astonishingly, Scientific American fails to recognize the role that machine
tools played in the industrial revolution. Rifle parts became
interchangeable because machines made them identical.

The industrial revolution was the outgrowth of a great number of
visionaries who believed that better tools would produce better products
cheaper and faster. If we are to make better software, cheaper and faster,
we will need better tools. To do so, we need to understand the weaknesses
of the tools we are now using.

Clarion for Windows Information Kit Software Manufacturing

This white paper was written by Bruce D. Barrington, CEO of TopSpeed Corporation and
author of the Clarion language and Clarion Template language. Richard Chapman of the
TopSpeed Development Centre also contributed to this paper.

Software Manufacturing

Tools for Software Craftsmen

Is there any doubt left in anyone’s mind that Microsoft Windows has
become the desktop standard for stand-alone as well as client software?
What tools are available to design, express, and deploy graphic user
interfaces?

They fall into two categories: visual tools and object-oriented languages.
Visual tools such as Visual Basic and PowerBuilder maintain Window
layouts in a private repository and process them with an internal
messaging engine. An application’s behavior is produced by associating
“snippets” of event processing code with the controls in a Window. This
strategy produces an inherent scaling problem as large applications
become “hidden behind a thousand doors”. The fact that “code snippets”
are interpreted, rather than compiled into machine language, makes all
visual applications sluggish. Large visual applications can be unbearably
slow. Furthermore, developers often “hit the wall” erected around an
internal messaging engine that often fails to export the fine control
necessary to implement a complex specification.

Object-oriented languages such as C++ provide the necessary
performance and control at the cost of a daunting and esoteric syntax. It is
a fact that C++ doesn’t “know” anything about Windows. It must be
“taught” the entire Windows class library on every compile. Then C++
promptly forgets what it learned before the next compile. Language
elements that COBOL programmers have taken for granted for 30 years
must be “inherited” by every C++ source module. It is no wonder that
C++ is complicated. Instructing a compiler about its basic grammar is
tricky business indeed. As a result, conventional programmers cannot
even read a C++ program without a lot of training.

Objects of our Affection

We need GUI languages. Fifteen years ago, the relational database
revolution launched the entire database tool industry into a frenzied effort
developing fourth generation languages. The idea was that an elegant and
versatile database grammar makes database programming easier and
database programs more reliable. Today, few would argue with that
premise. So where are the GUI languages? Where is the elegant and
versatile user interface grammar that makes coding user interfaces as easy
as accessing databases with a 4GL. Has the entire world bought into the
notion that object-orientation is the last word in GUI programming?

Let’s hope not. Because if we have learned anything in the object-oriented
age, it is that objects don’t scale! The truth is that OOP has reneged on its
promise to deliver reusable custom components that can be assembled to
create applications without programming.

Intermediate objects, like Windows controls, are very successful reusable
components that are easily deployed with little or no programming. But
big custom components like forms, reports, updates, calculations, etc. are
still hand-coded. And these components must be stitched together with
more hand-code to create an application. Unfortunately, the process of
writing code—even object-oriented code—hasn’t changed much since the
introduction of COBOL.

Clarion for Windows Information Kit Software Manufacturing p. 2

An OOP language at work:
Microsoft Visual C++

Objects are hand-crafted parts. Worse than that, an object is an extremely
primitive model for an entire application or a large custom component of
an application.

Consider a form that updates a database: An update form needs hundreds
of properties to describe its window layout, database access strategy,
referential integrity constraints, etc. How do you manage them? With a
spreadsheet that is two columns wide and a thousand columns long?
Remember that properties interrelate. If you set one property you can’t set
another. Or perhaps you must set it. Where does an object keep its
property rules? When and where does the object report a conflict?

Managing properties isn’t the only problem with big objects. Properties
represent features that must be inherited. That means the feature set of a
big object must be arranged in a hierarchy or be inherited in its entirety.
Unfortunately, feature sets resist any effort to sequence them. Which
comes first: VCR controls or auto-increment keys?

The answer is “neither.” Those features are not related in any meaningful
way. Feature sets aren’t hierarchies. That’s why big objects come in one
version—complete with all the features a designer can dream up. Big
objects aren’t just a little bigger than their parents. They are enormously
bigger. Swallowing these objects whole when only a nibble would suffice
is a primary contributor to the object bloat that is now being called the
“fat client.”

