Introduction to Computational Fluid Dynamics (CFD)

 

Chapter

Topic

Page

I

Introduction  

Definition of CFD

Classification of Fluid Flow Problems

Laws of motion

(a) Conservation of mass

(b) Conservation of momentum (Navier-Stokes Eqns.)

(c) Conservation of energy

(d) Other supplementary equations

(e) Flow properties

(f) Flow boundary conditions

 

 

1.1 to 1.9

II

Examples of geometric modeling

Generation of biased and adaptive meshes for CFD analysis

2.1 to 2.

III

Laminar Incompressible Flow

(a)   Flow through a rectangular passage

(b) Flow through a convergent passage

(c) Flow through a bend pipe

(d) Project Problem – 1

(e) Project Problem – 2

3.1 to 3.

IV

Turbulent Models used in CFD analysis

(a)   Reynolds Averaged Navier-Stokes (RANS) Model

(b)   Spalart-Allmaras Model

(c)    Standard k-e Model      

(e) RNG k-e Model

(f) Realizable k-e Model

(g) Standard k-w Model

(h)   Shear-Stress Transport (SST) k-w Model

(i)     n2-f Model

(j)     Reynolds Stress Model (RSN)

(k)   Large Eddy Simulation (LES) Model

(l)     Detached Eddy Simulation (DES) Model

4.1 to 4.

V

Turbulent Incompressible Flow

(a)   Flow through a convergent passage

(b)   Merging of a secondary flow with primary flow

(c)    Flow through a bend pipe

(d)   Project Problem – 1

(e)   Project Problem – 2

5.1 to 5.

VI

Problems with plane of symmetry

(a)   Flow through a convergent passage

(b)   Flow through a star junction type passage

(c) Project Problem – 1

6.1 to 6.

VII

Axisymmetric Problems

(a)   Flow through a convergent passage

(b)   Flow through a stepped divergent passage

(c)    Axisymmetric problems with swirl effect

(d)   Project Problem – 1

(e) Project Problem – 2

7.1 to 7.

 

VIII

Laminar Compressible Flow

(a) Flow through a convergent passage

(b) Flow through a bend pipe

(c) Project Problem – 1

(d) Project Problem – 2

8.1 to 8.

IX

Turbulent Compressible Flow

(a) Flow through a convergent passage

(b) Merging of a secondary flow with primary flow

(c) Flow through a bend pipe

(c) Project Problem – 1

(d) Project Problem – 2

9.1 to 9.

X

Transient Analysis

(a)   Time Integration Methods

(b)   Transient Boundary Conditions

(c)    Time Step Specification and Convergence Criteria

10.1 to 10.

XI

CFD Solvers

(a) Tri-Diagonal Matrix Algorithm (TDMA)

(b) Conjugate Residual Algorithm (CR)

(c) Preconditioned Conjugate Residual Algorithm (PCCR)

(d) Preconditioned Generalized Minimum Residual Algorithm (PGMR)

(e) Preconditioned BiCGStab Algorithm (PBCGM)

(f) Preconditioned Conjugate Gradient Method

(g) Sparse Direct Solver

11.1 to 11.

XII

Commercial CFD Software

(a)   FLUENT

(b)   STAR-CD

(c)    ANSYS-CFX

(d)   ANSYS (FLOTRAN)

(e)   FLUIDYNE

(f)     ICEM-CFD

(g)   FLOW 3D

(h)   FLOTHERM

(i)     CFD 2000

(j)     PHOENICS/CHAM (Multiphase flow, N-S, Combustion)

(k)   NUMECA

(l)     ADINA-F

(m) CFD++

(n)   Arena-Flow

Pre- and Post-processors

(a)   GAMBIT

(b)   GeoMesh

(c)    TGrid

(d)   PreBFC

(e)   ICEMCFD

12.1 to 12.

 


References:

1. Computational Fluid Dynamics: The Basics with Applications

    John David Anderson, McGraw Hill Publication, 1995 (6th Edition).

2. Computational Methods for Fluid Dynamics

    Joel H. Ferziger and Milovan Peric, Springer Verlag Publication, 1999 (2nd Edition).

3. Introduction to Computational Fluid Dynamics

    Anil Date, Cambridge University Press, 2005 (1st Edition).

 

 

                                                                             

                                                                          |Sree Guru Vandana|

                  | Appointment | Research Interests | Publications | Positions Held | Academic Experience | Students | Citations | Courses |

 

                                         | My Alma mater | My Teachers | Foreign Assignments | My Friends | My Colleagues | My Family |

 

                                                                                 | Route Map to my Residence (RMV Clusters) |