
Vision

Four generations of software tools failed to provide the productivity that
developers require and deserve. In the same way that new machine tools
revolutionized 19th century industrial manufacturing, TopSpeed's vision is
to provide the "toolware" for a new "industrial revolution" for software
development.

At the time of the industrial revolution, machine tools enabled craftsmen
to adopt a non-specialized approach to producing goods from
interchangeable parts, changing them into manufacturers. The mass
production process allowed ordinary workers to do the labor which
formerly required a specialist—the craftsman. Better tools produced better
products cheaper and faster.

Today, Object Oriented Programming languages (OOP) support
"interchangeable parts" in somewhat the same manner as the machine
tools of the 19th century. Yet OOP has failed to fuel a mass production
revolution, because it hasn't allowed ordinary workers to take over the
craftsman's former role in production. OOP programmers might just as
well be goldsmiths, apprenticing for years before doing significant
work—and costing just as much, once past their apprenticeship.

OOP has failed to provide an enabling technology for "manufacturing"
software. The OOP languages available today are object frameworks
grafted on top of 3rd generation languages. Without "GUI-Awareness"
built into the language, developers must spend time learning proprietary
object libraries. Once learned, each program is written with an obscure
syntax, making it all but impossible for one programmer to easily pick up
another's work.

In practical terms, OOP code reusability exists on only two levels. The
first is the base object framework, which usually handles only creation
and simple maintenance functions, such as opening a window and
checking the message queue. Level two is when a single programmer
creates an object class, and it gets reused in another program by the same
programmer. If another programmer needs the same functionality, even if
both programmers are in the same shop, the second programmer usually
ends up coding from scratch rather than deciphering the first
programmer's work—as a direct result of the difficulty in reading OOP
code.

Clarion for Windows Information Kit V ision

Software Manufacturing

Clarion for Windows represents the first "GUI-aware language." The
Clarion SCREEN structure has evolved into the graceful WINDOW data
structure; Clarion possesses an elegant and versatile user interface
grammar for accomplishing the window creation and maintenance
functions that OOP handles via object frameworks. Programmers can
easily read each others' code and share it.

Clarion for Windows' enabling technology, which makes "software
manufacturing" possible, is its powerful template language. Like objects,
Clarion templates store executable code and data. Moreover, templates
have something important that objects lack—a user interface for
maintaining the template properties and customizations during the
development process.

The Clarion template user interface takes the software reusability
monopoly away from the OOP craftsmen, and allows ordinary "workers"
to use the tool. Instead of managing mumbo-jumbo object oriented syntax,
the Clarion developer fills in a simple series of edit boxes and chooses
options from drop down lists. These options tell the template exactly what
code to generate.

Unlike base classes of C++ object frameworks, the templates can be easily
modified and shared between programmers. The templates thus represent
true interchangeable parts which don't require a specialist to assemble. An
enabling tool for "software manufacturing" has arrived.

The Clarion template user interface also allows Clarion developers to
produce leaner applications. The templates generate only the code
necessary to implement the functionality requested by the developer.
Compare this to an object class, some of whose methods might barely be
documented, yet which always compile unless specifically overridden by
the OOP developer.

Our "toolware" produces better applications—fast. These are the beliefs
that guide the development of our compiler products:

• We believe that new development tools will produce
significantly better software with significantly lower cost and
risk.

• We believe in high-performance compilers.

• We believe in template-driven Rapid Application
Development.

• We believe in the Clarion language—the first “GUI-aware”
language.

• We believe in client-server architecture.

• We believe in reusing software.

Clarion for Windows Information Kit Vision p. 2

The Clarion for Windows Template
Registry

The Form Procedure Template
user interface