We need reusable design objects. With the infrastructure necessary to
gather and maintain a complex set of inter-related properties. So each
design object can have its own custom user interface to make sense out of
its repertoire of features.

We need design objects to automatically generate the code necessary to
“glue” applications together and to produce the behavior expected of large
components. Design objects that propagate only the functionality
requested or that is required to resolve issues between interrelated
properties. So applications can be as small as they ought to be.

We know what we need but what have we got? For now, we are building
client software with hand tools. Like a cabinet maker armed with a cold
chisel and a scalpel, we must decide between Visual Basic or Visual C++.
PowerBuilder or SmallTalk. We are stuck with an object model that won’t
grow any bigger than a data bound control. We hand craft all behavior that
doesn’t come out of a VBX.

There is no abstraction to represent an entire application. No application
model. No application repository. There is no large component model. No
standard large components other than the standard Windows dialog boxes.
We design applications then we write them and test the code. Every new
project represents the same business risk as the last. We are artisans
trapped in the renaissance. The quality of our work depends on our talent.

Clarion for Windows Information Kit Software Manufacturing p. 3

A typical database
update form.

The Post-industrial Software Age

Or so it would seem to many. Fortunately, some developers know
differently. For the last 10 years, TopSpeed Corporation has been chipping
away at the software crises with a steady stream of new software
development technology in a search for a cure to the three primary
diseases of pre-industrial software: poor productivity, poor performance,
and poor reliability. Their quest has been successful.

TopSpeed has created an “application model,” that treats an application as
a single entity rather that a disconnected set of forms, reports, and
subroutines. The application model is a container for procedure definitions
that are related logically and physically. Logically, procedures are
represented by a tree structure that shows calling sequences. The top
procedure of the application tree is the first procedure called by the
application. Below are the procedures called by the first procedure
followed by the procedures they call, etc. Physically, procedures are
grouped into source modules that will receive generated code.

The TopSpeed Application Model

A procedure definition contains the specification for the visual elements
such as menu, window, and report layouts. In addition, the procedure
definition specifies the expected behavior of the procedure.

The application model and procedure definitions are maintained in an
application repository. When combined with a data dictionary, the
application repository can be manufactured into a complete, functioning
application with a single mouse click.

The enabling technology is a powerful template language that controls a
high speed source code generating engine. The template language also
manages the development environment and provides a user interface for
maintaining properties. TopSpeed calls these reusable design objects “rich
templates.”

Clarion for Windows Information Kit Software Manufacturing p. 4

All data elements in the application repository and data dictionary are
exported as symbols available for template processing. Rich templates use
these symbols to generate procedures, controls, and embedded source
code. Rich templates also control the process of creating source modules
and produce documentation files. Rich templates can even be used to
modify other existing templates. All logic is embodied in the template
language making the application generator tool infinitely extensible.

Rich templates are TopSpeed’s cure for big object disease. Like objects,
rich templates are reusable. Unlike objects, however, a rich template has a
“front end” to gather and maintain properties.

A rich template that produces a “browse” procedure may require a half-
dozen custom dialog boxes to specify its functionality. Most of these
properties define optional behavior. For example, do you want to edit the
records in place or use an update procedure? If so what is the name of the
update procedure? Do you prefer a vertical scroll bar or VCR buttons?

These properties are organized into a convenient user interface explaining the
behavior they produce and the rules governing their usage. Only the code
necessary to implement the requested behavior is generated by a rich template.
Each feature is customized to be compatible with other selected features.

The TopSpeed Technology Stream

1986 The Clarion language - a 4GL with data abstractions for screens, reports, and
files along with an integrated messaging model for the user interface.
“Two-way” screen and report painters.

1988 Software manufacturing - a complete application automatically created from an
application repository and a data dictionary.

1990 Multi-language development platform - Pascal, Modula-2, C, and C++ sharing
the same optimizing compiler.
Object oriented extensions for Pascal and Modula-2.
“Smart-linking” - all unreferenced code and data eliminated from EXEs.

1992 Extensible Software Manufacturing - rich templates control the process of
creating applications.
The Clarion optimizing compiler - a 4GL matches the performance of C
compilers.
Scalable database drivers - SQL and navigational databases accessed with
native APIs.
“Smart method” linking - unreferenced virtual methods eliminated from EXEs.

