The B-52H BUFF [Big Ugly Fat Fellow] is the primary nuclear roled bomber in the USAF inventory. It provides the only Air Launch Cruise Missile carriage in the USAF. The B-52H also provides theater CINCs with a long range strike capability. The bomber is capable of flying at high subsonic speeds at altitudes up to 50,000 feet (15,000 meters). It can carry nuclear or conventional ordnance with worldwide precision navigation capability.
With a gross weight of 488 000 pounds, the B-52H is even today one of the heaviest offensive military aircraft operated by any nation in the world. Maximum speed of the B-52H is 639 miles per hour at 20,700 feet, or a Mach number of 0.91, and cruising speed is 525 miles per hour. Mission radius is 4,480 miles with a weapons load of 10,000 pounds. Many other combinations of payload and range are, of course, possible. Range is, of course, greatly increased by in-flight refueling.
The B-52 was originally designed for high-altitude weapons delivery over the target. Like the B-47, however, the increasing effectiveness of enemy antiaircraft defenses required the development of low-altitude high-speed penetration tactics for the B-52. Again like the B-47, the B-52 has suffered from its share of structural fatigue problems. To cure these problems, many modifications have been made to the aircraft during its long-lived career.

The B-2 Spirit is a multi-role bomber capable of delivering both conventional and nuclear munitions. Along with the B-52 and B-1B, the B-2 provides the penetrating flexibility and effectiveness inherent in manned bombers. Its low-observable, or "stealth," characteristics give it the unique ability to penetrate an enemy's most sophisticated defenses and threaten its most valued, and heavily defended, targets. Its capability to penetrate air defenses and threaten effective retaliation provide an effective deterrent and combat force well into the 21st century.
The blending of low-observable technologies with high aerodynamic efficiency and large payload gives the B-2 important advantages over existing bombers. Its low-observability provides it greater freedom of action at high altitudes, thus increasing its range and a better field of view for the aircraft's sensors.
Four General Electric F118-GE-100 non-afterburning turbofan engines (each delivering approximately 19,000 lbs. of thrust) drive the airplane to a maximum speed described as "high subsonic," and to altitudes near 50,000 ft. They also provide an unrefueled range of approximately 6,000 nautical miles. A single aerial refueling extends this to some 10,000 miles and multiple visits to air tankers stretches the range indefinitely.
The B-2's low observability is derived from a combination of reduced infrared, acoustic, electromagnetic, visual and radar signatures. These signatures make it difficult for the sophisticated defensive systems to detect, track and engage the B-2. Many aspects of the low-observability process remain classified; however, the B-2's composite materials, special coatings and flying-wing design all contribute to its "stealthiness."
The B-2 has a crew of two pilots, an aircraft commander in the left seat and mission commander in the right, compared to the B-1B's crew of four and the B-52's crew of five.

Under current plans, the B-52, along with the younger B-1B Lancer and the new stealthy B-2 Spirit, will be kept around until approximately 2037, by which time the Air Force calculates that attrition will have reduced the fleet below the minimum 170 aircraft. The B-52s may fly to 2045.
Based on current operating procedures, attrition models, and service lives, the total bomber inventory is predicted to fall below the required 170 aircraft fleet by 2037. This date will become the target Initial Operational Capability (IOC) date for a follow-on to the current bomber capability, and an acquisition process can be planned by backing up from this date. Based on current projections for airframe economic service life and forecast mishap rate, initiating a replacement process no later than 2013 will ensure a capability to fill the long-range air power requirement as the current systems are retired. There are, however, additional concerns besides service life and mishap rates that could shift this replacement timeline. Changes in employment concepts, driven by technological advances in munitions and threats, or improvements in industrys ability to perform cost effective major structural extensions could extend the todays bomber force well beyond current projections. This may shift the acquisition timeline for a replacement capability further into the future.
The Light Bomber (Manned) concept calls for a medium-sized aircraft that blends the advantages of a tactical fighter with a strategic bomber to develop a medium/long range, high payload capability (inter-theater) affordable bomber. The aircraft will utilize some level of low-observable technology to obtain an effective yet affordable aircraft which can provide for multiple/heavy weapons carriage and launch for missions requiring real time decision making/replanning or autonomous operations. Cost would be controlled by utilizing off-the-shelf systems and affordable stealth technologies (JSF technology). Logistic support would be enhanced by maximizing commonality of support equipment with existing systems.
The Bomber Industrial Capabilities Study was directed by Congress, chartered by the DOD, and conducted by The Analytic Sciences Corporation (TASC). The study concluded that building a new bomber type, a B-3, could easily cost in excess of $35 billion for research and development alone (with unit flyaway costs about the same as a B-2). Technology concepts from the USAF Scientific Advisory Board's (SAB) New World Vistas and technology concepts submitted for the 2025 Study were reviewed and concepts harvested from these efforts included the Future Attack Aircraft. This concept envisions a 500-nm-range manned or unmanned aircraft that would use stealth technology (both RF and IR) to reach a target and employ laser or high-power microwave (HPM) weapons. An unmanned aircraft with a "tunable" HPM weapon could provide either the nonlethal or lethal punch SAF needs in the constabulary mission.
A HyperSoar hypersonic Global Range Recce/Strike Aircraft the size of a B-52 could take off from the US and deliver its payload to any point on the globe - from an altitude and at a speed that would challenge current defensive measures - and return to the US without the need for refueling or forward bases on foreign soil. Equipment and personnel could also be transported.
HyperSoar could fly at approximately 6,700 mph (Mach 10), while carrying roughly twice the payload of subsonic aircraft of the same takeoff weight. As a military aircraft, a HyperSoar bomber the size of an F-22 could take off from the U.S. and deliver its payload from an altitude and at a speed that would defy all current defensive measures. It could then return directly to the continental U.S. without refueling and without the need to land at forward bases on foreign soil.
The HyperSoar concept promises less heat build-up on the airframe than previous hypersonic designs - a challenge that has until now limited the development of hypersonic aircraft. The key to HyperSoar is the skipping motion of its flight along the edge of Earth's atmosphere - much like a rock skipped across water. A HyperSoar aircraft would ascend to approximately 130,000 feet - lofting outside the Earth's atmosphere - then turn off its engines and coast back to the surface of the atmosphere. There, it would again fire its air-breathing engines and skip back into space. The craft would repeat this process until it reached its destination.
A mission from the midwestern United States to east Asia would require approximately 25 such skips to complete the one-and-a-half-hour journey. The aircraft's angles of descent and ascent during the skips would only be 5 degrees. The crew would feel 1.5 times the force of gravity at the bottom of each skip and weightlessness while in space. (1.5 Gs is comparable to the effect felt on a child's swing, though HyperSoar's motion would be 100 times slower.) Although the porpoising effect of a HyperSoar flight might test the adventurousness of some airline passengers, this would not impact military or space launch applications.
A 25-meter-long HyperSoar aircraft (about as long as the wingspan of a large business jet) could make a conventional takeoff from a standard runway. Using special air-breathing, rocket-based, combined-cycle engines, it would ascend to 40 kilometers-at the outer limit of Earth's atmosphere. Once there, its engines would be turned off, and it would coast up to a high point of 60 kilometers before beginning to fall back down to about 35 kilometers-well inside the atmosphere's upper level. As it descends into denser air, the aircraft would be pushed up by the increased aerodynamic lift. The engines would fire briefly, propelling the plane back into space. Outside the atmosphere, the engines shut off and the process repeats. In this way, HyperSoar would skip off the top layer of the atmosphere every two or so minutes, like a flat rock skittering in slow motion across the surface of a pond.
HOPE U LIKE IT BERT!