| Funzione | Funzioni equivalenti derivate |
| Secante | Sec(X) = 1 / Cos(X) |
| Cosecante | Cosec(X) = 1 / Sin(X) |
| Cotangente | Cotan(X) = 1 / Tan(X) |
| Seno inverso | Arcsin(X) = Atn(X / Sqr(-X * X + 1)) |
| Coseno inverso | Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1) |
| Secante inversa | Arcsec(X) = Atn(X / Sqr(X * X 1)) + Sgn((X) 1) * (2 * Atn(1)) |
| Cosecante inversa | Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) 1) * (2 * Atn(1)) |
| Cotangente inversa | Arccotan(X) = Atn(X) + 2 * Atn(1) |
| Seno iperbolico | HSin(X) = (Exp(X) Exp(-X)) / 2 |
| Coseno iperbolico | HCos(X) = (Exp(X) + Exp(-X)) / 2 |
| Tangente iperbolica | HTan(X) = (Exp(X) Exp(-X)) / (Exp(X) + Exp(-X)) |
| Secante iperbolica | HSec(X) = 2 / (Exp(X) + Exp(-X)) |
| Cosecante iperbolica | HCosec(X) = 2 / (Exp(X) Exp(-X)) |
| Cotangente iperbolica | HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) Exp(-X)) |
| Seno iperbolico inverso | HArcsin(X) = Log(X + Sqr(X * X + 1)) |
| Coseno iperbolico inverso | HArccos(X) = Log(X + Sqr(X * X 1)) |
| Tangente iperbolica inversa | HArctan(X) = Log((1 + X) / (1 X)) / 2 |
| Secante iperbolica inversa | HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X) |
| Cosecante iperbolica inversa | HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X) |
| Cotangente iperbolica inversa | HArccotan(X) = Log((X + 1) / (X 1)) / 2 |
| Logaritmo in base N | LogN(X) = Log(X) / Log(N) |