1994 “Toolware” for Software Manufacturing - rich templates for procedures,
controls, embedded source code, module generation, and other design
processes.
Windows hosted debugger with automatic redraw services.

Window declarations and messaging model for the Clarion language.

Extensible “Toolware”

The following page illustrates the properties dialog box for a “Form” template
that generates record update procedures. The right column of buttons launch
interactive tools that create database schemas, paint Window and Report
layouts, collect embedded source code, etc. The remaining fields gather the
other information required to generate source code for a custom form. Buttons
on the left of the window, such as “Messages and Titles,” display dialog
boxes that gather additional information. The format for each of these dialog
boxes is contained in the “Form” template.

Clarion for Windows Information Kit Software Manufacturing p. 5

Importantly, rich templates don’t replace objects. On the contrary, rich
templates can be very useful organizers for objects. For example, rich
templates have been “wrapped” around VBX custom controls to provide
an attractive user interface, generate property assignment statements, and
bind the VBX into the Clarion messaging model.

The Form Template User Interface

Rich templates are not even software. They do not contain instructions for
a computer to follow. Rather, rich templates instruct the software
manufacturing tool how to communicate with the designer and how to
fabricate his design. TopSpeed calls this “toolware.” New toolware is
continually produced by TopSpeed and third-party developers alike,
delivering a constant stream of new functionality to TopSpeed developers.

A “Gooey” 4GL

Windows programming should be simple. The user interface is so
completely standardized that very little detail is necessary to specify the
“look and feel” of a program. However, the natural purity inherent in the
Windows graphic user interface has been contaminated by a set of
inelegant tools that have been adopted as industry standards.

The following page lists the contents of four files required by Microsoft
Visual C++ to specify a “Hello World” program. All the comments and
compiler directives that control the Visual C++ environment have been
removed to reveal the “essence” of a minimal C++ application that uses
Microsoft Foundation Classes. Microsoft created its Foundation Class
Library to simplify Windows programming under C++. It is hard to
conclude that they have succeeded.

Reading even a simple Visual C++ program like this requires a working
knowledge of the syntax of both C++ and Windows resource scripts along
with a basic understanding of the formidable Foundation Class Library.
To the casual observer, or for that matter, to a well-trained conventional
programmer, “Hello World” may as well be written in hieroglyphics.

Clarion for Windows Information Kit Software Manufacturing p. 6

Contrast the Visual C++ “Hello World” with its Clarion equivalent
immediately below the C++ example. This program can probably be
understood by anyone familiar with Windows, whether or not they have
ever written a computer program.

PROGRAM introduces the statements that declare data elements.
WINDOW declares a “Clarion for Windows” dialog box named Window.
Window has a system menu, measures 160 dialog units wide by 60 units
high, and is centered (because the x and y coordinates are omitted).
Window also contains a text string and a default button named ?OK.

CODE introduces statements that open and process Window.
ACCEPT... END is an integrated messaging loop that cycles for all
window events. When the ?OK button is pressed or when the system
menu closes the window, the program breaks out of the ACCEPT loop and
returns to Windows.

Is it fair to compare the Clarion language with C++? Can Clarion really
match the performance and power of C++?

Clearly, Clarion matches the performances of many C/C++ compilers.
Clarion shares the same optimizing code generator with TopSpeed Pascal,
Modula-2, C, and C++ compilers. As a result, Clarion object modules are
indistinguishable from C++ object modules. As measured by the standard
benchmark known as the “Sieve of Eratosthenes”, Clarion is 20% slower
than Microsoft Visual C++ when both are optimized for speed. Currently,
Visual C++ holds a similar performance edge over other C/C++ language
products.

The same benchmark shows Clarion to be 36 times faster than Visual
Basic and a breathtaking 1,300 times faster than PowerBuilder. This
difference can be explained by the fact that both Visual Basic and
PowerBuilder produce scripts that must be interpreted at run-time. C++
and Clarion produce native code executed directly by the computer.

Development System Cycles

Microsoft Visual C++ 1.5 136,397

Clarion for Windows 106,667

Microsoft Visual Basic 3.0 2,594

Powersoft PowerBuilder 3.0a 82

Of course, Clarion is not as powerful as C++ for low-level systems
programming. A Clarion program can directly call C/C++, Pascal, and
Modula-2 if that is necessary. Because of TopSpeed’s multi-language
support, these languages can be freely mixed in the same project.

Clarion for Windows itself is a mixed language project. The Clarion
run-time library, the Clarion compiler, the Clarion source generating
engine, and the data dictionary editor are written in C++. The
debugger and the optimizing code generator are written in Modula-2.
But the entire user interface is written in Clarion. The database
manager that accompanies Clarion for Windows is also written in
Clarion. Using Clarion everywhere possible substantially reduced
the development effort required to produce Clarion for Windows.

Clarion for Windows Information Kit Software Manufacturing p. 7

A Clarion "Hello World"

//Contents of HELLO.H

#ifndef _——HELLO—H——__
#define _——HELLO—H——_

class CMainWindow : public CDialog
{
public:
 CMainWindow();
 afx_msg void OnOkButton();
 DECLARE_MESSAGE_MAP()
};

class CTheApp : public CWinApp
{
public:
 BOOL InitInstance();
};

#endif _

//Contents of HELLO.CPP

#include “stdafx.h”
#include “resource.h”
#include “hello.h”

CMainWindow::CMainWindow()
{
Create(“HelloBox”, NULL);
}
void CMainWindow::OnOkButton()
{
CloseWindow();
}

BEGIN_MESSAGE_MAP(CMainWindow, CDialog)
ON_COMMAND(IDM_OKBUTTON, OnOkButton)

END_MESSAGE_MAP()

BOOL CTheApp::InitInstance()
{
TRACE(“HELLO WORLD\n”);
SetDialogBkColor();
m_pMainWnd = new CMainWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;
}

//Contents of RESOURCE.H

#define IDM_OKBUTTON 100

//Contents of HELLO.RC

#include “resource.h”
#include “afxres.h”

HELLOBOX DIALOG DISCARDABLE 34,22,144,75
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION |

WS_SYSMENU
CAPTION “Visual C++”
FONT 8, “Helv”
BEGIN

CTEXT “Hello World”,IDC_STATIC,0,23,144,8
DEFPUSHBUTTON “OK”,IDM_OKBUTTON,

56,53,32,14,
WS_GROUP
END

A Visual C++ "Hello World"

PROGRAM

Window WINDOW(‘Clarion for Windows’), AT(,,160,60), SYSTEM
STRING(‘Hello World’), AT(30,15,90,12), CENTER
BUTTON(‘OK’), AT(60,35,,), USE(?OK), DEFAULT
END

CODE

OPEN(Window)
ACCEPT

IF ACCEPTED() = ?OK THEN BREAK.
END
RETURN

The Clarion language is a general purpose business language with built-in
data abstractions that simplify user interfaces and database access. For
developing client or stand-alone vertical applications, Clarion is clearly
superior to C++.

To summarize the benefits of the technology introduced by Clarion for
Windows:

· Clarion’s rich templates eliminate most of the hand-coding
required by other visual tools.

· Clarion’s performance matches C++ and far exceeds the
other visual tools.

· The Clarion language simplifies the process of developing,
testing, and maintaining Windows applications.

The conclusion is inescapable: If you can use Clarion, you should use
Clarion.

Software manufacturing techniques now produce more reliable
applications in less time using fewer resources. The post-industrial age of
software development has arrived.

The TopSpeed Legend

In 1992, Clarion Software Corporation merged with Jensen and Partners,
International to form TopSpeed Corporation. The principals involved were
Niels Jensen, CEO of JPI and Bruce Barrington, CEO of Clarion.

Jensen is the founder of Borland, International and is the visionary behind
Turbo Pascal, the first integrated development environment. In 1988,
Jensen and the entire language development team left Borland as a group
in a dispute over compiler quality. JPI purchased their work in progress
and produced the TopSpeed line of compilers which immediately became
the performance leader of the desktop languages market. Later, the
merged companies would adopt the TopSpeed trademark as their corporate
objective as well as their company name.

Barrington is co-founder of HBO & Company, now a $300 million
information services company serving the health care industry. In 1983,
Barrington founded Clarion Software Corporation. Barrington is the
author of the Clarion language and the Clarion Template Language.

Barrington is now the CEO and largest stockholder of TopSpeed
Corporation. Niels Jensen is the second largest stockholder and a member
of the TopSpeed board of Directors. The JPI development team,
headquartered in London, has been expanded and is now called TopSpeed
Development Centre.

Clarion for Windows Information Kit Software Manufacturing p. 8

Niels Jensen

Bruce D. Barrington

